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Abstract. We define a functional constructed from the scalar curvature of a
certain metric on a principal fiber bundle and obtain some equations which cor-
respond to the Einstein field equation, the Yang-Mills equation and the Brans-
Dicke type wave equation by variations of this functional.
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§0. Introduction

The first model of the natural unification of gauge fields and gravitation
goes back to the five-dimensional model of Kaluza and Klein. Their model
extends in a reasonably straightforward way to the case of gauge potentials on
principal fiber bundles with arbitrary structure groups. Let P be a principal
bundle over a semi-Riemannian manifold (M, g) with a structure group G.
If ω is a connection 1-form on P and k0 is an ad-invariant metric on the Lie
algebra of G, then a metric h on P is constructed from g, ω and k0. It is called
a bundle metric. In this case, the Einstein field equation and the Yang-Mills
equation arise from a single variational principle, see [1], for example.

In this paper, we assume that an ad-invariant metric depends on a point
of M . Let k be a map from M to the set of all ad-invariant metrics on the Lie
algebra of G. In particular we consider the case where k is constructed from a
fixed ad-invariant metric and a positive function on M . Physically this scalar
field gives scales of the internal spaces. When G is compact and its Lie algebra
is simple, a positive definite ad-invariant metric is unique up to multiplication
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by a constant [3]. We give a metric h on P similar to a bundle metric using
such a map k. Because the projection π : (P, h)→ (M, g) is a semi-Riemannian
submersion, geometrical quantities are described by the fundamental tensors
defined in [4].

We define a functional constructed from a scalar curvature of (P, h). By
demanding that the integral of this functional be stationary under variations of
the metric on M , we obtain the equation correspondence to the Einstein field
equation. Similarly, variations of the connection 1-form lead to the equation
correspondence to the Yang-Mills equation. Moreover we get the Brans-Dicke
type wave equation [2] for a scalar field on M by variations of the function on
M .

In Section 1, we will prepare the notation and terminology used in this
paper. Section 2 is devoted to compute the fundamental tensors. In Section 3,
using the lemmas in Section 2, the curvatures of (P, h) will be calculated. We
will define some functional on M from the scalar curvature of h and consider
variational problems with respect to the metric, connection and scalar field
in Section 4. Finally in Section 5, the results in Section 4 will be applied to
cosmology.

The author would like to express his sincere gratitude to Professor N.
Abe for his helpful advice and to Professor S. Yamaguchi for his constant
encouragement.

§1. Preliminaries

Throughout this paper, all objects are assumed to be smooth. Let G be
a Lie group and G its Lie algebra. Let P be a principal G-bundle over a
manifold M and π : P →M the projection. We define the vertical space of
TP by V(P ) :=Kerπ∗, where TP is the tangent bundle of P and π∗ is the
differential map of π. The set of connection 1- forms on P is denoted by C(P ).
For ω ∈ C (P ), we define the horizontal space of TP by H(P ) :=Kerω. Then
we have TP = V(P ) ⊕H(P ) (direct sum). Let V (resp. H) be the projection
of TP onto V(P ) (resp. H(P )). For a vector field E on M , the horizontal lift
of E is denoted by Ẽ or E .̃ For A ∈ G, the fundamental vector field induced
from A is denoted by A∗. For a vector space W , the set of W -valued k-forms
on P is denoted by Λk(P,W ). The set of all smooth functions on a manifold
M is denoted by C∞(M).

For ϕ ∈ Λi(P,G) and ψ ∈ Λj(P,G), we define [ϕ,ψ] ∈ Λi+j(P,G) by

[ϕ,ψ](X1, ..., Xi+j) =
1

i!j!

∑
σ

(−1)σ[ϕ(Xσ(1), ..., Xσ(i)), ψ(Xσ(i+1), ..., Xσ(i+j))],
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where the sum is over the set of all permutations σ of 1, ..., i + j and (−1)σ =
± 1 is the sign of σ. For ω ∈ C(P ) and τ ∈ Λi(P,G), we define τH ∈ Λi(P,G)
by τH(X1, ..., Xi) = τ(HX1, ...,HXi) and the exterior covariant derivative of τ
by Dωτ := (dτ)H . The curvature form Ω ∈ Λ2(P,G) is defined by Ω := Dωω.
The equation Ω = dω + (1/2)[ω, ω] is called the structure equation. From the
structure equation, we see that

(1.1) Ω(X,Y ) = −ω([X,Y ]) for horizontal vector fields X and Y

and

(1.2) dΩ = [Ω, ω].

