VORONOI-ALGORITHM EXPANSION OF A FAMILY WITH PERIOD LENGTH GOING TO INFINITY

Kan Kaneko

(Received February 4, 1998)

Abstract. We consider a family of orders of complex cubic fields which is similar to one introduced by Levesque and Rhim. We find the Voronoi-algorithm expansions and the fundamental units.

AMS 1991 Mathematics Subject Classification. Primary 11R16, 11R27.

Key words and phrases. Complex cubic fields.

§ 1. Introduction

Levesque and Rhin [4] introduced two families of complex cubic fields $\mathbb{Q}(\alpha)$, each of which depends on two parameters. Adam [1] obtained the Voronoi-algorithm expansions of the order $\mathbb{Z}[\alpha]$ for these two families, for one of which Kühner [3] also found the Voronoi-algorithm expansions.

In this paper we shall consider a new family of complex cubic fields, similar but different from those families above, *i.e.* $\mathbb{Q}(\alpha)$, where α is the real root of the irreducible cubic polynomial f(X) in Proposition 1.1.

We obtain the following results:

the Voronoi-algorithm expansions of the order $\mathbb{Z}[\alpha]$,

the period length of these expansions goes to infinty,

the fundamental units of the order $\mathbb{Z}[\alpha]$.

Our method, in which we use an isotropic vector of the quadratic form, is due to Adam [1].

Proposition 1.1. Let $f(X) = X^3 - c^m X^2 + (c+1)X - c^m$, where m, c are intergers such that $m \ge 1$ and $c \ge 2$. Then f(X) has only one real root α and f(X) is irreducible except the case m = 1, c = 2.

Moreover if $m \ge 2$, then α satisfies

(1.1)
$$c^m - \frac{1}{c^{m-1}} - \frac{1}{c^{m+2}} < \alpha < c^m - \frac{1}{c^{m-1}}.$$

Proof. Since the discriminant of f(X) is

$$D_f = -\{4c^{4m} - (c^2 + 20c - 8)c^{2m} + 4(c+1)^3\} < 0 ,$$

50 K. KANEKO

f(X) has only one real root α . Since

$$f(c^{m} - \frac{2}{c^{m-1}}) = -c^{m+1} + \frac{6}{c^{m-2}} - \frac{2}{c^{m-1}} - \frac{8}{c^{3m-3}} < 0 \quad \text{and} \quad f(c^{m} - \frac{1}{c^{m-1}}) = \frac{c-1}{c^{m-1}} - \frac{1}{c^{3m-3}} > 0 \quad ((m, c) \neq (1, 2)) , \quad c^{m} - \frac{2}{c^{m-1}} < \alpha < c^{m} - \frac{1}{c^{m-1}} \quad ((m, c) \neq (1, 2)) .$$

Therefore if $(m, c) \neq (1, 2)$, then f(X) is irreducible. Furthermore we have

$$f(c^{m} - \frac{1}{c^{m-1}} - \frac{1}{c^{m+2}}) = -c^{m-2} + \frac{1}{c^{m-2}} - \frac{1}{c^{m-1}} + \frac{3}{c^{m+1}} - \frac{1}{c^{m+2}} + \frac{2}{c^{m+4}} - \frac{1}{c^{3m-3}} - \frac{3}{c^{3m}} - \frac{3}{c^{3m+3}} - \frac{1}{c^{3m+6}} < 0 \qquad (m \ge 2) .$$

Hence if $m \ge 2$, then

$$c^m - \frac{1}{c^{m-1}} - \frac{1}{c^{m+2}} < \alpha < c^m - \frac{1}{c^{m-1}}$$
.

§ 2. Voronoi-algorithm and preliminaries

Let K be a cubic algebraic number field of negative discriminant. Let $1, a_1, \alpha_2 \in K$ be rationally independent. We say that $\mathcal{R} = [1, \alpha_1, \alpha_2] = \mathbb{Z} + \mathbb{Z}.\alpha_1 + \mathbb{Z}.\alpha_2$ is a lattice of K with basis $\{1, \alpha_1, \alpha_2\}$. For $\omega \in \mathcal{R}$ we define $F(\omega) = \frac{N_K(\omega)}{\omega} = \omega'\omega''$, where N_K denotes the norm of K over \mathbb{Q} , and ω' and ω'' the conjugates of ω .

