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Abstract. We study the energy decay rate for the isotropic elasticity systems
in a bounded domain under weak growth assumptions on the feedback function.
This work improves some earlier results of Lagnese [9] and Komornik [5].
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1. Introduction

The problem of proving the energy decay rates for solutions of systems of
evolution equations with dissipation at the boundary has been treated by sev-
eral authors. Indeed, in the case of wave or plate equations we can mention Ko-
mornik [3], Komornik-Zuazua [7], Lagnese [8], Lasiecka [10], Lasiecka-Tataru
[11], Lions [12], and Zuazua [13], among others.

Very little is known for the isotropic elasticity systems. To our knowledge,
uniform decay estimates for two-dimensional homogeneous isotropic systems
by applying either linear or nonlinear boundary feedbacks was studied by
Lagnese [9], and quite recently Komornik [5] has obtained exponential decay
for three dimensional case when the boundary dissipation is linear.

In this paper we consider the problem of nonlinear boundary stabilization
for isotropic elasticity systems. More precisely, we consider the following prob-
lem

u — pAu— (A + p)graddivu =0 in 2 x (0, 400),

u=20 on Iy x (0, 4+00),

pd + (A + p)(divu)y + (m - v)g(u') =0 on Ty x (0,400),
u(0) =up, and w'(0)=wu; in Q.

(P)

where Q is a bounded open domain in R™ having a boundary I' of class C?, v =
(v1,v2, -+ ,vy) denotes the outward unit normal vector to I', A and u (the
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Lamé constants in the physical interpretation of the model) are two positive
constants, {I'g,I'1} is a partition of the boundary I" such that

(1.1) Iy # (0 and F_o ﬂfl =0,

m(x) = x — xo, ¢ € R, with x is a fixed point in R”, and ¢g : R™ — R" is
such that

(1.2) g is globally lipschitz continuous;
(1.3) 9(0)=0 and z-g(x) >0 for all x € R";

(1.4)  there exists a > 1 such that |g(z)||z| < ag(z) -z for all z € R"

(the dot denotes the usual inner product in R™). The boundary velocity
feedback denotes the surface traction u{(Vu) + (Vu)T} + A(divu)v (we refer
to [2] for more explanations on the physical meaning of (P)).

Let us denote by Hp, (Q2) the set of functions v € H'(£2) satisfying v = 0 on
I'y. Using the standard nonlinear semi-group theory, the problem (P) is well
posed in the following sense: for every (ug,u1) € Hp, ()™ x L*(€2)™ arbitrarily,
there exists a unique mild solution

(1.5) u € C(Ry, HY(Q)™) N CHR,, L*(Q)™).

Moreover, if (ug,u1) € (H*(Q)NHE ()" x HE ()™ and if the compatibility
condition

(1.6) u%? + A+ p)(divug)v + (m-v)g(u) =0 on Ty

holds, then we have the following regularity property
(L7)  ue ORy, HAQ)") NC Ry, H'(Q)") N C* Ry, LA(Q)")
we say in this case that u is a strong solution. In particular we have

SUPg<t<oo ||Vu’(t)||L2(Q)n < +o0.
Let us define the energy E: Ry — R, of the solutions by the formula

(1.8) E(t) = ;/Q\uq? + ulVal? + (0 + ) (divu)? de.

Assume that

(1.9) m-v<0on Iy and m-v>0 on I'y
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then the energy £ : Ry — Ry is a non-increasing function. Indeed, if u is a
strong solution, then we have

E'(t) = /Qu’ "+ uVu - Vo' + (A + p)(dive) (dive’) dz
= /Qu(Vu' Vu+u' - Au) + (A + p) ((dive) (dive') + o - V(dive)) de
= /rl u - (u% + (A + ,u)(divu)u) dr
and then
(1.10) E'(t) = —/ (m-v)u' - gu')dl <0,
ry

hence

(1.11) E(S)—-E(T) = /S /F (m-v)u' - g(u')dldt

forall 0 < S < T < +oo.

The inequality (1.10) remains valid for all mild solutions by an easy density
argument.

In [9] and [5], Lagnese and Komornik, respectively, have studied the energy

decay rate when g is such that

(1.12) crlzP <|g(x)] < calz|? if Ja] <1

(1.13) cslz| < lg(z)| < ecalx| if |z|>1

¢i (1 <i<4) are four positive constants and p > 1.

These works have a serious drawback: they never apply for bounded func-
tions g (because of ¢3 > 0 in (1.13)). The purpose of this paper is to obtain
a variant of Lagnese and Komornik’s results for bounded feedback functions.
The case of scalar wave equation was treated by Komornik in [3].

Our main result is the following

Main theorem. In addition to (1.1)-(1.4) and (1.9), assume that g satisfies

1 .
(1.14) alzl” <lg(@)] <clzlr i x| <1

(1.15) c3 < |g(x)| < eqlz] if |x|>1
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where ¢; (1 <i < 4) are four positive constants and p is such that

(1.16) p=1 if n=1,
(1.17) p>1 if n=2,
(1.18) p>n—1 if n>3.