The set of all metrics on a manifold M is denoted by M(M). For a ∈ G,
let Ada : G → G be the adjoint isomorphism given by Ada(b) = aba−1 and
ad(a) : G → G the induced isomorphism of G, that is, ad(a) = (Ada)∗e. The
set of all ad-invariant metrics on G is denoted by Mad(G). For k0 ∈ Mad(G),
we see that

(1.3) k0([A,B], C) + k0(B, [A,C]) = 0 for A, B, C ∈ G.

§2. Fundamental tensors

Let P be a principal G-bundle over a manifold M and π : P →M the
projection. We define a metric h on P as follows.

Definition. For k : M →Mad(G), g ∈ M(M) and ω ∈ C(P ), we define
h ∈ M(P ) by

h(E,F ) = g(π∗E, π∗F ) + (k ◦ π)(ω(E), ω(F ))

for any tangent vector E and F of P . When k is a constant map, it is called
a bundle metric.

If P is the semi-Riemannian manifold with the metric h as above, then π :
(P, h)→ (M, g) is a semi-Riemannian submersion. The tensors T and A are
defined for arbitrary vector fields E and F by

TEF := H∇VE(VF ) + V∇VE(HF )

and
AEF := V∇HE(HF ) + H∇HE(VF ),
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where ∇ is the covariant derivative of (P, h). They are called the fundamental
tensors in [4] and [5]. For a fixed ad-invariant metric k0 on G and a smooth
function K > 0 on M , we set k = εK2k0 (ε = ±1) in the definition of h and
consider only this case in the present paper. We write K̄ := K◦π for simplicity.
If the Lie algebra of a compact Lie group is simple, then the positive definite
ad-invariant metric is unique up to multiplication by a constant [3].

To compute the fundamental tensors and the curvature tensor, we define
some defferential operators in the usual way. For a function f on a manifold,
gradf is the gradient vector field of f , Hf is the Hessian of f and ∆f is the
Laplacian of f defined by ∆f = −div(gradf), where div is a divergence. We
have the following lemma.

Lemma 2.1. If U , V are vertical and X, Y are horizontal, then

(2.1) TUV = −εK̄k0(ω(U), ω(V ))gradK̄,

(2.2) TUX =
XK̄

K̄
U =

h(gradK̄,X)
K̄

U ,

(2.3) AXY =
1
2
V[X,Y ]

and

(2.4) AXU = −ε

2
K̄2Ωω(U)(X),

where Ωω(U)(X) is defined by h(Ωω(U)(X), E) = k0(ω(U), Ω(E,X)) for any
vector field E on P .

Moreover, to compute the curvature of (P, h), we show the following lemma
by using Lemma 2.1.

Lemma 2.2. If U, V, W are vertical and X, Y, Z are horizontal, then

(2.5) H((∇V T )UW ) =
1
2
K̄3k0(ω(U), ω(W ))Ωω(V )(gradK̄),

(2.6) H((∇XT )V W ) = −εK̄k0(ω(V ), ω(W ))H(∇XgradK̄)

+εk0(ω(V ), ω(W ))h(X, gradK̄)gradK̄,
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(2.7) ω((∇V A)XY ) =
1
4
[Ω, ω](X,Y, V ) − 1

2
(∇V Ω)(X,Y )

and

(2.8) ω((∇ZA)XY ) = −1
2

h(Z, gradK̄)
K̄

Ω(X,Y ) − 1
2
(∇ZΩ)(X,Y ),

where (∇EΩ) is defined by (∇EΩ)(F1, F2) = EΩ(F1, F2) − Ω(∇EF1, F2) −
Ω(F1,∇EF2).

§3. The Curvature tensors

Let ∇̂x be the covariant derivative of π−1(x) with respect to the induced
metric from h and ∇∗ the covariant derivative of (M, g). Let R (resp. R̂x,
R∗) be the curvature tensor of ∇ (resp. ∇̂x, ∇∗). However we omit the
superscript x for simplicity. Let R∗(X,Y )Z be the horizontal vector field such
that π∗(R∗(X,Y )Z) = R∗(π∗X,π∗Y )π∗Z at each point of P . We can compute
the curvature of (P, h) by using Lemmas 2.1 and 2.2.