Definition 2.1. Let \mathcal{R} be a lattice of K, and let $\omega(>0) \in \mathcal{R}$. We say that ω is a minimal point of \mathcal{R} if for all φ in \mathcal{R} so that $0 < \varphi < \omega$ we have $F(\varphi) > F(\omega)$. Let $\omega, \varphi \in \mathcal{R}$ such that $0 < \omega, \varphi$. We say that ω is a minimal point adjacent on the right (further on,we will not specify "right") to φ in \mathcal{R} if $\omega = \min\{ \psi \in \mathcal{R} : \varphi < \psi, F(\varphi) > F(\psi) \}$. We define the increasing chain of the minimal points of \mathcal{R} by:

$$\theta_0 = 1$$
, $\theta_{k+1} = min\{ \psi \in \mathcal{R} : \theta_k < \psi, F(\theta_k) > F(\psi) \}$ if $k \ge 0$.

Then θ_{k+1} is the minimal point adjacent (on the right) to θ_k in \mathcal{R} . Let \mathcal{O} be any order of K and $\mathcal{R} = \mathcal{O}$. By Voronoi we know that the previous chain is of purely periodic form:

$$\theta_0 = 1, \ \theta_1, \cdots, \theta_{l-1}, \ \theta_l = \varepsilon, \ \varepsilon \theta_1, \cdots, \varepsilon \theta_{l-1}, \cdots, \varepsilon \theta_{l-1}, \cdots$$

where l denotes the period length and ε is the fundamental unit of \mathcal{O} . To calculate such a sequence, it is sufficient to know how to find the minimal point adjacent to 1 in a lattice \mathcal{R} . Indeed, let $\theta_g^{(1)}$ be the minimal point adjacent to 1 in $\mathcal{R}_1 = \mathcal{O} = [1, \alpha_1, \alpha_2]$ and $\theta_1 = \theta_g^{(1)}$.

- (i) We choose an appropriate point $\theta_h^{(1)}$ so that $\{1, \theta_g^{(1)}, \theta_h^{(1)}\}$ is a basis of \mathcal{R}_1
- (ii) $\theta_g^{(2)}$ is the minimal point adjacent to 1 in $\mathcal{R}_2 = \frac{1}{\theta_g^{(1)}} \mathcal{R}_1 = [1, 1/\theta_g^{(1)}, \theta_h^{(1)}/\theta_g^{(1)}]$ is equivalent to $\theta_2 = \theta_1 \theta_g^{(2)} = \theta_g^{(1)} \theta_g^{(2)}$ being the minimal point adjacent to θ_1 in \mathcal{R}_1 .

This process can be continued by induction.

We quote Adam[1],Lemma 2.2 from which we dropp one condition F(0,0,1) > 1 as Lemma 2.1 for our convenience.

Lemma 2.1(Adam[1],Lemma 2.2). Let F be a positive quadratic form in three variables with real coefficients of rank 2 such that F(1, 0, 0) = 1. Suppose that F has an isotropic vector $(\omega_2, 1, \omega_1)$. Then we can write

(2.1)
$$F(u, v, w) = a(w - \omega_1 v)^2 + 2b(w - \omega_1 v)(u - \omega_2 v) + (u - \omega_2 v)^2$$

and

(2.2)
$$F(u, v, w) = \frac{a}{2} \left\{ w - (\omega_1 + 2\frac{b}{a}\omega_2)v + 2\frac{b}{a}u \right\}^2 + \frac{a}{2} (w - \omega_1 v)^2 + (1 - 2\frac{b^2}{a})(u - \omega_2 v)^2$$

with $b^2 < a$.

