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Abstract. In this paper, we investigate what kind of modal logics can be
constructed into the Gentzen-type formulation which enjoys the Cut elimination
theorem. We treat normal, regular and monotonic modal logics. A normal
modal logic is the modal logic with the Rule of Necessitation and the axiom K:
2(A ⊃ B) ⊃ (2A ⊃ 2B), a regular modal logic with the rule of inference RR :

A,Γ→B
2A,2Γ→2B

and a monotonic modal logic with the rule of inference RM : A→B
2A→2B

.
We provide Gentzen-type formulation and prove the cut elimination theorem
for the following modal logics: RT4 (a regular modal logic with the axioms T:
2A ⊃ A and 4: 2A ⊃ 22A), MT4 (a monotonic modal logic with the axioms
T and 4), MNT4 (a monotonic modal logic with the Rule of Necessitation and
the axioms T and 4), RT (a regular modal logic with the axiom T), MT (a
monotonic modal logic with the axiom T), MNT (a monotonic modal logic
with the Rule of Necessitation and the axiom T), KL (a normal modal logic
with the axiom L: 2A ⊃ (A∨2B)) and RTA (a regular modal logic with axioms
T and A: 2A&B ⊃ 2B).

AMS 1991 Mathematics Subject Classification. Primary 03B45.

Key words and phrases. Gentzen-type formulation, sequent calculus, normal
modal logic, regular modal logic, monotonic modal logic.

§1. Introduction

By LK, we mean the classical propositional logic provided with the four usual
logical operators ⊃, &, ∨, ¬ and constructed as in Gentzen [3]. Concerning
the English terminologies for Gentzen-type formulation and the proof of the
Cut elimination theorem, we mainly follow Kleene [6], with which, therefore,
we assume the familiarity.

In order to construct modal logics, we add, as usual, one modal operator 2

(necessity) to LK. The definition of well-formed formulas is just as usual and
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208 T.MIGITA AND T.HOSOI

we use upper case Latin letters A,B,C, · · · for formulas. Also we use upper case
Greek letters ∆, Γ,Π,Σ for finite, possibly empty, sequences of formulas. For
a sequence Γ of formulas, the expression 2Γ means the sequence of formulas
formed by prefixing the symbol 2 in front of each formula of Γ. If Γ is empty,
then 2Γ is also empty.

As usual, an expression of the form Γ → ∆ is called sequent. An
additional axiom A for Gentzen-type formulation means that we can use the
sequent → A as a beginning sequent.

For the definitions of normal, regular and monotonic modal logics, we cite
Chellas [1] as follows:

Definition 1.1. (1) A normal modal logic is a modal logic with the addi-
tional axiom

K : 2(A ⊃ B) ⊃ (2A ⊃ 2B)

and the Rule of Necessitation

RN :
→ A

→ 2A

The smallest normal logic is called as K, which is expressed, as usual, as

K = LK + K + RN.

(2) A regular modal logic is a modal logic with the additional rule of infer-
ence

RR :
A,Γ → B

2A,2Γ → 2B

The smallest regular logic is called as R, that is, R = LK + RR.
(3) A monotonic modal logic is a modal logic with the additional rule of

inference
RM :

A → B

2A → 2B

The smallest monotonic logic is called as M, that is, M = LK + RM.

Now we introduce the modal logics which we investigate in this paper.

Definition 1.2. (1) The logic RT4 is a regular modal logic with the addi-
tional axioms T : 2A ⊃ A and 4 : 2A ⊃ 22A, that is, RT4 = R+T+4.

(2) MT4=M+T+4.

(3) MNT4=M+RN+T+4.
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(4) S4=K+T+4.

(5) RT=R+T.

(6) MT=M+T.

(7) MNT=M+RN+T.

(8) KT=K+T.

(9) KL=K+L, where L is the axiom 2A ⊃ (A ∨ 2B).

(10) KD=K+D, where D is the axiom 2A ⊃ ¬2¬A.

(11) RTA=R+T+A, where A is the axiom 2A&B ⊃ 2B.

(12) S5=K+T+5, where 5 is the axiom 2A ∨ 2¬2A.
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The above Figures 1 and 2 illustrate the inclusion relations among these
logics. There, the lines indicate the inclusion relations, that is, extensions
of logics are reached by going upward along the lines. The inclusions in the
Figure 1 are proved in §10. The inclusions in the Figure 2 are well known.1

For eight of these logics, we provide Gentzen-type formulation and prove
the Cut elimination theorems2 .

§2. Gentzen-type Formulation RT4∗ of RT4

Now we reconstruct RT4 into Gentzen-type formulation RT4∗ and prove the
Cut elimination theorem for RT4∗.

Definition 2.1. The modal logic RT4∗ is constructed from LK by adding
the modal operator 2 and the rules of inference of the forms:

LB :
A,Γ → ∆

2A,Γ → ∆

and
RT4 :

2B,2Σ → A

2B, 2Σ → 2A

that is, RT4∗ = LK +LB + RT4.

Next, we prove that RT4=RT4∗ as logics, that is, the sets of provable
formulas of RT4 and RT4∗ are the same.
(1)RT4⊇RT4∗, as sets of provable formulas.3

1 See eg. Lemmon [2], where the axiom L is given in the form: 3> ⊃ (2A ⊃ A).
2 The logics S4 and KT are treated in the pioneer work by Ohnishi and Matsumoto [4].

(There, KT is treated by the name M.)
3 We use the symbol ⊇ to mean the set-inclusion, not necessarily the strict inclusion.

Later we use ⊃ to mean the strict inclusion.
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For this, we only need to prove the following two lemmas:

Lemma 2.2. The inference LB is permissible in RT4.

Proof.
2A → A A,Γ → ∆

2A,Γ → ∆ Cut

Lemma 2.3. The inference RT4 is permissible in RT4.

Proof.