Proposition 3.1. For vertical vector fields U, V, W, F and horizontal vec-
tor fields X, Y, Z, H , we obtain

(3.1) h(R(U, V )W,F ) =
ε

4
K̄2k0([ω(U), ω(V )], [ω(W ), ω(F )])

−K̄2k0(ω(U), ω(W ))k0(ω(V ), ω(F ))g(gradK, gradK) ◦ π

+K̄2k0(ω(V ), ω(W ))k0(ω(U), ω(F ))g(gradK, gradK) ◦ π,

(3.2) h(R(U, V )W,X) = −1
2
K̄3k0(ω(U), ω(W ))k0(ω(V ),Ω(gradK̄,X))

+
1
2
K̄3k0(ω(V ), ω(W ))k0(ω(U), Ω(gradK̄,X)),

(3.3) h(R(X,V )Y,W ) = −εK̄k0(ω(V ), ω(W ))HK̄(X,Y )

+
ε

4
K̄2k0([Ω, ω](X,Y, V ), ω(W )) − ε

2
K̄k0((∇V Ω)(X,Y ), ω(W ))
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+
1
4
K̄2h(Ωω(V )(X), Ωω(W )(Y )),

(3.4) h(R(X,Y )Z, V ) = −ε

2
K̄2k0((∇ZΩ)(X,Y ), ω(V ))

+
ε

2
K̄k0(Ω(Y,Z), ω(V ))h(X, gradK̄) +

ε

2
K̄k0(Ω(Z,X), ω(V ))h(Y, gradK̄)

−εK̄k0(Ω(X,Y ), ω(V ))h(Z, gradK̄)

and

(3.5) h(R(X,Y )Z,H) = h(R∗(X,Y )Z,H) − ε

2
K̄2k0(Ω(X,Y ),Ω(Z,H))

+
ε

2
K̄2k0(Ω(Y,Z), Ω(X,H)) +

ε

4
K̄2k0(Ω(Z,X), Ω(Y,H)).

Note that for (3.1), we used (1.3) and

R̂(A∗, B∗)C∗ =
1
4
[[A∗, B∗], C∗] =

1
4
[[A, B], C]∗

for fundamental vector fields A∗, B∗ and C∗.

By Proposition 3.1, we can compute the sectional curvature. Let Πab be
the nondegenerate space spanned by tangent vectors a, b.

Corollary 3.2. Let K, K∗ and K̂ be the sectional curvature of (P, h), (M, g)
and the fibers with the induced metrics from h. If x and y are horizontal
vectors at p ∈ P , and v and w are vertical, then

(3.6) K(Πvw) = K̂(Πvw) − 1
4

gπ(p)(gradK, gradK)
K2(π(p))

,

(3.7) K(Πxv) = −
gπ(p)((∇∗

x∗gradK), x∗)
K(π(p))gπ(p)(x∗, x∗)

+
εK2(π(p))

4
gπ(p)(π∗Ωω(v)(x), π∗Ωω(v)(x))
gπ(p)(x∗, x∗)k0(ω(v), ω(v))

and

(3.8) K(Πxy) = K∗(Πx∗y∗) −
3
4

εK2(π(p))k0(Ω(x, y), Ω(x, y))
gp(x∗, x∗)gp(y∗, y∗) − gp(x∗, y∗)2

,

where

K̂(Πvw) =
εk0([ω(v), ω(w)], [ω(v), ω(w)])

K2(π(p))(k0(ω(v), ω(v))k0(ω(w), ω(w)) − k0(ω(v), ω(w))2)

and x∗ = π∗x and y∗ = π∗y.
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Next we calculate the Ricci and scalar curvatures of (P, h) by using Propo-
sition 3.1. Especially we will form the functional from scalar curvature h in the
next section. Let n (resp. l) be the dimension of M (resp. G). Assume that
E1∗, ..., En∗ is orthonormal base fields relative to g on a neighborhood U ⊂ M
and E1, ..., En their horizontal lifts. Let e1, ..., el be an orthonormal base on G
relative to the fixed metric k0 and we set En+1 := K̄−1e∗1, ..., En+l := K̄−1e∗l .
Then E1, ..., En, En+1, ..., En+l is orthonormal base fields on π−1(U) ⊂ P with
respect to h. The indices i, j, ...(resp. α, β, ...) range from 1 to n (resp. from
n+1 to n+ l) and we set εi := h(Ei, Ei) = g(Ei∗, Ei∗) and εα := h(Eα, Eα) =
εk0(eα, eα). Let Ric (resp. Ric∗) be the Ricci tensor of h (resp. g) and (Ric)∗
the symmetric 2-form on P such that (Ric)∗(X,Y ) =Ric∗(π∗X,π∗Y ) at each
point of P .