Let \mathcal{R} be a lattice of K with basis $\{1, \alpha_1, \alpha_2\}$ and $F(\omega) = \omega' \omega'' (\omega \in \mathcal{R})$. For $(u, v, w) \in \mathbb{Z}^3$ we define $F(u, v, w) = F(u + v\alpha_1 + w\alpha_2) = (u + v\alpha_1 + w\alpha_2)'(u + v\alpha_1 + w\alpha_2)''$. Further, we can consider F as a quadratic form in three variables with real coefficients. Then, F is positive, the rank of F is 2 and F(1, 0, 0) = 1. Hence we can write F in the form (2.1) and (2.2) with $a = \alpha_2' \alpha_2''$, $b = \frac{1}{2}(\alpha_2' + \alpha_2'')$. We find ω_1 and ω_2 by the formulas

$$\omega_1 = -\frac{\alpha_1' - \alpha_1''}{\alpha_2' - \alpha_2''}, \ \omega_2 = -\frac{1}{2} \{ (\alpha_1' + \alpha_1'') + \omega_1(\alpha_2' + \alpha_2'') \} \ .$$

§ 3. Main theorem and preliminary results

Let $f(X) = X^3 - c^m X^2 + (c+1)X - c^m$, where m, c are intergers such that $m \ge 2$ and $c \ge 2$. By Proposition 1.1 f(X) is irreducible and has only one real root.

Theorem 3.1. Let α be the real root of the polynomial f(X), $K = \mathbb{Q}(\alpha)$, and $\mathcal{O} = \mathbb{Z}[\alpha]$. Then

- (i) The chain of the minimal points of \mathcal{O} is : for $1 \leq s \leq m-1$ $\theta_0 = 1$, $\theta_{3s-2} = (c^s + \alpha c^m)(\frac{\alpha}{c^m \alpha})^s$, $\theta_{3s-1} = (\frac{c\alpha}{c^m \alpha})^s$, $\theta_{3s} = \alpha(\frac{\alpha}{c^m \alpha})^s$, $\theta_{3m-2} = \alpha(1 + \alpha c^m)(\frac{\alpha}{c^m \alpha})^m$ and $\theta_{3m-1} = \alpha(\frac{\alpha}{c^m \alpha})^m$.
- (ii) $\varepsilon = \alpha \left(\frac{\alpha}{c^m \alpha}\right)^m$ is the fundamental unit of \mathcal{O} and Voronoi-algorithm expansion period length is l = 3m 1.

Remark 3.2. The following relation holds among the minimal points of \mathcal{O} : $\theta_2 = \alpha \theta_0 + \theta_1$, $\theta_{3s-1} = \theta_{3s-3} + \theta_{3s-2}$ for $2 \leq s \leq m-1$, $\theta_{3m-1} = \alpha \theta_{3m-3} + \theta_{3m-2}$.

For the proof of Theorem 3.1, we prepare six lemmas.

In the following lemmas we denote θ_g the minimal point adjacent to 1 in a lattice \mathcal{R} of K.

Lemma 3.3. For an integer s, $1 \le s \le m-2$,

if
$$\mathcal{R} = [1, \alpha - c^m + 1, \frac{c^s}{\alpha}],$$
 then $\theta_g = \frac{c^s(\alpha^2 + 1) - \alpha}{\alpha}.$

Proof. We can write F in the form (2.1) and (2.2) with $a = \frac{c^{2s}}{c^m}\alpha$, $2b = \frac{\alpha(c^m - \alpha)}{c^{m-s}}$, $\omega_1 = \frac{c^{m-s}}{\alpha}$, $\omega_2 = \alpha - 1$. By (1.1) we have

$$0 < \alpha_1 < 1, \ 0 < \alpha_2 < 1, \ 0 < \omega_1 < 1, \ [\omega_2] = c^m - 2,$$

$$c^{2s} - \frac{c^{2s}}{c^{2m-1}} - \frac{c^{2s}}{c^{2m+2}} < a < c^{2s} - \frac{c^{2s}}{c^{2m-1}},$$

where [...] is the greatest integer function. From the last inequality we have $c^2 - 1 < a$, then a > 3. Since $\frac{4b^2}{a} = \frac{\alpha(c^m - \alpha)^2}{c^m} < 1$, $4b^2 < a$. Let $\theta_a = u + v\alpha_1 + w\alpha_2$.

Claim 1. $v \neq 0$ and $uv \geq 0$.

