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1. Introduction

Impulse differential equations constitute a useful mathematical apparatus for
the investigation of evolutionary processes in physics, chemistry, control theory
and robotics which are subject to the action of short-time forces in the form
of impulses. The work of Mil’man and Myshkis [1] marked the beginning of
the mathematical theory of these equations.

In the present paper an Lp-equivalence between two arbitrary impulse dif-
ferential equations is proved. That means that for every solution of the first
equation there exists a solution of the second equation such that the difference
of these solutions lies in the space Lp, and vice versa. Similar problems under
other conditions are considered in [2], [3].

2. Statement of the problem

Let X = Rn be the n -dimensional Eucledean space with identity operator I
and norm ‖ · ‖. By T = {tn} we denote a sequence of points 0 = t0 < t1 <
t2 < ... satisfying the condition lim

n→∞
tn = ∞.
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Consider the impulse equation

dx

dt
= F (t, x) for t 6= tn (1)

x(t+n ) = Qn x(tn) for t = tn (2)

and
dy

dt
= G(t, y) for t 6= tn (3)

y(t+n ) = Dn y(tn) for t = tn , (4)

where F (t, x), G(t, y) : R+ × X → X (R+ = [0,∞)) are continuous functions
and Qn, Dn : X → X (n = 1, 2, ...). Moreover, we assume that all considered
functions are continuous from the left.

Definition 1. We shall say that the function ψ(t) (t ≥ 0) is a solution of the
equation (1) − (2) ((3) − (4)) if for t 6= tn, it satisfies equation (1) ((3)) and
for t = tn the condition of “jump” (2) ((4)).

Let 1 ≤ p < ∞. By Br we denote the closed ball in the space X with a
center at zero and radius r.

Let Ω ⊂ R+. By Lp (Ω, X) we denote the space of all functions x : Ω → X
for which

∫
Ω
||x(t)||pdt < ∞. When X = R we shall write Lp (Ω).

Definition 2. The equation (3)− (4) is called Lp-equivalent to the equation
(1) − (2) in the ball Br if there exists ρ > 0 such that for any solution x(t) of
(1) − (2) lying in Br there exists a solution y(t) of (3) − (4) lying in the ball
Br+ρ and satisfying the relation y(t)−x(t) ∈ Lp (R+, X). If equation (3)− (4)
is Lp-equivalent to equation (1) − (2) in the ball Br and vice versa, we shall
say that equations (1) − (2) and (3) − (4) are Lp-equivalent in the ball Br.

3. Main results

3.1. Equivalent equations

Let

w(t, s) =
n(s)+1∏
j=n(t)

Qj (0 ≤ s < t) (5)

and

w̃(t, s) =
n(s)+1∏
i=n(t)

Di (0 ≤ s < t) , (6)

where n(τ) = max{n : tn < τ}.
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Lemma 1. Each solution x(t) of equation (1)− (2) which lies in the ball Br

is a solution of the nonlinear integral equation

x(t) = w(t, 0)x(0) +
n(t)−1∑

i=0

w(t, t+i )

ti+1∫
ti

F (s, x(s))ds +
t∫

tn(t)

F (s, x(s))ds (7)

and each solution y(t) of equation (3) − (4) which lies in the ball Br+ρ is a
solution of the nonlinear integral equation

y(t) = w̃(t, 0)y(0) +
n(t)−1∑

i=0

w̃(t, t+i )

ti+1∫
ti

G(s, y(s))ds +
t∫

tn(t)

G(s, y(s))ds (8)

Lemma 1 is proved by straightforward verification.
Set

z(t) = y(t) − x(t). (9)

Then the function z(t) is a solution of the nonlinear integral equation

z(t) = w̃(t, 0)y(0) − w(t, 0)x(0)+

+
n(t)−1∑

i=0
{w̃(t, t+i )

ti+1∫
ti

G(s, x(s) + z(s))ds − w(t, t+i )
ti+1∫
ti

F (s, x(s))ds}+

+
t∫

tn(t)

{G(s, x(s) + z(s)) − F (s, x(s))}ds.