Proposition 3.3. If V , W are vertical and X, Y are horizontal, then

(3.9) Ric(V,W ) = εK̄k0(ω(V ), ω(W ))((∆K) ◦ π)

+
1
4
K̄4

∑
i

εih(Ωω(V )(Ei), Ωω(W )(Ei)) +
ε

4

∑
α

εαk0([ω(V ), eα], [ω(W ), eα])

−ε(l − 1)k0(ω(V ), ω(W ))g(gradK, gradK) ◦ π,

(3.10) Ric(V,X) =
ε

2
K̄2

∑
i

εik0((∇EiΩ)(X,Ei), ω(V ))

− l + 2
2

εK̄k0(ω(V ), Ω(gradK̄,X))

and

(3.11) Ric(X,Y ) = (Ric)∗(X,Y ) − ε

2
K̄2

∑
i

εik0(Ω(X,Ei), Ω(Y,Ei))

+ε
∑
α

εα{
1
4
k0([Ω, ω](X,Y, eα), eα)−1

2
k0((∇eα∗Ω)(X,Y ), eα))}− l

K̄
HK̄(X,Y ).

By Proposition 3.3, we have

Proposition 3.4. Let S (resp. S∗) be the scalar curvature of (P, h) (resp.
(M,g)). Then

(3.12) S = S∗ ◦ π − ε

4
K̄2

∑
i,j

εiεjk0(Ω(Ei, Ej),Ω(Ei, Ej)) + 2l
(∆K) ◦ π

K̄

−l(l − 1)
g(gradK, gradK) ◦ π

K̄2
+

1
4

ε

K̄2

∑
α,β

εαεβk0([eα, eβ ], [eα, eβ ]).
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§4. Variational problems

In this section, we consider the variational problems for the integral of
a functional constructed from the scalar curvature of (P, h). Let Λ̄i(P,G)
be the space of G-valued i-forms ϕ on P such that Ra∗ϕ = ad(a−1)ϕ and
ϕ(X1, ..., Xi) = 0 when one of X1, ..., Xi is vertical. For τ ∈ Λ̄i(P,G), we have
Dωτ = dτ + [ω, τ ]. The metric gx on the tangent space at x ∈ M induces the
metric ḡp on horizontal subspace H(P )p ⊂ TpP (p ∈ π−1(x)) via the isomor-
phism π∗|H(P )p

: H(P )p → TxM (i.e., ḡp(X,Y ) := gx(π∗X,π∗Y ) for X, Y ∈
H(P )p). Let µ̃p be the volume element on H(P )p relative to this induced
metric and we can define the star operator ∗̃p : Λi(H(P )p) → Λn−i(H(P )p)
(n =dimM). Moreover we define ∗ : Λ̄i(P,G) → Λ̄n−i(P,G) by setting (for
ϕ ∈ Λ̄i(P,G)) (∗ϕ)p equal to the unique extension of ∗̃p(ϕ|H(P )p

) to a G-valued
(n − i)-form vanishing on vertical vectors. Let ∂1, ..., ∂n be coordinate vector
fields on U ⊂ M . The covariant codifferential δω : Λ̄i(P,G) → Λ̄i−1(P,G)
is defined, for ϕ ∈ Λ̄i(P,G), by δω(ϕ) := −(−1)g(−1)n(i+1)∗Dω(∗ϕ), where
(−1)g is the sign of determinant of the matrix (g(∂l, ∂m)). The self- action of
the connection ω relative to the fixed ad-invariant metric k0 is defined by

S0(g, ω) := −1
2
(ḡk0)(Ω, Ω) = −1

4
ghjgimk0(Ω(∂̃h, ∂̃i), Ω(∂̃j , ∂̃m)),

where ḡk0 is the metric on Λ̄i(P,G) induced from ḡ and k0. Note that S0(g, ω)
is a smooth function on M . The ad-invariant metric k0 induces the bi-invariant
metric k0 on G as follows. For a ∈ G and A, B ∈ TaG, we set k0(A,B) :=
k0(L−1

a∗ A,L−1
a∗ B), where La is the left action on G. Then (G, k0) has the

constant scalar curvature

c0 =
1
4

∑
α,β

εαεβk0([eα, eβ ], [eα, eβ ]).