2B → 22B

2B,2C1, · · · , 2Cn → A

22B,22C1, · · · , 22Cn → 2A
RR

2B,22C1, · · · , 22Cn → 2A
Cut

(Cut, Interchange)
2B, 2C1, · · · , 2Cn → 2A

where n ≥ 0.

(2)RT4∗ ⊇RT4, as sets of provable formulas.
For this, we only need to prove the following three lemmas, the first two of

which are almost immediate:

Lemma 2.4. The axiom T: 2A ⊃ A is provable in RT4∗.

Lemma 2.5. The axiom 4: 2A ⊃ 22A is provable in RT4∗.

Lemma 2.6. The inference RR is permissible in RT4∗.

Proof.
A1, · · · , An → B

2A1, A2, · · · , An → B
LB

(LB, Interchange)
2A1, · · · , 2An → B

2A1, · · · , 2An → 2B
RT4

where n ≥ 1.

So we have the following:
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Theorem 2.7. RT4=RT4∗.

Thus, the sets of provable formulas of RT4 and RT4∗ are the same.

Now we prove the Cut elimination theorem for RT4∗.

Theorem 2.8. (Cut elimination) Any RT4∗ proof can be transformed into
an RT4∗ proof of the same endsequent without use of the inference Cut.

As usual, we introduce an additional inference Mix as follows:

Γ → ∆ Σ → Π
Γ, ΣA → ∆A, Π

Mix(A)

where ∆A and ΣA mean the sequences of formulas obtained from ∆ and Σ by
eliminating the Mix formula A from them. And we replace the inference Cut
with Mix. So the Cut elimination means the elimination of Mix.

Our proof proceeds along the line of Kleene [6] by the induction on rank
and grade of Mix which produces the endsequent of the proof and which is the
only one Mix used in the proof. For the definition of rank and grade and for
the details of the usual Cut elimination method, we refer to Kleene [6].

Hereafter, S1 means the left upper sequent of the inference Mix, and S2 the
right upper sequent of the inference Mix:

S1 S2

S
Mix

where S is the endsequent.
As we follow Kleene [6], it is obvious that we only need to treat the following

three cases:

(1) The case where the left rank = 1, the right rank = 1, and the outermost
symbol of the Mix formula is 2.

(2) The case where the right rank > 1, the left rank = 1, and S2 is derived
by LB or RT4.

(3) The case where the left rank > 1, and S1 is derived by LB or RT4.

Proof. (1) The case where the left rank = 1, the right rank = 1, and the
outermost symbol of the Mix formula is 2.

In this case, S1 is derived by RT4 and S2 is derived by LB. So, the
bottom part of the proof is as follows:

2A,2Γ → B

2A,2Γ → 2B
RT4

B, Σ → Π
2B,Σ → Π LB

2A,2Γ, Σ → Π
Mix(2B)
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where 2B does not appear in Σ, since the right rank = 1.
We transform the above to the following:

2A,2Γ → B B,Σ → Π
2A,2Γ,ΣB → Π

Mix(B)

(Thinning, Interchange)
2A, 2Γ, Σ → Π

In the transformed figure, the grade of the Mix gets smaller. Hence by
the hypothesis of the induction, we can obtain a proof without Mix of
the original endsequent.

(2) The case where the right rank > 1, the left rank = 1, and S2 is derived
by LB or RT4.

(A) The case where S2 is derived by LB. Here, we divide the case into
(a) the subcase where the Mix formula is 2A and (b) the subcase
where the Mix formula is not 2A.
(a) When the Mix formula is 2A, the bottom part of the proof is

as follows:

Γ → ∆
A,Σ → Π

2A, Σ → Π LB

Γ, Σ2A → ∆2A, Π
Mix(2A)

We transform the above to the following:

Γ → ∆

Γ → ∆ A,Σ → Π
Γ, A, Σ2A → ∆2A, Π

Mix1(2A)

(Interchange)
A,Γ, Σ2A → ∆2A, Π

2A,Γ, Σ2A → ∆2A, Π LB

Γ,Γ, Σ2A → ∆2A, ∆2A, Π
Mix2(2A)

(Contraction, Interchange)
Γ, Σ2A → ∆2A, Π

In the transformed figure, Mix is used twice. The rank of Mix1

gets smaller than that of the original. So, Mix1 can be elimi-
nated. After the elimination of Mix1, Mix2 can be eliminated
since the right rank of Mix2 is only 1, while the left rank of
Mix2 is the same as in the original. So, we can obtain a proof
without Mix of the original endsequent.

(b) When the Mix formula is not 2A, the bottom part of the proof
is as follows:

Γ → ∆
A,Σ → Π

2A,Σ → Π LB

Γ, 2A,ΣD → ∆D, Π
Mix(D)
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We transform the above to the following:

Γ → ∆ A,Σ → Π
Γ, (A)D, ΣD → ∆D, Π

Mix(D)

(Thinning, Interchange)
A,Γ,ΣD → ∆D,Π

2A,Γ, ΣD → ∆D, Π LB

(Interchange)
Γ, 2A,ΣD → ∆D, Π

In the transformed figure, the rank of the Mix gets smaller.
Hence, we can obtain a proof without Mix of the original end-
sequent.

(B) When S2 is derived by RT4, the bottom part of the proof is as
follows:

2C, 2Γ → D

2C,2Γ → 2D
RT4

2A,2Σ → B

2A,2Σ → 2B
RT4

2C, 2Γ, (2A)2D, (2Σ)2D → 2B
Mix(2D)

where S1 is derived by RT4, since the outermost symbol of the Mix
formula is 2 and the left rank = 1.
We transform the above to the following:

2C,2Γ → 2D 2A,2Σ → B

2C, 2Γ, (2A)2D, (2Σ)2D → B
Mix(2D)

2C,2Γ, (2A)2D, (2Σ)2D → 2B
RT4

In the transformed figure, the rank of the Mix gets smaller. Hence,
we can obtain a proof without Mix of the original endsequent.