(10)
Let

H(x, z)(t) = w̃(t, 0)y(0) − w(t, 0)x(0)+

+
n(t)−1∑

i=0
{w̃(t, t+i )

ti+1∫
ti

G(s, x(s) + z(s))ds − w(t, t+i )
ti+1∫
ti

F (s, x(s))ds}+

+
t∫

tn(t)

{G(s, x(s) + z(s)) − F (s, x(s))}ds.

(11)
Then

z(t) = H(x, z)(t). (12)

From Definition 2 it follows that to establish the Lp - equivalence of equation
(3) − (4) to equation (1) − (2) it suffices to show that for each solution x(t)
of equation (1) − (2) lying in the ball Br the operator equation (12) has a
fixed point z(t) such that x(t) + z(t) ∈ Br+ρ for some ρ > 0 and which lies in
Lp(R+, X).
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Let S(R+, X) be the space of all functions which are continuous for
t 6= tn (n = 1, 2, ...), have at the points tn limits on the left and right and
are left continuous. The space S(R+, X) is linear and localy convex. A metric
can be introduced by

ρ(x, y) =
∞∑

n=0

1
2n

max
t∈(tn,tn+1]

‖x(t) − y(t)‖

1 + max
t∈(tn,tn+1]

‖x(t) − y(t)‖
.

The convergence with respect to this metric coincides with the uniform con-
vergence on each bounded interval. For this space an analog of Arzella-Ascoli’s
theorem is valid.

Lemma 2. [2] The set M ⊂ S(R+, X) is relatively compact if and only if
M is equicontinuous on each interval (tn−1, tn] (n = 1, 2, ...).

Proof. We apply the theorem of Arzella-Ascoli on each interval (tn−1, tn]
(n = 1, 2, ...) and constitute diagonal line sequence, which is converging on
each from them.2

In the proof of the existence of a fixed point of the operator H from the
equation (12) we use a modification of Schauder’s classical principle.

Lemma 3. [2] Let the operator H transform the set

C(r) = {x ∈ S(R+, X) : x(t) ∈ Br, t ≥ 0}

into inself and be continuous and compact.
Then H has a fixed point in C(r).

3.2. Conditions for Lp-equivalence

Theorem 1. Let the following conditions are fulfilled.
1.The operator-valued functions w(t, s) and w̃(t, s) satisfy the condition

‖w̃(t, 0)ξ − w(t, 0)η‖ ≤ χr,ρ(t) (0 ≤ t < ∞) , (13)

where ξ ∈ Br+ρ , η ∈ Br , χr,ρ(t) ∈ Lp(R+) and r, ρ > 0.

2.The functions F (t, x) , G(t, y) and w(t, s) , w̃(t, s) satisfy the condition

sup
‖u‖≤r

‖v‖≤r+ρ

n(t)−1∑
i=0

‖w̃(t, t+i )

ti+1∫
ti

G(s, v)ds − w(t, t+i )

ti+1∫
ti

F (s, u)ds‖ ≤ ψ r,ρ(t) ,

(14)
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where ψ r,ρ(t) ∈ Lp(R+) and

sup
‖u‖≤r

‖v‖≤r+ρ

t∫
tn(t)

‖G(s, v) − F (s, u)‖ds ≤ ϕr,ρ(t) , (15)

where ϕr,ρ(t) ∈ Lp(R+).
3.The function G(t, y) satisfies the condition

sup
‖v‖≤r+ρ

‖G(t, v)‖ ≤ Φr,ρ(t) , (16)

where Φr,ρ(t) is integrable on each interval (tn−1, tn] (n = 1, 2, ...).
4.The inequality

χr,ρ(t) + ψ r,ρ(t) + ϕr,ρ(t) ≤ ρ (17)

holds for each t ≥ 0.
Then the equation (3) − (4) is Lp-equivalent to the equation (1) − (2) in

the ball Br.