Hence the scalar curvature of (P, h) is described by

S = S∗ ◦ π + (εK2S0(g, ω)) ◦ π +
εc0

K̄2

+2l
(∆K) ◦ π

K̄
− l(l − 1)

g(gradK, gradK) ◦ π

K̄2
.

We define a map L : M(M) × C(P ) × C∞(M)+−−−−→C∞ (M) by

L(g, ω,K) : = {S∗ + εK2S0(g, ω) +
εc0

K2
+ 2l

(∆K)
K

− l(l − 1)
g(gradK, gradK)

K2
}K l

= S∗K
l,
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where

S∗ := S∗(g, ω,K) := S∗+εK2S0(g, ω)+
εc0

K2
+2l

(∆K)
K

−l(l−1)
g(gradK, gradK)

K2

and C∞(M)+ is the set of all positive functions on M . The notation U ⊂⊂ M
means that U is an open subset of M with compact closure. The volume
element relative to a metric g is denoted by µg. The variational problems
for the integral of the scalar curvature of h reduces to those for the integral
of L(g, ω,K) since Sµh = SK lπ∗µg ∧ µk̃0

, where µk̃0
is the volume element

induced from k0.
At first, we consider variations of the metric. Let S2(M) be the set of

all symmetric tensors on M . For g ∈ M(M), u ∈ S2(M), and t ∈ R, we
set g(t) :=g + tu. For small t ∈ R, g(t) is in M(M). Then we denote the
curvature tensor, gradient and Laplacian relative to g(t) by R∗(t), grad(t)
and ∆(t), respectively. We set gij(t) := g(t)(∂i, ∂j) and define R∗i

jkl(t) by the
components of the curvature tensor of g(t). We write gij = gij(0), R∗i

jkl =
R∗i

jkl(0), etc. The indices are raised and lowered by the initial metric g. For
f ∈ C∞(M), we have

(4.1)
∫

U
fgijR∗k

ijk
′(0)µg =

∫
U
{(f,k;i) + (∆f)gik}uikµg,

(4.2)
d

dt
(∆(t)f) |t=0 = ((uki)(f,k));i −

1
2
((uj

j)(f,k));k − 1
2
uj

j∆f

and

(4.3)
d

dt
g(t)(grad(t)f, grad(t)f) |t=0 = uij(f,i)(f,j),

where a prime denotes the derivative with respect to the parameter t.

Using equations above, we obtain the following theorem.

Theorem 4.1. (Einstein field equation). For all U ⊂⊂ M and all u ∈
S2(M) with support in U , the equation

d

dt

∫
U
L(g + tu, ω,K)µg(t) = 0 at t = 0

holds if and only if

(4.4) R∗
ij −

1
2
S∗gij =

1
2
εK2k0(Ωhi,Ωmj)ghm +

1
2
εK2S0(g, ω)gij

+
1
2

εc0

K2
gij +

l

K
(K,i;j + ∆Kgij) −

1
2
l(l − 1)

g(gradK, gradK)
K2

gij ,

where R∗
ij are the components of the Ricci curvature of (M, g).
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Proof. At first, about the first term, we have

d

dt

∫
U

K lS∗(t)µg(t) |t=0

=
∫

U
K l(−R∗

ij +
1
2
S∗gij)uijµg +

∫
U

K lgijR∗k
ijk

′(0)µg.

From
(K l),i;j = K l{l(l − 1)

(K,i)(K,j)
K2

+ l
K,i;j

K
},

∆(K l) = K l{l∆K

K
− l(l − 1)

g(gradK, gradK)
K2

}

and (4.1), we have∫
U

K lgijR∗k
ijk

′(0)µg =
∫

U
K l{l(l − 1)

(K,i)(K,j)
K2

+ l
K,i;j

K
+ l

∆K

K
gij

−l(l − 1)
g(gradK, gradK)

K2
gij}uijµg.

For the second and third term, by similar calculations in 9.3.3 Theorem in [1],
we get

d

dt

∫
U

εK l+2S0(g(t), ω)µg(t) |t=0

=
∫

U
{K l(

1
2
εK2ghmk0(Ωhi, Ωmj) +

1
2
εK2S0(g, ω)gij)uij}µg

and
d

dt

∫
U

K l εc0

K2
µg(t) |t=0 =

∫
U

K l(
1
2

εc0

K2
gij)uijµg.