Then for every

(1.19) (uo,u1) € (H?(Q) N Hy, ()™ x Hp ()"
satisfying

8UO .
(1.20) ha,, + (A + p)(divug)v + (m-v)g(ur) =0 on TI'y,
the solution of (P) satisfies the estimates
(1.21) BEt)<ce ™ Vt>0 (w>0), if n=1
(1.22) E(t)<cttr V>0, if n>?2

with a constant ¢ depending on the initial data (ug,uy).

The proof of the theorem will be based on an integral inequality proved in
Komornik [4]

Lemma 1.1. (Th. 9.1 [3]) Let E : Ry — Ry be a decreasing function, and
assume that there exists a nonnegative number o and a positive number A such
that

+oo
(1.23) / E*tl(s)ds < AE(t) for all t>0.
t

Then putting
(1.24) T := AE(0)"°,
we have

T+aT)\"

1.2 Eit)<FE >T
(1.25) (t) < (O)<T—|—at> forall t>
if a >0 and
(1.26) E@t) < E(0)e'"T forall t>T

ifa=0.
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2. Proof of the main theorem

From now on we denote by ¢ various positive constants which may be dif-
ferent at different occurencies. Putting for brevity Mu := (Vu)2m+ (n—1)u,
we have for any fixed 0 < S < T < 400

Lemma 2.1. We have

T T
2/ E"é(t)dtch(ch/ E/ (m - )/ |? + |g(u)|?} dTdt.
S S I

Proof. We have

T
0= / E= / (Mu) - (u" — pAu — (X + p)grad divu) dzdt
S Q

_ T -1 /T
= [E%l/u’Mudx] _p/ EPQP)E//’LL/-MUdCCdt
Q S 2 S Q

T
_ / B / - Mu' 4 p(Mu) - (Au) + (A + @) (Mu) - (grad dive) dedt.
S Q

By the definition of the energy and its non-increasigness, it follows easily that

(2.1) /(Mu) -’ dx| < eB(S),
Q
(2.2) lEpzl/u’-Muda: < cE"r < cE(S),
Q
and
(2.3) ‘E?E’/ W - Mudz| < —cE"T E' < —c(E" ).
Q

Multiplying the first equation in (P) with E 2 2m - Vu, we have
T
0= / EpTil / (2mk8kuz)(u;’ - ,u@ful - ()\ + ,u)@,-i?juj) dxdt
s Q
_ T -1 /T
= [EpTl / (2myOpu; ), d:p] _P—- / EY E’/ 2mpu,Opu; dzdt
Q S 2 s Q

T
+/ EpT / —mkak(u2)2 + umkak(ajuif + 2u(8jmk)(8kul)(8ju])
S Q
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A+ )0 (05u7)? + 2(N + ) (9imy) (Orui) (ju;) dwdt
T
—|—/ E*=T / —2pvimy(Opui ) (05u;) — 2(A + p)vimy (Oku;) (0ju,) dU'dt
S r

p—1

- {Ez/(2mk8kuz)u dx]:—/ E* T E'/Qkau Opu; dadt
/ [ @) ((0)? = (0, = 3+ 051,
+2u(8jmk)(8kui)(8jui) + 2(/\ + u)(almk)(akuz)(aju]) dzdt
+ /S o /F 2w (Ous) (D) — 200+ )i (Fps) (D)

() (—(u;)2 + u(@5u5)? + (A + 1) (9yu5)?) dTdt.

Since dpmy = n, Oymy = i, (u))? = [W/|?, (0ju;)? = |Vul?, dju; = divu

(2
and mgrp = m - v, we can rewrite this identity in the following form

T
/ E5 / n|u'|2 +(2 - n)M|VU|2 +2-n)(A+ ,u)(divu)Q dxdt
s Q

p—1 S —1 T pP—
= [E2/(2m'Vu)-u’ da:} - p/ E23E’/ 2myu, O u; dxdt
Q r 2 Js Q

T
—i—/ BT /(m : y)(]u'|2 — | Vul> = (A + p)(divu)?)
S r
+(2mpOku;) (poyu; + (A + p)vdivu) dl'dt.

Next we multiply the first equation in (P) with E' u, we obtain

T
0= / Ep% / ul(u;’ — u@ful - ()\ + u)@iajuj) dxdt
S Q

- [Epgl/uzu d:n} —/ E"= E//u -udxdt
Q

/ BT / 2+ 1(95ui)* 4+ (A + p)(95uy)* davdt

—|—/ Eprl / — o Opu; — ()\ + u)(viui)(‘)juj dI'dt,
S r
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and hence

T
/ s / — 2 + | Vul? + (A + ) (dive)? dadt
S Q

p—1 S - T P—
= [E2/u-u’dx] _pl/ E;’E’/u’-udwdt
Q T 2 Js Q

T
+/ E= / wi (PO, u; + (A + p)vidivu) dl'dt.
S r

Multiplying this by (n — 1) and adding to the preceding identity, we obtain
that

T
/ E‘/ /|2 + | Val? + (h+ p)(diva)? dedt
S Q

p_1 / S p—1 T p=3 _, '
= [E 2 U -Mudx] o E 7 F u - Mudxdt
Q T 2 Js Q

T
= tmv)(Ju)? = ul? — ivu)?
+/S B /F< (2 — ulVuf® — (A + ) (diva)?)