Suppose that v=0. If u=0, then $F(\theta_g)=aw^2>1$. If w=0, then $F(\theta_g)=u^2\geq 1$. If $u\neq 0$ and $w\neq 0$, then $F(\theta_g)>\frac{a}{2}+(1-2\frac{b^2}{a})>1$. Therefore $v\neq 0$. Since $F(\theta_g)<1$ and $4b^2<a$, we have $(u-\omega_2v)^2<2$; but $\omega_2\geq \sqrt{2}-1$, then $uv\geq 0$. (cf. the proof of Adam [1], Proposition 2.3)

Claim 2. $u \ge 0, v > 0, w \ge 0$

Since $F(\theta_g) < 1$ and a > 3, we have $(w - \omega_1 v)^2 < 1$, then $wv \ge 0$. If v < 0, then $u \le 0$ and $w \le 0$, which is impossible because $\theta_g > 0$, so we have v > 0, $u \ge 0$ and $w \ge 0$.

Claim 3. w > 0.

Since $(w - \omega_1 v)^2 < 1$, $w = [\omega_1 v]$ or $[\omega_1 v] + 1$. Since $F(\theta_q) < 1$ and $4b^2 < a$, we have $(u - \omega_2 v)^2 < 2$, then $u = [\omega_2 v] + i$, where i = -1, 0, 1 or 2. Suppose that w = 0. Since in $(2.2) \frac{a}{2} (w - \omega_1 v)^2 = \frac{c^m}{2\alpha} v^2$, v = 1. Since $u = [\omega_2] + i = c^m - 2 + i$ (i = -1, 0, 1, 2), we have $\theta_g = u + \alpha_1$ $= \alpha - 1 + i$ (i = -1, 0, 1, 2). Since $F(\theta_g) = \frac{c^m}{\alpha} + (c^m - \alpha)(i - 1) + (i - 1)^2 > 1$ (i = -1, 0, 1, 2), w > 0.

then
$$[v\alpha] = \begin{cases} vc^m - 1 & (v < \frac{c^{m+2}}{c^3 + 1}) \\ vc^m - 2 & (v \ge \frac{c^{m+2}}{c^3 + 1}) \end{cases}$$

claim is deduced because $\frac{v}{c^{m-1}} + \frac{v}{c^{m+2}} < 1$ is equivalent to $v < \frac{c^{m+2}}{c^3+1}$

Claim 5. $\theta_g = [c^s \omega_2] + c^s \alpha_1 + \alpha_2$. We shall show that $v \leq c^s - 1$ implies that $F(\theta_g) > 1$. Suppose that $v \leq 1$ $c^{s}-1$. Since $[\omega_{1}v]=0$, $w=[\omega_{1}v]+1=1$. So $\theta_{g}=u+v\alpha_{1}+\alpha_{2}=[\omega_{2}v]+i+v\alpha_{1}+\alpha_{2}=i-1+v\alpha+\frac{c^{s}}{\alpha}$ (i=-1,0,1,2). we have

(3.1)
$$F(\theta_g) = (i-1)^2 + (i-1)(c^m - \alpha)(v + \frac{\alpha}{c^{m-s}}) + \frac{v\alpha(c^m - \alpha)^2}{c^{m-s}} + \frac{c^m}{\alpha}(v - \frac{\alpha}{c^{m-s}})^2 \quad (i = -1, 0, 1, 2).$$

Clearly if i=2 and $v \leq c^s-1$, then $F(\theta_q)>1$. We have

$$1 - (c^{m} - \alpha)(c^{s} - 1 + \frac{\alpha}{c^{m-s}}) = \frac{J}{c^{m-s}\alpha},$$

where $J = c\alpha \{c^{m-1-s} - 1 - (c^{m-1} - c^{m-1-s})(c^m - \alpha)\} + c^m - \alpha$. By (1.1) if $(s, c) \neq (m-2, 2)$, then we have J > 0, so $(c^m - \alpha)(c^s - 1 + \frac{\alpha}{c^{m-s}}) < 1$. Hence if $v \leq c^s - 1$ and $(s, c) \neq (m - 2, 2)$, then we have