(3) The case where the left rank > 1, and S1 is derived by LB or RT4.

In this case, S1 cannot be derived by RT4 since the left rank > 1. So we
treat only the case where S1 is derived by LB.

When S1 is derived by LB, the bottom part of the proof is as follows:

A,Γ → ∆
2A,Γ → ∆ LB Σ → Π

2A,Γ, ΣD → ∆D, Π
Mix(D)

We transform the above to the following:

A,Γ → ∆ Σ → Π
A,Γ, ΣD → ∆D, Π

Mix(D)

2A,Γ, ΣD → ∆D, Π LB
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In the transformed figure, the rank of the Mix gets smaller. Hence, we
can obtain a proof without Mix of the original endsequent.

§3. Gentzen-type Formulation MT4∗ of MT4

Now we reconstruct MT4 into a Gentzen-type formulation MT4∗ and prove
the Cut elimination theorem for MT4∗.

Definition 3.1. The modal logic MT4∗ is constructed from LK by adding
the modal operator 2 and the rules of inference LB and

MT4 :
2A → B

2A → 2B

that is, MT4∗ = LK + LB + MT4.

Next, we prove that MT4=MT4∗ as logics.

(1)MT4⊇MT4∗.

For this, we only need to prove the following two lemmas, the first one of
which is immediate:

Lemma 3.2. The inference LB is permissible in MT4.

Lemma 3.3. The inference MT4 is permissible in MT4.

Proof.

2A → 22A
2A → B

22A → 2B
RM

2A → 2B
Cut

(2)MT4∗ ⊇MT4.

For this, we only need to prove the following three lemmas, which are almost
immediate:

Lemma 3.4. The axiom T: 2A ⊃ A is provable in MT4∗.
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Lemma 3.5. The axiom 4: 2A ⊃ 22A is provable in MT4∗.

Lemma 3.6. The inference RM is permissible in MT4∗.

So we have the following:

Theorem 3.7. MT4=MT4∗.

Now we prove the Cut elimination theorem for MT4∗.

Theorem 3.8. (Cut elimination) Any MT4∗ proof can be transformed into
an MT4∗ proof of the same endsequent without use of the inference Cut.

As before, it is obvious that we only need to treat the following three cases:

(1) The case where the left rank = 1, the right rank = 1, and the outermost
symbol of the Mix formula is 2.

(2) The case where the right rank > 1, the left rank = 1, and S2 is derived
by LB or MT4.

(3) The case where the left rank > 1, and S1 is derived by LB or MT4.

Proof. (1) The case where the left rank = 1, the right rank = 1, and the
outermost symbol of the Mix formula is 2.

In this case, S1 is derived by MT4 and S2 is derived by LB. So, the
bottom part of the proof is as follows:

2A → B
2A → 2B

MT4
B, Σ → Π

2B,Σ → Π LB

2A,Σ → Π
Mix(2B)

where 2B does not appear in Σ, since the right rank = 1.
We transform the above to the following:

2A → B B,Σ → Π
2A,ΣB → Π

Mix(B)

(Thinning, Interchange)
2A,Σ → Π

In the transformed figure, the grade of the Mix gets smaller. Hence, we
can obtain a proof without Mix of the original endsequent.
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(2) The case where the right rank > 1, the left rank = 1, and S2 is derived
by LB or MT4.

(A) The case where S2 is derived by LB can be treated as in the proof
of Theorem 2.8(2)(A).

(B) When S2 is derived by MT4, the bottom part of the proof is as
follows:

2C → A
2C → 2A

MT4 2A → B
2A → 2B

MT4

2C → 2B
Mix(2A)

where S1 is derived by MT4, since the outermost symbol of the Mix
formula is 2 and the left rank = 1.
We transform the above to the following:

2C → 2A 2A → B
2C → B

Mix(2A)

2C → 2B
MT4

In the transformed figure, the rank of the Mix gets smaller. Hence,
we can obtain a proof without Mix of the original endsequent.

(3) The case where the left rank > 1, and S1 is derived by LB or MT4.

In this case, S1 cannot be derived by MT4 since the left rank > 1. The
case where S1 is derived by LB can be treated as in the proof of Theorem
2.8(3).

§4. Gentzen-type Formulation MNT4∗ of MNT4

Now we reconstruct MNT4 into a Gentzen-type formulation MNT4∗ and
prove the Cut elimination theorem for MNT4∗.

Definition 4.1. The modal logic MNT4∗ is constructed from LK by adding
the modal operator 2 and the rules of inference LB, RN and MT4, that is,
MNT4∗ = LK + LB + RN + MT4.

Next, we prove that MNT4=MNT4∗ as logics.

(1)MNT4⊇MNT4∗.

For this, we only need to prove the following two lemmas, which are almost
immediate:



218 T.MIGITA AND T.HOSOI

Lemma 4.2. The inference LB is permissible in MNT4.

Lemma 4.3. The inference MT4 is permissible in MNT4.

(2)MNT4∗ ⊇MNT4.

For this, we only need to prove the following three lemmas, which are almost
immediate:

Lemma 4.4. The axiom T: 2A ⊃ A is provable in MNT4∗.

Lemma 4.5. The axiom 4: 2A ⊃ 22A is provable in MNT4∗.

Lemma 4.6. The inference RM is permissible in MNT4∗.

So we have the following:

Theorem 4.7. MNT4=MNT4∗.

Now we prove the Cut elimination theorem for MNT4∗.

Theorem 4.8. (Cut elimination) Any MNT4∗ proof can be transformed
into an MNT4∗ proof of the same endsequent without use of the inference
Cut.

As before, it is obvious that we only need to treat the following three cases:

(1) The case where the left rank = 1, the right rank = 1, and the outermost
symbol of the Mix formula is 2.