+(Mu;)(poyu; + (A + p)vdivu) dT'dt.
On Ty, we have u = 0, whence v’ = 0, Mu; = 2m - Vu; = 2(m - v)d,u; and

divu = (0, u) - v. Hence the integral on I'y is equal to

ou o . 9
(2.4) (m-v) (,u\$| + (A + p)(divau) )
Furthermore on I'y, we have

(2.5) ,u% + (A + p)vdivu = —(m - v)g(u').

Hence

T
/ B / |u'|2 4+ p|Vul? + (A + p)(divu)? dedt
S Q

p—1 S p—l T p—3
- [E2/u'-Mudx] —/ E?E’/u’-Mud:):dt
Q T 2 Js Q
T b1 2
—i—/ E2/ (m~v)<u]Vu\2+(/\+u)(divu> dr’dt
S To

T ~1 2 2 . 2 /
+/S Bt /Fl(m-y)<|u| IVl — (At ) (divar)?) — (M) (m-v)g (o) dTdt.
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Using the fact that (m - v) < 0 on I'g, we conclude that

/ E dt<[ /u Muda:}T—/ E= E’/u - Mu dxdt
Q Q

" /S 15 [ (o) o P Tl = (o) (dive)?} = (m-v) (M) g o) dT .
As we have
—(Mu) - g(u) < 2lmiOullg(uw)] — (n — Lu - g(u’)

< 2R|Vullg(u )]+ |1 = nju-g(u') where R :=sup|m(z)]
€N

< uVul? + celg(W)? + elul®

for every € > 0.
Since

|u|? dT" < c/ |Vu|? dr < 2¢E(t),
r, Q

T T
/ E'7 [ (m-v)|u?dldt < c/ E"F (t)dt
S Ty S

Hence, we conclude from (2.1)-(2.3), by taking € small enough, that

we get

(2.6) 2/5 B ) dtch(S)+c/5 B [ (mev) (W] + |g(u')?) dTdt.

r

Proof of the main theorem completed. First, we assume that n = 1, then by
(1.10), (1.14), (1.15) and (2.6) we have

T
/E t)dt < cE(S )—l—c/ (m - v)|ul? dTdt
S JI

< cE(S +c// (m-v)u'|(u - g(u dI‘dt—i—c// (m-v)u'-g(u') dUdt
Fl |u’\>1 Fl \u’|<1

< eB(S) + et [loo + 1>/S (—E/(t)) dt.

Applying the trace theorem (Hf (Q) C)H'(Q) — L*®(T') we have

T
/S E(t)dt < cB(S) + e(| || 10 + 1)(E(S) — E(T))
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< cE(S)

and then, we conclude by applying the lemma 1.1.
Assume now that n > 2, we have by (1.14)

<w>/%ymmmummmﬂyj (m - v)(u' - g(u)) 7 dI

< c(/lu/|§1(m v)u - g(u') dF) < c(—E")r,

hence, the Young inequality gives for every € > 0 the estimate

T
/ E/ (m - ) (W2 + |g(u)| )drdtgc/ B (BN dr
| <1 s

gc/S cptE (E’<g/ B (#) dt + o() B (S).

Whence, (2.6) becomes

(2— ) [5 B (1) dt < c(e)E(S)

T
(2.8) —I—c/ P / (m - ) (|2 + |g(u)[2) dTdt.
S |u’|>1
On the other hand we have

B [ men)(uP + o)) dr < B [ (mew)fuar
/| >1

|[u/|>1
p=1 12—s(,.! s 2
<cE™ (m-v)|u|*7*(u - g(u))*dl’, where s:=—— (0<s<1)
|[u’|>1 p+ 1
p=t _
<cEE [P o [I(u - g(u))*]

(1-s)a s . 2—s

= B 0 g with o= 2
= B || (— E')s < BT /|2 — c(e) B

= cE" |u/|lg - c(e)E.
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Using the trace theorem
H'(Q) < L#1(T) = L*(T)
we conclude that
p—1 72 ptl /
E= (m-v)|u|*dl < ceE™2 —¢(e)E',
|[uw|>1

and hence (2.8) becomes

(2.9) (2 — ce) /S e () dt < c(e)E(S).

Choosing € = < (for example), (2.9) yields

T
(2.10) /S B () dt < cE(S)

and lemma 1.1 gives the desired decay estimate.
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