Proof. We shall show that for any function x(t) ∈ Br (t ≥ 0) the operator
H(x, z) defined by (11) maps the set

C(ρ) = {z ∈ S(R+, X) : z(t) ∈ Bρ , t ≥ 0}

into itself.
Let x(t) ∈ Br (t ≥ 0) and let z ∈ C(ρ). Then from (11) we obtain the

estimate:

‖H(x, z)(t)‖ ≤ ‖w̃(t, 0)y(0) − w(t, 0)x(0)‖+

+
n(t)−1∑

i=0
‖w̃(t, t+i )

ti+1∫
ti

G(s, x(s) + z(s))ds − w(t, t+i )
ti+1∫
ti

F (s, x(s))ds‖+

+
t∫

tn(t)

‖G(s, x(s) + z(s)) − F (s, x(s))‖ds ≤ ‖w̃(t, 0)y(0) − w(t, 0)x(0)‖+

+ sup
‖u‖≤r

‖v‖≤r+ρ

n(t)−1∑
i=0

‖w̃(t, t+i )
ti+1∫
ti

G(s, v)ds − w(t, t+i )
ti+1∫
ti

F (s, u)ds‖+

+ sup
‖u‖≤r

‖v‖≤r+ρ

t∫
tn(t)

‖G(s, v) − F (s, u)‖ds ≤ χr,ρ(t) + ψ r,ρ(t) + ϕr,ρ(t) ≤ ρ

for each t ≥ 0.
We obtain ‖H(x, z)(t)‖ ≤ ρ, i.e., H(x, z) ∈ C(ρ). Hence, for any x ∈ C(ρ),

the set C(ρ) is invariant with respect to H(x, z).
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Let be L = {u(t) = H(x, z)(t) : ‖z‖ ≤ ρ}.
First we shall establish that the set L is compact in S(R+, X).
We shall show the equicontinuity of the functions of the set L. In fact, for

t′, t′′ ∈ (tn−1, tn] following equalities hold:

w(t′, s) = w(t′′, s) = w(tn, s)

w̃(t′, s) = w̃(t′′, s) = w̃(tn, s)

n(t′) = n(t′′) = n − 1

For t′, t′′ ∈ (tn−1, tn] we obtain

‖u(t′) − u(t′′)‖ =

= ‖(w̃(t′, 0)y(0) − w(t′, 0)x(0)) − (w̃(t′′, 0)y(0) − w(t′′, 0)x(0))+

+
n(t′)−1∑

i=0
{w̃(t′, t+i )

ti+1∫
ti

G(s, x(s) + z(s))ds − w(t′, t+i )
ti+1∫
ti

F (s, x(s))ds}ds−

−
n(t′′)−1∑

i=0
{w̃(t′′, t+i )

ti+1∫
ti

G(s, x(s) + z(s))ds − w(t′′, t+i )
ti+1∫
ti

F (s, x(s))ds}+

+
t′∫

t
n(t′)

{G(s, x(s) + z(s)) − F (s, x(s))}ds−

−
t′∫

t
n(t′′)

{G(s, x(s) + z(s)) − F (s, x(s))}ds‖ ≤

≤ | sup
‖u‖≤r

‖v‖≤r+ρ

t′∫
t′′

‖G(s, v) − F (s, u)‖ds|

The equicontinuity of the functions of the set L follows from the last esti-
mate.

From Lemma 2 the compactness of the set L follows.
We shall show that the operator H(x, z) is continuous in S(R+, X).
Let the sequence {zn(t)} ⊂ C(ρ) be convergent in the metric of the space

S(R+, X) (i.e., uniformly converges on each bounded interval) to the function
z(t) ∈ C(ρ). Then, for t ∈ R+ the sequence G(t, x(t) + zn(t)) converges to
G(t, x(t)+z(t)). From conditions 3 of Theorem 1 it follows that the convergent
sequence of functions G(t, x(t)+zn(t)) is majorized by the intergrable function
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Φr,ρ(t). That’s why within the integral in formula

H(x, zn)(t) = w̃(t, 0)y(0) − w(t, 0)x(0)+

+
n(t)−1∑

i=0
{w̃(t, t+i )

ti+1∫
ti

G(s, x(s) + zn(s))ds − w(t, t+i )
ti+1∫
ti

F (s, x(s))ds}+

+
t∫

tn(t)

{G(s, x(s) + zn(s)) − F (s, x(s))}ds

we may pass to the limit. Hence H(x, zn)(t) tends to H(x, z)(t) for t ∈ R+.
Since H(x, z) maps C(ρ) into a compact set, H(x, zn) tends to H(x, z) in
S(R+, X) as well.

From Lemma 3 it follows that for any x ∈ C(ρ) the operator H(x, z) has a
fixed point z in C(ρ), i.e. z = H(x, z).