(2) The case where the right rank > 1, the left rank = 1, and S2 is derived
by LB, RN or MT4.

(3) The case where the left rank > 1, and S1 is derived by LB, RN or MT4.

Proof. (1) The case where the left rank = 1, the right rank = 1, and the
outermost symbol of the Mix formula is 2. In this case, we further
divide the case into (A) the subcase where S1 is derived by RN and S2

is derived by LB, and (B) the subcase where S1 is derived by MT4 and
S2 is derived by LB.
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(A) When S1 is derived by RN and S2 is derived by LB, the bottom
part of the proof is as follows:

→ A
→ 2A

RN
A,Σ → Π

2A,Σ → Π LB

Σ → Π
Mix(2A)

where 2A does not appear in Σ, since the right rank = 1.
We transform the above to the following:

→ A A, Σ → Π
ΣA → Π

Mix(A)

(Thinning, Interchange)
Σ → Π

In the transformed figure, the grade of the Mix gets smaller. Hence,
we can obtain a proof without Mix of the original endsequent.

(B) The case where S1 is derived by MT4 and S2 is derived by LB can
be treated as in the proof of Theorem 3.8(1).

(2) The case where the right rank > 1, the left rank = 1, and S2 is derived
by LB, RN or MT4.

In this case, S2 cannot be derived by RN since the right rank > 1. So
we treat only the case where S2 is derived by LB or MT4.

(A) The case where S2 is derived by LB can be treated as in the proof
of Theorem 2.8(2)(A).

(B) The case where S2 is derived by MT4. Since the outermost symbol
of the Mix formula is 2 and the left rank = 1, S1 is derived by RN
or MT4.

(a) When S1 is derived by RN, the bottom part of the proof is as
follows:

→ A
→ 2A

RN 2A → B
2A → 2B

MT4

→ 2B
Mix(2A)

We transform the above to the following:

→ 2A 2A → B
→ B

Mix(2A)

→ 2B
RN

In the transformed figure, the rank of the Mix gets smaller.
Hence, we can obtain a proof without Mix of the original end-
sequent.
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(b) The case where S1 is derived by MT4 can be treated as in the
proof of Theorem 3.8(2)(B).

(3) The case where the left rank > 1, and S1 is derived by LB, RN or MT4.

In this case, S1 cannot be derived by RN nor by MT4 since the left rank
> 1. The case where S1 is derived by LB can be treated as in the proof
of Theorem 2.8(3).

§5. Gentzen-type Formulation RT∗ of RT

Now we reconstruct RT into a Gentzen-type formulation RT∗ and prove the
Cut elimination theorem for RT∗.

Definition 5.1. The modal logic RT∗ is constructed from LK by adding
the modal operator 2 and the rules of inference LB and RR, that is, RT∗ =
LK + LB + RR.

Next, we prove that RT=RT∗ as logics.

(1)RT⊇RT∗.

For this, we only need to prove the following, which is immediate:

Lemma 5.2. The inference LB is permissible in RT.

(2)RT∗ ⊇RT.

For this, we only need to prove the following, which is immediate:

Lemma 5.3. The axiom T: 2A ⊃ A is provable in RT∗.

So we have the following:

Theorem 5.4. RT=RT∗.

The following Cut elimination theorem for RT∗ has been proved in Ohnishi
and Matsumoto [4] as the logic Q2.

Theorem 5.5. (Cut elimination) Any RT∗ proof can be transformed into
an RT∗ proof of the same endsequent without use of the inference Cut.
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§6. Gentzen-type Formulation MT∗ of MT

Now we reconstruct MT into a Gentzen-type formulation MT∗ and prove the
Cut elimination theorem for MT∗.

Definition 6.1. The modal logic MT∗ is constructed from LK by adding
the modal operator 2 and the rules of inference LB and RM, that is, MT∗ =
LK + LB + RM.

Next, we prove that MT=MT∗ as logics.

(1)MT⊇MT∗.

For this, we only need to prove the following, which is immediate:

Lemma 6.2. The inference LB is permissible in MT.

(2)MT∗ ⊇MT, as sets of provable formulas.

For this, we only need to prove the following, which is immediate:

Lemma 6.3. The axiom T: 2A ⊃ A is provable in MT∗.

So we have the following:

Theorem 6.4. MT=MT∗.

Now we prove the Cut elimination theorem for MT∗.

Theorem 6.5. (Cut elimination) Any MT∗ proof can be transformed into
an MT∗ proof of the same endsequent without use of the inference Cut.

As before, it is obvious that we only need to treat the following three cases:

(1) The case where the left rank = 1, the right rank = 1, and the outermost
symbol of the Mix formula is 2.

(2) The case where the right rank > 1, and S2 is derived by LB or RM.

(3) The case where the left rank > 1, and S1 is derived by LB or RM.
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Proof. (1) The case where the left rank = 1, the right rank = 1, and the
outermost symbol of the Mix formula is 2.

In this case, we further divide the case into (A) the subcase where S1 is
derived by RM and S2 is derived by RM, and (B) the subcase where S1

is derived by RM and S2 is derived by LB.

(A) When S1 is derived by RM and S2 is derived by RM, the bottom
part of the proof is as follows:

A → B
2A → 2B

RM B → C
2B → 2C

RM

2A → 2C
Mix(2B)

We transform the above to the following:

A → B B → C
A → C

Mix(B)

2A → 2C
RM

In the transformed figure, the grade of the Mix gets smaller. Hence,
we can obtain a proof without Mix of the original endsequent.

(B) When S1 is derived by RM and S2 is derived by LB, the bottom
part of the proof is as follows:

A → B
2A → 2B

RM
B,Σ → Π

2B,Σ → Π LB

2A,Σ → Π
Mix(2B)

where 2B does not appear in Σ, since the right rank = 1.
We transform the above to the following:

A → B B,Σ → Π
A,ΣB → Π

Mix(B)

(Thinning, Interchange)
A,Σ → Π

2A,Σ → Π LB

In the transformed figure, the grade of the Mix gets smaller. Hence,
we can obtain a proof without Mix of the original endsequent.