For the fourth term, from (4.2), it follows that

d

dt

∫
U

K l−1((∆(t))K)µg(t) |t=0

=
∫

U
K l−1{((uki)(K,k));i −

1
2
((uj

j)(K,k));k − 1
2
uj

j(∆K)}µg

+
∫

U
K l−1(∆K)(

1
2
ui

i)µg

=
∫

U
K l{−(l − 1)

(K,i)(K,j)
K2

+
1
2
(l − 1)

g(gradK, gradK)
K2

gij}uijµg.

For last term, by (4.3), we have

d

dt

∫
U

K l g(t)(grad(t)K, grad(t)K)
K2

µg(t) |t=0

=
∫

U
K l{− 1

K2
(K,i)(K,j) +

1
2

g(gradK, gradK)
K2

gij}uijµg.
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Piecing these results together, we see that (4.4) holds if and only if g is sta-
tionary relative to L for fixed ω and K. Q.E.D.

Next, we consider variations of the connection. For ω ∈ C(P ), τ ∈ Λ̄1(P,G),
and t ∈ R, we set ω(t) := ω + tτ . Then ω(t) is in C(P ) for all t ∈ R. Let Ω(t)
be the curvature form of ω(t). Let U ⊂⊂ M , and suppose that α ∈ Λ̄k(P,G),
while β ∈ Λ̄k+1(P,G). Assume that the projected support of α is contained in
U . Then

(4.5)
∫

U
(ḡk0)(Dωα, β)µg =

∫
U
(ḡk0)(α, δωβ)µg.

For the curvature form of ω(t) = ω + tτ , from the structure equation, we have

(4.6)
d

dt
Ω(t) |t=0 = dτ + [ω, τ ] = Dωτ .

Theorem 4.2. (Yang-Mills equation). For all U ⊂⊂ M and all τ ∈
Λ̄1(P,G) with projected support in U , the equation

d

dt

∫
U
L(g, ω + tτ,K)µg = 0 at t = 0

holds if and only if

(4.7) δω(K̄ l+2Ω) = 0,

or equivalently

(4.7)′ δωΩ =
l + 2
K̄

Ω(gradK̄, · ).

Proof. From (4.5) and (4.6), it follows that

d

dt

∫
U
L(g, ω + tτ,K)µg |t=0 = −

∫
U

εK l+2(ḡk0)(
d

dt
Ω(t) |t=0 , Ω)µg

= −
∫

U
εK l+2(ḡk0)(Dωτ, Ω)µg = −

∫
U
(ḡk0)(τ, δω(εK̄ l+2Ω))µg.

Hence we see that the equation (4.7) holds if and only if ω is stationary relative
to L for fixed g and K. Q.E.D.

Finally, we consider variations of the positive function. We start with the
following lemma.
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Lemma 4.3. For all U ⊂⊂ M and all L ∈ C∞(M) with support in U , the
equation

(4.8)
d

dt

∫
U

K lS∗(g, ω,K + tL)µg = 0 at t = 0

holds if and only if

εK l+1S0(g, ω) − εK l−3c0 − lK l−2(∆K) + l(l − 1)K l−3g(gradK, gradK) = 0.

Proof. For K ∈ C∞(M)+ and L ∈ C∞(M), from a straightforward calcula-
tion, it follows that

d

dt
ε(K + tL)2S0(g, ω) |t=0 = 2εKLS0(g, ω),

d

dt

c0

(K + tL)2
|t=0 = −2c0L

K3
,

d

dt

∆(K + tL)
K + tL

|t=0 =
∆L

K
− (∆K)

K2
L

and

d

dt

g(grad(K + tL), grad(K + tL))
(K + tL)2

|t=0 =
2g(gradK, gradL)

K2
−2g(gradK, gradK)L

K3
.

Moreover by Green’s theorem, we obtain∫
U

K l−1(∆L)µg =
∫

U
g(grad(K l−1), gradL)µg =

∫
U

∆(K l−1)Lµg

=
∫

U
{(l − 1)K l−2∆K − (l − 1)(l − 2)K l−3g(gradK, gradK)}Lµg

and ∫
U

K l−2g(gradK, gradL)µg =
∫

U
g(K l−2gradK, gradL)µg

= −
∫

U
div(K l−2gradK)Lµg = −

∫
U
{g(gradK l−2, gradK) + K l−2div(gradK)}Lµg

=
∫

U
{−(l − 2)K l−3g(gradK, gradK) + K l−2(∆K)}Lµg.