(3.2a)
$$|(i-1)(c^m - \alpha)(v + \frac{\alpha}{c^{m-s}})| \le |i-1|(c^m - \alpha)(c^s - 1 + \frac{\alpha}{c^{m-s}})$$

 $< |i-1|$ $(i = -1, 0, 2).$

If $v \leq c^s - 1$, then we have

$$(3.2b) |(i-1)(c^m - \alpha)(v + \frac{\alpha}{c^{m-s}})| \leq |i-1|(c^m - \alpha)(c^s - 1 + \frac{\alpha}{c^{m-s}})$$

$$< |i-1|(c^m - \alpha)(2c^s - 1) < |i-1|(c^m - \alpha)2c^s$$

$$< |i-1|2c^{m-2}(\frac{1}{c^{m-1}} + \frac{1}{c^{m+2}}) \leq |i-1|(1 + \frac{1}{2^3}) (i = -1, 0, 2).$$

From (3.1), (3.2b) if i = -1 and $v \le c^s - 1$, then $F(\theta_g) > 1$. If i = 1, then we have

(3.3)
$$F(\theta_g) = \frac{v\alpha(c^m - \alpha)^2}{c^{m-s}} + \frac{c^m}{\alpha} \left(v - \frac{\alpha}{c^{m-s}}\right)^2.$$

From (1.1) $\frac{c^m - \alpha}{c^{m-s}} < \frac{1}{c^{m+1}} + \frac{1}{c^{m+4}} < \frac{1}{2^3} + \frac{1}{2^6}$, so we have

(3.4)
$$\frac{c^m}{\alpha} \left(v - \frac{\alpha}{c^{m-s}} \right)^2 \ge \frac{c^m}{\alpha} \left(c^s - \frac{\alpha}{c^{m-s}} - 2 \right)^2 > \left(\frac{c^m - \alpha}{c^{m-s}} - 2 \right)^2 > 3$$
if $v \le c^s - 2$.

Hence if i=1 and $v \le c^s-2$, then $F(\theta_g) > 1$. From (3.3) if i=1 and $v=c^s-1$, then we have

$$F(\theta_g) = \frac{1}{c^{m-s}\alpha} \{ (c^s - 1)\alpha^2 (c^m - \alpha)^2 - 2c^m (c^m - \alpha) + c^s (c^m - \alpha)^2 \} + \frac{c^m}{\alpha}.$$

From this if i=1 and $v=c^s-1\geqq 2$, then $F(\theta_g)>1$ because $(c^s-1)\alpha^2(c^m-\alpha)^2-2c^m(c^m-\alpha)\geqq 2\alpha^2(c^m-\alpha)^2-2c^m(c^m-\alpha)=(c^m-\alpha)\{2(c+1)\alpha-4c^m\}>0$ and $\frac{c^m}{\alpha}>1$. If i=1 and $v=c^s-1=1$ (i.e. s=1, c=2), then we have $F(\theta_g)>1$, because from (3.6) in the proof of Lemma 3.3 $\alpha(\alpha-c^m)+c>0$, thus we have $F(\theta_g)=\frac{\alpha(c^m-\alpha)^2}{c^m-1}+\frac{c^m}{\alpha}(1-\frac{\alpha}{c^m-1})^2=\frac{1}{c^m-1}\{\alpha(\alpha-c^m)+c\}\{c^{m-1}-(c^m-\alpha)\}+1>1$. Therefore if i=1 and $v\leqq c^s-1$, then we have $F(\theta_g)>1$. If i=0, then we have

(3.5)
$$F(\theta_g) = \frac{v\alpha(c^m - \alpha)^2}{c^{m-s}} + \frac{c^m}{\alpha}(v - \frac{\alpha}{c^{m-s}})^2 + 1 - (c^m - \alpha)(v + \frac{\alpha}{c^{m-s}}).$$