(2) The case where the right rank > 1, and S2 is derived by LB or RM.

In this case, S2 cannot be derived by RM since the right rank > 1. The
case where S2 is derived by LB can be treated as in the proof of Theorem
2.8(2)(A).
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(3) The case where the left rank > 1, and S1 is derived by LB or RM.

In this case, S1 cannot be derived by RM since the left rank > 1. The
case where S1 is derived by LB can be treated as in the proof of Theorem
2.8(3).

§7. Gentzen-type Formulation MNT∗ of MNT

Now we reconstruct MNT into a Gentzen-type formulation MNT∗ and prove
the Cut elimination theorem for MNT∗.

Definition 7.1. The modal logic MNT∗ is constructed from LK by adding
the modal operator 2 and the rules of inference LB, RN and RM, that is,
MNT∗ = LK + LB + RN +RM.

Next, we prove that MNT=MNT∗ as logics.

(1)MNT⊇MNT∗.

For this, we only need to prove the following, which is immediate:

Lemma 7.2. The inference LB is permissible in MNT.

(2)MNT∗ ⊇MNT.

For this, we only need to prove the following, which is immediate:

Lemma 7.3. The axiom T: 2A ⊃ A is provable in MNT∗.

So we have the following:

Theorem 7.4. MNT=MNT∗.

Now we prove the Cut elimination theorem for MNT∗.
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Theorem 7.5. (Cut elimination) Any MNT∗ proof can be transformed into
an MNT∗ proof of the same endsequent without use of the inference Cut.

As before, it is obvious that we only need to treat the following three cases:

(1) The case where the left rank = 1, the right rank = 1, and the outermost
symbol of the Mix formula is 2.

(2) The case where the right rank > 1, and S2 is derived by LB, RN or RM.

(3) The case where the left rank > 1, and S1 is derived by LB, RN or RM.

Proof. (1) The case where the left rank = 1, the right rank = 1, and the
outermost symbol of the Mix formula is 2. In this case, we further
divide the case into (A) the subcase where S1 is derived by RN and S2

is derived by RM, (B) the subcase where S1 is derived by RN and S2

is derived by LB, (C) the subcase where S1 is derived by RM and S2 is
derived by RM, and (D) the subcase where S1 is derived by RM and S2

is derived by LB.

(A) When S1 is derived by RN and S2 is derived by RM, the bottom
part of the proof is as follows:

→ A
→ 2A

RN A → B
2A → 2B

RM

→ 2B
Mix(2A)

We transform the above to the following:

→ A A → B
→ B

Mix(A)

→ 2B
RN

In the transformed figure, the grade of the Mix gets smaller. Hence,
we can obtain a proof without Mix of the original endsequent.

(B) The case where S1 is derived by RN and S2 is derived by LB can
be treated as in the proof of Theorem 4.8(1)(A).

(C) The case where S1 is derived by RM and S2 is derived by RM can
be treated as in the proof of Theorem 6.5(1)(A).

(D) The case where S1 is derived by RM and S2 is derived by LB can
be treated as in the proof of Theorem 6.5(1)(B).

(2) The case where the right rank > 1, and S2 is derived by LB, RN or RM.

In this case, S2 cannot be derived by RN nor by RM since the right rank
> 1. The case where S2 is derived by LB can be treated as in the proof
of Theorem 2.8(2)(A).
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(3) The case where the left rank > 1, and S1 is derived by LB, RN or RM.

In this case, S1 cannot be derived by RN nor by RM since the left rank
> 1. The case where S1 is derived by LB can be treated as in the proof
of Theorem 2.8(3).

§8. Gentzen-type Formulation KL∗ of KL

Now we reconstruct KL into a Gentzen-type formulation KL∗ and prove the
Cut elimination theorem for KL∗.

Definition 8.1. The modal logic KL∗ is constructed from LK by adding
the modal operator 2 and the rules of inference of the forms:

LL :
A,Γ → ∆,2B

2A,Γ → ∆, 2B

and
RK :

Σ → A

2Σ → 2A

that is, KL∗ = LK + LL + RK.

It is well known that K=LK+ RK.

Next, we prove KL = KL∗ as logics.

(1) KL⊇KL∗.

For this, we only need to prove the following:

Lemma 8.2. The inference LL is permissible in KL.

Proof. We assume the provability of 2A → A,2B in KL since it is trivial.

2A → A,2B

2A → 2B,A
Interchange

A,Γ → ∆, 2B

2A,Γ → 2B,∆, 2B
Cut

(Interchange)
2A,Γ → ∆, 2B,2B

2A,Γ → ∆, 2B
Contraction
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(2) KL∗ ⊇KL.

Now, we prove the following lemma:

Lemma 8.3. The axiom L: 2A ⊃ (A ∨ 2B) is provable in KL∗.

Proof.
A → A

A → A,2B
Thinning

2A → A,2B
LL

2A → A,A ∨ 2B
→ ∨

2A → A ∨ 2B,A
Interchange

2A → A ∨ 2B,A ∨ 2B
→ ∨

2A → A ∨ 2B
Contraction

→ 2A ⊃ (A ∨ 2B)
→⊃

So we have the following:

Theorem 8.4. KL=KL∗.

Now we prove the Cut elimination theorem for KL∗.

Theorem 8.5. (Cut elimination) Any KL∗ proof can be transformed into
a KL∗ proof of the same endsequent without use of the inference Cut.

As before, it is obvious that we only need to treat the following three cases:

(1) The case where the left rank = 1, the right rank = 1, and the outermost
symbol of the Mix formula is 2.

(2) The case where the left rank > 1, the right rank = 1, and S1 is derived
by LL or RK.