Hence, from these equations, we see that the equation (4.8) holds if and only
if

εK l+1S0(g, ω) − εK l−3c0 − lK l−2(∆K) + l(l − 1)K l−3g(gradK, gradK) = 0.

Q.E.D.
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Theorem 4.4. (Brans-Dicke type wave equation). For all U ⊂⊂ M and all
L ∈ C∞(M) with support in U , the equation

d

dt

∫
U
L(g, ω,K + tL)µg = 0 at t = 0

holds if and only if

(4.9) lK2S∗ + ε(l + 2)K4S0(g, ω) + ε(l − 2)c0 + 2l(l − 1)K(∆K)

−l(l − 1)(l − 2)g(gradK, gradK) = 0.

Proof. By Lemma 4.3, K is stationary relative to L for fixed g and ω if and
only if

0 = lK l−1{S∗ + εK2S0(g, ω) +
εc0

K2
+ 2l

(∆K)
K

− l(l − 1)
g(gradK, gradK)

K2
}

+2εK l+1S0(g, ω) − 2εK l−3c0 + {2l(l − 1) − 2l − 2l(l − 1)}K l−2(∆K)
+{−2l(l − 1)(l − 2) + 2l(l − 1)(l − 2) + 2l(l − 1)}K l−3g(gradK, gradK)

holds. Then we have

lK2S∗ + ε(l + 2)K4S0(g, ω) + ε(l − 2)c0 + 2l(l − 1)K(∆K)
− l(l − 1)(l − 2)g(gradK, gradK) = 0.

Q.E.D.

By Theorems 4.1 and 4.4, we have the following corollary.

Corollary 4.5. If the equation (4.4) and (4.9) hold, then

(4.10) (n+ l−2){εK4S0(g, ω)−εc0− lK∆K + l(l−1)g(gradK, gradK)} = 0.

If n + l > 2, then the equation (4.10) reduces to

(4.11) εK4S0(g, ω) − εc0 − lK∆K + l(l − 1)g(gradK, gradK) = 0.

Proof. Contracting the equation (4.4) by g, we have

(1 − 1
2
n)S∗ + ε(2 − n

2
)K2S0(g, ω) − 1

2
n

εc0

K2

− l

K
(−∆K + n∆K) +

1
2
nl(l − 1)

g(gradK, gradK)
K2

= 0.

From this equation and (4.9), it follows that

(n + l − 2){εK4S0(g, ω) − εc0 − lK∆K + l(l − 1)g(gradK, gradK)} = 0.

Q.E.D.
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§5. Cosmology

In this section, we assume that M is a warped product and satisfies the
equations in the previous section. By using these equations, we will consider
cosmology. Let MS be an m- dimensional semi-Riemannian manifold. Let
f > 0 be a smooth function on an interval I in R1

1. Assume that M is the
product manifold I×MS . Let pI (resp. pS) be the projection of M onto I (resp.
MS). The metric on M is defined by g := p∗IσI + (f ◦ pI)2p∗SσS , where σI and
σS are the metric tensors on I and MS , respectively. Especially, M is called a
Robertson-Walker spacetime, if MS is a connected 3-dimensional Riemannian
manifold of constant curvature κ = −1, 0 or 1, see [5], for example.

Let (x0, x1, ..., xm) be a coordinate system on U ⊂ M = I × MS . We
assume that the function K depend only on x0. We compute the curvatures
of (M, g). The indices A, B, ...(resp. i, j, ...) range from 1 to m (resp. from
0 to m). Then we have

g00 = −1, gAB = f2σAB and g00 = −1, gAB =
σAB

f2

and

R∗
00 = −m

f̈

f
, R∗

0A = 0 and R∗
AB = {ff̈ + (m − 1)ḟ2}σAB + R̄AB,

where R̄AB are the components of the Ricci curvature of (MS , σS) and σAB =
(σS)AB. Putting S̄ the scalar curvature of σS , the scalar curvature S∗ is
described by

S∗ = 2m
f̈

f
+ m(m − 1)

ḟ2

f2
+

S̄

f2
.