From the case i = 1 and (3.2a) if i = 0, $v \le c^s - 1$ and $(s, c) \ne (m - 2, 2)$, then we have $F(\theta_g) > 1$. If i = 0, $v = c^s - 1$ and (s, c) = (m - 2, 2), then we have

$$\begin{split} F(\theta_g) = & \frac{(c^{m-2}-1)\alpha(c^m-\alpha)^2}{c^2} + \frac{c^m}{\alpha}(\frac{c^m-\alpha-c^2}{c^2})^2 + 1 \\ & - \frac{(c^m-\alpha)(c^m+\alpha-c^2)}{c^2} \\ = & \frac{1}{c^2\alpha}\{(c^{m-2}-1)\alpha^2(c^m-\alpha)^2 + c^{m-2}(c^m-\alpha) + c(c^m-\alpha)(c\alpha-c^m) \\ & + c^{m+2} - \alpha(c^m-\alpha)(c^m+\alpha)\} + 1 > 1 \ . \end{split}$$

Therefore $v \leq c^s - 1$ implies that $F(\theta_g) > 1$.

Now we shall consider the case $v = c^s$. We have

$$\theta_g = [\omega_2 c^s] + i + c^s \alpha_1 + ([\omega_1 c^s] + j)\alpha_2$$

$$= c^{m+s} - c^s - 1 + i + c^s (\alpha - c^m + 1) + (1+j)\frac{c^s}{\alpha}$$

$$= -1 + i + c^s \alpha + (1+j)\frac{c^s}{\alpha} \qquad (i = -1, 0, 1, 2), \quad (j = 0, 1).$$

If i = -1 and j = 0, then we have

$$F(-2 + c^{s}\alpha + \frac{c^{s}}{\alpha}) = 4 - 2c^{s}(c^{m} - \alpha)(1 + \frac{\alpha}{c^{m}}) - \frac{c^{2s}\alpha(c^{m} - \alpha)^{2}}{c^{m}}(1 + \frac{1}{\alpha^{2}}).$$

Since

$$2c^{s}(c^{m} - \alpha)(1 + \frac{\alpha}{c^{m}}) < 4c^{s}(c^{m} - \alpha) \le 4c^{m-2}(c^{m} - \alpha) < 4(\frac{1}{c} + \frac{1}{c^{4}}) < 3,$$

we have $F(\theta_q) > 1$. If i = -1 and j = 1, then we have

$$F(-2 + c^{s}\alpha + \frac{2c^{s}}{\alpha}) = 4 - 4c^{s}(c^{m} - \alpha) + \frac{c^{2s}\alpha}{c^{m}} - \frac{2c^{s}\alpha(c^{m} - \alpha)}{c^{m}} + \frac{2c^{2s}\alpha(c^{m} - \alpha)}{c^{m}} \{\alpha(c^{m} - \alpha) - 1\} + c^{2s}(c^{m} - \alpha)(\frac{1}{\alpha} - \frac{1}{c^{m}}) > 1.$$

If i = 0 and j = 0, then we have $F(-1 + c^s \alpha + \frac{c^s}{\alpha}) = 1 + N$, where

$$N = -c^{s}(c^{m} - \alpha)(1 + \frac{\alpha}{c^{m}}) + \frac{c^{2s}\alpha(c^{m} - \alpha)^{2}}{c^{m}}(1 + \frac{1}{\alpha^{2}}).$$

Since

$$N = \frac{c^s(c^m - \alpha)}{c^m} \{-c^m - \alpha + c^s(c^m - \alpha)\alpha + \frac{c^s(c^m - \alpha)}{\alpha}\} < 0,$$

we have $F(\theta_g) < 1$. Therefore $\theta_g = [c^s \omega_2] + c^s \alpha_1 + \alpha_2$.

Lemma 3.4. For an integer s, $1 \leq s \leq m-1$,

if
$$\mathcal{R} = [1, \frac{c^m - \alpha}{c^s + \alpha - c^m}, \frac{c^s + \alpha(\alpha - c^m)}{c^s + \alpha - c^m}],$$
 then $\theta_g = \frac{c^s}{c^s + \alpha - c^m}.$

$$\begin{array}{l} \textit{Proof.} \ \ \text{We can write } F \ \ \text{in the form (2.1) and (2.2) with} \\ a = \frac{1}{D} \{ (c^{2m} + c^{2s} - c^{s+1} - c^s) \alpha + \frac{c^{2m}}{\alpha} - c^{m+s} \}, \quad \ 2b = -\frac{G}{D}, \\ \omega_1 = \frac{c^s + \alpha - c^m}{(c^m - c^s - 1) \alpha - c^{m-s+1} + c^m - c^s + c + 1}, \end{array}$$