(3) The case where the right rank > 1, and S2 is derived by LL or RK.

Proof. (1) The case where the left rank = 1, the right rank = 1, and the
outermost symbol of the Mix formula is 2.

In this case, we further divide the case into (A) the subcase where S1 is
derived by RK and S2 is derived by RK, and (B) the subcase where S1

is derived by RK and S2 is derived by LL.
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(A) When S1 is derived by RK and S2 is derived by RK, the bottom
part of the proof is as follows:

Γ → A
2Γ → 2A

RK Σ → B
2Σ → 2B

RK

2Γ, (2Σ)2A → 2B
Mix(2A)

We transform the above to the following:

Γ → A Σ → B
Γ, ΣA → B

Mix(A)

2Γ, (2Σ)2A → 2B
RK

In the transformed figure, the grade of the Mix gets smaller . Hence,
we can obtain a proof without Mix of the original endsequent.

(B) When S1 is derived by RK and S2 is derived by LL, the bottom
part of the proof is as follows:

Γ → A
2Γ → 2A

RK
A,Σ → Π, 2B

2A,Σ → Π, 2B
LL

2Γ, Σ → Π, 2B
Mix(2A)

where the Mix formula 2A does not appear in Σ, since the the right
rank is only 1.
We transform the above to the following:

Γ → A A,Σ → Π,2B

Γ, ΣA → Π, 2B
Mix(A)

(Thinning, Interchange)
Γ,Σ → Π, 2B

(LL, Interchange)
2Γ, Σ → Π, 2B

In the transformed figure, the grade of the Mix gets smaller. Hence,
we can obtain a proof without Mix of the original endsequent.

(2) The case where the left rank > 1, the right rank = 1, and S1 is derived
by LL or RK.

In this case, S1 cannot be derived by RK since the left rank > 1. So we
treat only the case where S1 is derived by LL. Now we divide the case
into (A) the subcase where the Mix formula is 2B and (B) the subcase
where the Mix formula is not 2B.
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(A) The case where the Mix formula is 2B. Since the right rank = 1,
S2 is derived by LL or RK.

(a) When S2 is derived by LL, the bottom part of the proof is as
follows:

A,Γ → ∆, 2B

2A,Γ → ∆,2B
LL

B,Σ → Π, 2C

2B, Σ → Π, 2C
LL

2A,Γ,Σ → ∆2B, Π, 2C
Mix(2B)

where the Mix formula 2B does not appear in Σ, since the the
right rank is only 1.
We transform the above to the following:

A,Γ → ∆, 2B 2B,Σ → Π, 2C

A,Γ, Σ → ∆2B, Π, 2C
Mix(2B)

2A,Γ,Σ → ∆2B, Π, 2C
LL

In the transformed figure, the rank of the Mix gets smaller.
Hence, we can obtain a proof without Mix of the original end-
sequent.

(b) When S2 is derived by RK, the bottom part of the proof is as
follows:

A,Γ → ∆, 2B

2A,Γ → ∆, 2B
LL Σ → C

2Σ → 2C
RK

2A,Γ, (2Σ)2B → ∆2B, 2C
Mix(2B)

We transform the above to the following:

A,Γ → ∆, 2B 2Σ → 2C

A,Γ, (2Σ)2B → ∆2B, 2C
Mix(2B)

2A,Γ, (2Σ)2B → ∆2B, 2C
LL

In the transformed figure, the rank of the Mix gets smaller.
Hence, we can obtain a proof without Mix of the original end-
sequent.

(B) When the Mix formula is not 2B, the bottom part of the proof is
as follows:

A,Γ → ∆, 2B

2A,Γ → ∆,2B
LL Σ → Π

2A,Γ, ΣD → ∆D, 2B,Π
Mix(D)



GENTZEN-TYPE FORMULATION OF MODAL LOGICS 229

We transform the above to the following:

A,Γ → ∆, 2B Σ → Π
A,Γ, ΣD → ∆D, 2B,Π

Mix(D)

(Interchange)
A,Γ, ΣD → ∆D, Π, 2B

2A,Γ, ΣD → ∆D,Π,2B
LL

(Interchange)
2A,Γ, ΣD → ∆D,2B, Π

In the transformed figure, the rank of the Mix gets smaller. Hence,
we can obtain a proof without Mix of the original endsequent.

(3) The case where the right rank > 1 and S2 is derived by LL or RK.

(A) The case where S2 is derived by LL. Here, we divide the case into
(a) the subcase where the Mix formula is 2A and (b) the subcase
where the Mix formula is not 2A.
(a) When the Mix formula is 2A, the bottom part of the proof is

as follows:

Γ → ∆
A,Σ → Π, 2B

2A,Σ → Π, 2B
LL

Γ, Σ2A → ∆2A, Π, 2B
Mix(2A)

where the Mix formula 2A appears in Σ, since the right rank
> 1.
We transform the above to the following:

Γ → ∆

Γ → ∆ A,Σ → Π,2B

Γ, A, Σ2A → ∆2A, Π, 2B
Mix1(2A)

(Interchange)
A,Γ, Σ2A → ∆2A, Π, 2B

2A,Γ,Σ2A → ∆2A, Π, 2B
LL

Γ, Γ, Σ2A → ∆2A, ∆2A, Π, 2B
Mix2(2A)

(Interchange, Contraction)
Γ, Σ2A → ∆2A, Π, 2B

In the transformed figure, Mix is used twice. The rank of Mix1

gets smaller than that of the original. So, Mix1 can be elimi-
nated. After the elimination of Mix1, Mix2 can be eliminated
since the the right rank of Mix2 is only 1, while the the left rank
of Mix2 is the same as in original. So, we can obtain a proof
without Mix of the original endsequent.
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(b) When the Mix formula is not 2A, the bottom part of the proof
is as follows:

Γ → ∆
A,Σ → Π, 2B

2A,Σ → Π, 2B
LL

Γ, 2A,ΣD → ∆D, Π, 2B
Mix(D)

We transform the above to the following:

Γ → ∆ A,Σ → Π, 2B

Γ, (A)D, ΣD → ∆D, Π, 2B
Mix(D)

(Thinning, Interchange)
A,Γ, ΣD → ∆D, Π, 2B

2A,Γ, ΣD → ∆D, Π, 2B
LL

(Interchange)
Γ, 2A,ΣD → ∆D, Π, 2B

In the transformed figure, the rank of the Mix gets smaller.
Hence, we can obtain a proof without Mix of the original end-
sequent.