We shall show that this fixed point z(t) lies in Lp(R+, X).
‖z(t)‖ ≤ ‖w̃(t, 0)y(0) − w(t, 0)x(0)‖+

+ sup
‖u‖≤r

‖v‖≤r+ρ

n(t)−1∑
i=0

‖w̃(t, t+i )
ti+1∫
ti

G(s, v)ds − w(t, t+i )
ti+1∫
ti

F (s, u)ds‖+

+ sup
‖u‖≤r

‖v‖≤r+ρ

t∫
tn(t)

‖G(s, v) − F (s, u)‖ds ≤ χr,ρ(t) + ψ r,ρ(t) + ϕr,ρ(t)

‖z‖p = (
∞∫
0
‖z(t)‖pdt)

1
p

≤ (
∞∫
0
|χr,ρ(t) + ψ r,ρ(t) + ϕr,ρ(t)|pdt)

1
p

≤

≤ ‖χr,ρ‖p + ‖ψ r,ρ‖p + ‖ϕr,ρ‖p

Hence this fixed point belongs to the space Lp(R+, X) , i.e., the equations
(3) − (4) are Lp-equivalent to the equations (1) − (2) in ball Br.

Theorem 1 is proved. 2

Remark 1. Condition (13) means that the “impulse difference” of the two
equations belongs in the space Lp(R+).
Condition (14) means that the sum of the “integral differences” of G and F
with weights w̃ and w on the balls Br+ρ and Br respectively on any interval
[ti, ti+1] lies in the space Lp(R+).
Condition (15) means that the “integral difference” of the ordinary parts on
any interval [ti, ti+1] lies in the space Lp(R+).

Remark 2. It may be noted that the condition (18) in [2] is not fulfilled if
one of the equations is an ordinary. Let the equation (3)− (4) be ordinary i.e.
Dn = I. Then for any solution of the impulse equation there exists a solution
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of the ordinary equation. If we have evidently or numerical representation of
the solution of the ordinary equation, then the solution of the impulse equation
will be Lp-near to this solution.

Corollary 1. Let the operators Qn , Dn (n = 1, 2, ...) are linear and the
following conditions are fulfilled.

1.The operator-valued function w(t, s) and w̃(t, s) satisfy the conditions

‖w̃(t, s)‖ ≤ M (0 ≤ s < t < ∞) , (18)

where M is a positive number and

‖w̃(t, 0)ξ − w(t, 0)η‖ ≤ χr,ρ(t) (0 ≤ t < ∞) , (19)

where ξ ∈ Br+ρ , η ∈ Br , χr,ρ(t) ∈ Lp(R+) and r, ρ > 0.

2.The functions F (t, x) and G(s, y) satisfy the condition

sup
‖u‖≤r

‖v‖≤r+ρ

t∫
0

‖w̃(t, s)G(s, v) − w(t, s)F (s, u)‖ds ≤ ψ r,ρ(t) , (20)

where ψ r,ρ(t) ∈ Lp(R+).
3.The function G(t, y) satisfies the condition

sup
‖v‖≤r+ρ

‖G(t, v)‖ ≤ ϕr,ρ(t) ∈ L1(R+) (21)

4.The inequality

χr,ρ(t) + ψ r,ρ(t) ≤ ρ (22)

holds for each t ≥ 0.

Then the equation (3) − (4) is Lp-equivalent to the equation (1) − (2) in
the ball Br.

Proof. The corollary follows immediately from the relations

x(t) = w̃(t, 0)x(0) +
t∫

0

w̃(t, s)F (s, x(s))ds,

y(t) = w(t, 0)y(0) +
t∫

0

w(t, s)G(s, y(s))ds. 2
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Example. Consider the impulse equations

dx

dt
= F (t, x) for t 6= n (23)

x(n+) = 5−n(2 − sinx(n)) for n = 1, 2, ... (24)

and
dy

dt
= G(t, y) for t 6= n (25)

y(n+) = 5−n sin y(n) for n = 1, 2, ... , (26)

where F (t, x), G(t, y) : R+ × R → R are continuous functions. Let for some
0 < r < ∆ the functions G(t, y) andF (t, x) satisfy the conditions

sup
|u|≤r
|v|≤∆

t∫
[t]

|G(s, v) − F (s, u)|ds ≤ ϕ(t) ∈ Lp(R+) (27)

sup
|v|≤∆

|G(t, v)| ≤ Φ(t) (28)