Since the function K depends only on x0, we get

g(gradK, gradK) = −K̇2, ∆K = K̈ + m
ḟ

f
K̇

and

K,i;j =


K̈ (i = j = 0)
0 (i = 0, j = A)
−fḟK̇σAB (i = A, j = B)

.

For the self-action, we have

S0(g, ω) = −1
4
ghjgimk0(Ωhi, Ωjm) =

1
2

1
f2

a − 1
4

1
f4

b,

where a := σABk0(Ω0A, Ω0B) and b := σABσCDk0(ΩAC , ΩBD).

From Theorem 4.1, we have
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Proposition 5.1. The following equations hold.

(5.1) m(m − 1)
ḟ2

f2
+

S̄

f2
=

ε

2
K2

f2
a +

ε

4
K2

f4
b − εc0

K2

−2ml
ḟ

f

K̇

K
− l(l − 1)

K̇2

K2
,

(5.2) k0(ΩB0, ΩCA)σBC = 0

and

(5.3) (1 − m)ff̈σAB + (1 − m

2
)(m − 1)ḟ2σAB + R̄AB − 1

2
S̄σAB

= −1
2
εK2k0(Ω0A, Ω0B)+

1
2
ε
K2

f2
k0(ΩCA, ΩDB)σCD +

1
4
εK2aσAB − 1

8
ε
K2

f2
bσAB

+
1
2

εc0

K2
f2σAB + lf2 K̈

K
σAB + l(m − 1)fḟ

K̇

K
σAB +

1
2
l(l − 1)

K̇2

K2
f2σAB.

Contracting (5.3) by σS and from (5.1), we obtain

Corollary 5.2. It follows that

(5.4) (1 − m)m
f̈

f
= (

m

2
− 1)ε

K2

f2
a +

1
4
ε
K2

f4
b

+
εc0

K2
+ ml

ḟ

f

K̇

K
+ ml

K̈

K
+ l(l − 1)

K̇2

K2
.

From Theorems 4.2, 4.4 and Corollary 4.5, the following equations hold.

Proposition 5.3. We have

(5.5) δωΩ = −(l + 2)
K̇ ◦ π

K̄
Ω(∂0, ·),

(5.6) 2ml
f̈

f
+ lm(m − 1)

ḟ2

f2
+ l

S̄

f2
+

ε(l + 2)
2

K2

f2
a − ε(l + 2)

4
K2

f4
b

+ε(l − 2)
c0

K2
+ 2l(l − 1)

K̈

K
+ 2l(l − 1)m

ḟ

f

K̇

K
+ l(l − 1)(l − 2)

K̇2

K2
= 0

and

(5.7)
ε

2
K2

f2
a − ε

4
K2

f4
b − ε

c0

K2
− l

K̈

K
− ml

ḟ

f

K̇

K
− l(l − 1)

K̇2

K2
= 0.
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The equations (5.4) and (5.7) imply the following corollary.

Corollary 5.4. It follows that

(5.8) (m − 1){mf̈

f
+

ε

2
a + l

K̈

K
} = 0.

If m > 1, then we have

(5.9) m
f̈

f
+

ε

2
a + l

K̈

K
= 0.

We consider the case of K(x0) = F (f(x0)), where F is a function on the
set of all positive real numbers. Then we have the following equation from the
(5.9).

Corollary 5.5. We have

(5.10) (
m

f
+ l

F ′

F
)f̈ +

ε

2
a + l

F ′′

F
ḟ2 = 0,

where F ′ = dF/df .

We assume that σS and k0 are positive definite metrics and ε = 1, that
is, M and P are Lorentz manifold. Usually, physicists consider this case in
standard models. Then we have a ≥ 0. Moreover, we assume F ′ ≤ 0 and
F ′′ ≥ 0. The assumption F ′ ≤ 0 means that fibers are contracting when the
space MS is expanding. From Corollary 5.5, we get the following corollary.

Corollary 5.6. If f̈ ≤ 0 and { t ∈ I | f̈(t) = 0 } has no interior points, then
we have

−m

l
≤ fF ′

F
≤ 0.

For example, when K = fα (α ≤ 0) or K = exp(βf) (β < 0), this
inequality reduces to −(m/l) ≤ α ≤ 0, −m

lβ
≥ f(> 0), respectively. When we

refer to f as the scale factor, Corollary 5.6 indicates the relation among F ,
dimMS , dimG and the scale of the universe.
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