(B) When S2 is derived by RK, the bottom part of the proof is as
follows:

Γ → ∆
Σ → A

2Σ → 2A
RK

Γ, (2Σ)D → ∆D,2A
Mix(D)

where the Mix formula D appears in Σ, since the right rank > 1,
and therefore 2D appears in 2Σ.
We transform the above to the following:

Σ → A
2Σ → 2A

RK

(Interchange)
D, · · · , D, (2Σ)D → 2A

(LL, Interchange)
2D, · · · , 2D, (2Σ)D → 2A

(Contraction, Interchange)
(2Σ)D → 2A

(Thinning, Interchange)
Γ, (2Σ)D → ∆D, 2A

Hence we obtained a proof without Mix of the original endsequent.
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§9. Gentzen-type Formulation RTA∗ of RTA

Now we reconstruct RTA into a Gentzen-type formulation RTA∗ and prove
the Cut elimination theorem for RTA∗.

Definition 9.1. The modal logic RTA∗ is constructed from LK by adding
the modal operator 2 and the rules of inference LB and

RTA :
2B,Σ → Π, A

2B,Σ → Π,2A

that is, RTA∗ = LK + LB + RTA.

Next, we prove that RTA=RTA∗ as logics.

(1)RTA⊇RTA∗.

For this, we only need to prove the following two lemmas, the first one of
which is immediate:

Lemma 9.2. The inference LB is permissible in RTA.

Lemma 9.3. The inference RTA is permissible in RTA.

Proof. We assume the provability of 2B,A → 2B&A in RTA since it is
almost trivial.

2B,Γ → ∆, A

2B,A → 2B&A 2B&A → 2A

2B,A → 2A
Cut

A,2B → 2A
Interchange

2B,Γ, 2B → ∆, 2A
Cut

(Contraction, Interchange)
2B,Γ → ∆, 2A

(2)RTA∗ ⊇RTA.

For this, we only need to prove the following three lemmas, the first and
the third of which are immediate:
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Lemma 9.4. The axiom T: 2A ⊃ A is provable in RTA∗.

Lemma 9.5. The axiom A: 2A&B ⊃ 2B is provable in RTA∗.

Proof.
B → B

2A,B → B
Thinning

2A,B → 2B
RTA

2A&B,B → 2B
& →

B, 2A&B → 2B
Interchange

2A&B,2A&B → 2B
& →

2A&B → 2B
Contraction

→ 2A&B ⊃ 2B
→⊃

Lemma 9.6. The inference RR is permissible in RTA∗.

So we have the following:

Theorem 9.7. RTA=RTA∗.

Now we prove the Cut elimination theorem for RTA∗.

Theorem 9.8. (Cut elimination) Any RTA∗ proof can be transformed into
an RTA∗ proof of the same endsequent without use of the inference Cut.

As before, it is obvious that we only need to treat the following three cases:

(1) The case where the left rank = 1, the right rank = 1, and the outermost
symbol of the Mix formula is 2.

(2) The case where the right rank > 1, the left rank = 1, and S2 is derived
by LB or RTA.

(3) The case where the left rank > 1, and S1 is derived by LB or RTA.

Proof. (1) The case where the left rank = 1, the right rank = 1, and the
outermost symbol of the Mix formula is 2.
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In this case, S1 is derived by RTA and S2 is derived by LB. So, the
bottom part of the proof is as follows:

2A,Γ → ∆, B

2A,Γ → ∆, 2B
RTA

B, Σ → Π
2B,Σ → Π LB

2A,Γ,Σ → ∆, Π
Mix(2B)

where 2B does not appear in ∆ and Σ, since the left rank = 1, the right
rank = 1.
We transform the above to the following:

2A,Γ → ∆, B B,Σ → Π
2A,Γ, ΣB → ∆B, Π

Mix(B)

(Thinning, Interchange)
2A,Γ, Σ → ∆, Π

In the transformed figure, the grade of the Mix gets smaller. Hence, we
can obtain a proof without Mix of the original endsequent.

(2) The case where the right rank > 1, the left rank = 1, and S2 is derived
by LB or RTA.

(A) The case where S2 is derived by LB. This case can be treated as in
the proof of Theorem 2.8(2)(A).

(B) The case where S2 is derived by RTA. Here, we divide the case into
(a) the subcase where the Mix formula is 2A and (b) the subcase
where the Mix formula is not 2A.

(a) When the Mix formula is 2A, the bottom part of the proof is
as follows:

2C, Γ → ∆, A

2C,Γ → ∆, 2A
RTA

2A,Σ → Π, B

2A,Σ → Π, 2B
RTA

2C, Γ,Σ2A → ∆, Π, 2B
Mix(2A)

where S1 is derived by RTA, since the outermost symbol of the
Mix formula is 2 and the left rank = 1.
We transform the above to the following:

2C,Γ → ∆, 2A 2A,Σ → Π, B

2C,Γ, Σ2A → ∆, Π, B
Mix(2A)

2C, Γ,Σ2A → ∆, Π, 2B
RTA

In the transformed figure, the rank of the Mix gets smaller.
Hence, we can obtain a proof without Mix of the original end-
sequent.
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(b) When the Mix formula is not 2A, the bottom part of the proof
is as follows:

Γ → ∆
2A,Σ → Π, B

2A,Σ → Π, 2B
RTA

Γ, 2A,ΣD → ∆D, Π, 2B
Mix(D)

We transform the above to the following:

Γ → ∆ 2A,Σ → Π, B

Γ, 2A,ΣD → ∆D, Π, B
Mix(D)

(Interchange)
2A,Γ, ΣD → ∆D, Π, B

2A,Γ, ΣD → ∆D,Π,2B
RTA

(Interchange)
Γ, 2A, ΣD → ∆D,Π,2B

In the transformed figure, the rank of the Mix gets smaller.
Hence, we can obtain a proof without Mix of the original end-
sequent.