The function ϕ(t) satisfies the condition

4.5−[t] + 4.t.5−[t] + ϕ(t) ≤ ∆ − r (29)

The function Φ(t) is integrable on each interval (n − 1, n] (n = 1, 2, ...).
We note that the conditions (27) − (29) are fulfilled for example by

F (t, x) =
ln 5
4

5−t x

1 + x2

G(t, y) =
ln 5
4

5−ty sin2 y

Indeed in this case we have

sup
|u|≤r
|v|≤∆

t∫
[t]

ln 5
4

5−s|v sin2 v − u

1 + u2
|ds =

1
4
(5−[t]−5−t) sup

|u|≤r
|v|≤∆

|v sin2 v − u

1 + u2
| ≤

≤ 1
2
5−[t]( sup

|v|≤∆
|v sin2 v| + sup

|u|≤r

|u|
1 + u2

) ≤ 1
2
5−[t](∆ + r)

Set
ϕ(t) =

1
2
5−[t](∆ + r) ∈ Lp(R+)
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The function ϕ(t) satisfies (29)

4.5−[t] + 4.t.5−[t] +
1
2
5−[t](∆ + r) < ∆ − r,

for each t ≥ 0.
Otherwise

sup
|v|≤∆

|G(t, v)| = sup
|v|≤∆

| ln 5
4

5−tv sin2 v| ≤ ln 5
4

∆5−t ∈ Lp(R+)

We shall show that the conditions of Theorem 1 are fulfilled.
We have

Qn x = 5−n(2 − sinx) , Dn y = 5−n sin y.

Then for any ξ ∈ B∆ , η ∈ Br (0 < r < ∆), t ∈ (tn, tn+1] we obtain

|w̃(t, 0)ξ − w(t, 0)η| = |
1∏

i=[t]
Diξ −

1∏
i=[t]

Qiη| =

= |Dnξn−1 − Qnηn−1| = |5−[t] sin ξn−1 − 5−[t](2 − sin ηn−1)| ≤ 4.5−[t] ,

where
ξn−1 = Dn−1Dn−2...D1ξ , ηn−1 = Qn−1Qn−2...Q1η

Set χ(t) = 4.5−[t].
We shall show that χ(t) ∈ Lp(R+)

∞∫
0
|χr,ρ(t)|pdt =

∞∫
0
|4.5−[t]|pdt == 4p

∞∫
0

5(1−t)pdt = 20p
∞∫
0

5−ptdt < ∞

Hence χ(t) ∈ Lp(R+).
We shall show that the condition 2 of Theorem 1 is fulfilled. Let t ∈

(tn, tn+1]. Then

sup
|u|≤r
|v|≤∆

[t]−1∑
i=0

|w̃(t, i+)
i+1∫
i

G(s, v)ds − w(t, i+)
i+1∫
i

F (s, u)ds| =

= sup
|u|≤r
|v|≤∆

[t]−1∑
i=0

|5−[t] sin ξn−1,i+1 − 5−[t](2 − sin ηn−1,i+1)| ≤

≤
[t]−1∑
i=0

4.5−[t] ≤ 4.t.5−[t] ,

where

ξn−1,i+1 = Dn−1 Dn−2...Di+1

i+1∫
i

G(s, v)ds

ηn−1,i+1 = Qn−1 Qn−2...Qi+1

i+1∫
i

F (s, u)ds
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Set ψ(t) = 4.t.5−[t].
We shall show that ψ(t) ∈ Lp(R+).

∞∫
0
|ψ(t)|pdt =

∞∫
0
|4.t.5−[t]|pdt = 4p

∞∫
0

tp.5−p[t]dt ≤

≤ 4p
∞∫
0

tp.5(1−t)pdt = 20p
∞∫
0

tp.5−ptdt < ∞.

Hence ψ(t) ∈ Lp(R+).
For the condition 4 of Theorem 1 we obtain

χ(t) + ψ(t) + ϕ(t) = 4.5−[t] + 4.t.5−[t] + ϕ(t) ≤ ∆ − r

for each t ≥ 0. Hence the equation (25)− (26) is Lp-equivalent to the equation
(23) − (24) in the ball Br (0 < r < ∆).
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