(3) The case where the left rank > 1, and S1 is derived by LB or RTA.

(A) The case where S1 is derived by LB can be treated as in the proof
of Theorem 2.8(3).

(B) The case where S1 is derived by RTA. Here, we divide the case into
(a) the subcase where the Mix formula is 2B and (b) the subcase
where the Mix formula is not 2B.

(a) When the Mix formula is 2B, the bottom part of the proof is
as follows:

2A,Γ → ∆, B

2A,Γ → ∆, 2B
RTA Σ → Π

2A,Γ, Σ2B → ∆2B, Π
Mix(2B)

We transform the above to the following:

2A, Γ → ∆, B Σ → Π
2A,Γ, Σ2B → ∆2B, B, Π

Mix1(2B)

(Interchange)
2A,Γ, Σ2B → ∆2B,Π, B

2A,Γ, Σ2B → ∆2B, Π, 2B
RTA Σ → Π

2A,Γ, Σ2B,Σ2B → ∆2B, Π, Π
Mix2(2B)

(Contraction, Interchange)
2A,Γ,Σ2B → ∆2B, Π
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In the transformed figure, Mix is used twice. The rank of Mix1

gets smaller than that of the original. So, Mix1 can be elimi-
nated. After the elimination of Mix1, Mix2 can be eliminated
since the the left rank of Mix2 is only 1, while the the right rank
of Mix2 is the same as in original. So, we can obtain a proof
without Mix of the original endsequent.

(b) When the Mix formula is not 2B, the bottom part of the proof
is as follows:

2A,Γ → ∆, B

2A,Γ → ∆, 2B
RTA Σ → Π

2A,Γ, ΣD → ∆D, 2B,Π
Mix(D)

We transform the above to the following:

2A,Γ → ∆, B Σ → Π
2A,Γ, ΣD → ∆D, (B)D, Π

Mix(D)

(Thinning, Interchange)
2A,Γ, ΣD → ∆D, Π, B

2A,Γ, ΣD → ∆D, Π, 2B
RTA

(Interchange)
2A,Γ, ΣD → ∆D, 2B,Π

In the transformed figure, the rank of the Mix gets smaller.
Hence, we can obtain a proof without Mix of the original end-
sequent.

§10. Map of our modal logics

First, we introduce Gentzen-type formulation of S4 and KT by citing from
Ohnishi and Matsumoto [4].

Definition 10.1. (1) The modal logic S4∗ is constructed from LK by adding
the modal operator 2 and the rules of inference LB and

S4 :
2Σ → A

2Σ → 2A

that is, S4∗ = LK+ LB + S4.

(2) The modal logic KT∗, which is called as M∗ in [4], is constructed from
LK by adding the modal operator 2 and the rules of inference LB and RK,
that is, KT∗ = LK+ LB + RK.
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In [4], the following equalities are proved,

S4 = S4∗

KT = KT∗

and the cut elimination theorem for S4∗ and KT∗ are proved.

Next, we investigate the relations among RT4, MT4, MNT4, S4, RT,
MT, MNT and KT.

Theorem 10.2. RT4 ⊃ MT4.4

Proof. First, RT4 ⊇ MT4, since the inference RM is permissible in RT4
and the axioms T and 4 are provable in RT4. While, by using the Cut
elimination theorem for RT4∗ and MT4∗, it is easily proved that the formula
of the form of the axiom K is provable in RT4∗, but not in MT4∗. Therefore
RT4 6= MT4.

Similarly, we can prove MNT4 ⊃ MT4, S4 ⊃ RT4, S4 ⊃ MNT4, RT ⊃
MT, MNT ⊃ MT, KT ⊃ RT, KT ⊃ MNT, MT4 ⊃ MT, RT4 ⊃ RT,
MNT4 ⊃ MNT and S4 ⊃ KT, where the last relation is well known.

Theorem 10.3. RT4 = MT4 + K.

Proof. First, it is easily proved that the inference RM is permissible in RT4
and the axioms T, 4 and K are provable in RT4. Therefore RT4 ⊇ MT4+K.
While the inference RR is permissible in MT4+K and the axioms T and 4
are provable in MT4+K. Therefore RT4 ⊆ MT4 + K.

Similarly, we can prove S4 = MNT4+K, RT = MT+K, KT = MNT+
K, S4 = RT4 + RN, MNT4 = MT4 + RN, KT = RT + RN, MNT =
MT + RN, MT4 = MT + 4, RT4 = RT + 4, MNT4 = MNT + 4 and
S4 = KT + 4, where the last relation is well known.

So we obtained the Figure 1 in §1.

Finally, we investigate the location of RTA.
4 Here, the symbol ⊃ is used to mean the strict inclusion.
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Theorem 10.4. RTA ⊃ RT4.

This is immediate by using the Cut elimination theorem for RTA∗ and RT4∗.

Theorem 10.5. RTA and S5 are incomparable.

Proof. It is easily proved that 2(A ⊃ A) is provable in S5, but it is not
provable in RTA.

On the other hand by using the decision procedure for S5 (see eg. Ohnishi
and Matsumoto [5]), it is easily proved that A : 2A&B ⊃ 2B is not provable
in S5.
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