K. KANEKO

$$\begin{split} 2\omega_2 &= \frac{(2c^m - c^s)\alpha^2 - c^{m+s}\alpha + 2c^m}{D} + \omega_1(-2b), \\ \text{where } D &= \alpha(c^s + \alpha - c^m)'(c^s + \alpha - c^m)'' = (c^m - c^s)\alpha^2 - c^s(c^m - c^s)\alpha + c^m, \\ \text{and } G &= c^s\alpha^2 + (c^{m+s} - 2c^{2s} + c^{s+1} - c^{m+1} + c^s)\alpha + c^{m+s}. \\ \text{By } (1.1) \text{ we have } 0 < \alpha_1 < 1, \ 0 < \alpha_2 < 1, \ 0 < \omega_1 < 1, \ \omega_2 > 1, \ \text{and } a > 1. \end{split}$$

We claim that $4b^2 < a$.

First we shall show that if $(s, c) \neq (m - 1, 2), (m - 1, 3)$, then |2b| < 1: this is equivalent to D - G > 0. We have

$$D - G = (c^{m}\alpha - 2c^{s}\alpha - 2c^{m+s} - c^{s+1} - c^{s} + 3c^{2s} + c^{m+1})\alpha + c^{m} - c^{m+s}$$

$$= \{c^{m}(c^{m} - 4c^{s}) + c^{2s} + (c^{m} - 2c^{s})(\alpha - c^{m}) + c^{m+1} - c^{s+1} + 2c^{2s} - 2c^{s}\}\alpha + c^{m} + c^{s}(\alpha - c^{m}) > 0$$

if $(s, c) \neq (m-1, 2)$, (m-1, 3). Since a > 1, if |2b| < 1, then $4b^2 < a$. Hence if $(s, c) \neq (m-1, 2)$, (m-1, 3), then $4b^2 < a$. In each case of (s, c) = (m-1, 2), (m-1, 3), $4b^2 < a$ is easily checked. Hence we have $4b^2 < a$.

We claim that if s = 1, then $\alpha_1 > \alpha_2$ and if $s \ge 2$, then $\alpha_1 < \alpha_2$. we consider the defining polynomal g(X) of $\alpha(c^m - \alpha)$, *i.e.*

$$g(X) = X^3 - 2(c+1)X^2 + (c^{2m} + (c+1)^2)X - c^{2m+1}.$$

Since $g(c - \frac{1}{c^{2m-2}}) < 0$ and g(c) > 0,

(3.6)
$$c - \frac{1}{c^{2m-2}} < \alpha(c^m - \alpha) < c.$$

If $s \ge 2$, then $c^m - \alpha < c^s + \alpha(\alpha - c^m)$. Hence if $s \ge 2$, then $\alpha_1 < \alpha_2$. From (3.6) $c + \alpha(\alpha - c^m) < \frac{1}{c^{2m-2}}$, and from (1.1) $\frac{1}{c^{m-1}} < c^m - \alpha$. Therefore if s = 1, then $\alpha_1 > \alpha_2$. We have

$$F(1 + \alpha_1) = F(\frac{c^s}{c^s + \alpha - c^m}) = \frac{c^{2s}\alpha}{(c^m - c^s)\alpha(\alpha - c^s) + c^m} = \frac{1}{H},$$

where $H = (c^{m-s} - 1)(\frac{\alpha}{c^s} - 1) + \frac{c^m}{c^{2s}\alpha}$. If $1 \le s \le m-2$, then H > 1. If s = m-1, then

$$\begin{split} H &= (c-1)\frac{\alpha}{c^{m-1}} + \frac{c^m}{c^{2(m-1)}\alpha} - c + 1 \\ & \geq \frac{\alpha}{c^{m-1}} + \frac{c}{c^{m-1}\alpha} - c + 1 = \frac{\alpha^2 + c}{c^{m-1}\alpha} - c + 1. \end{split}$$

From (3.6) $\alpha^2 + c > c^m \alpha$, so $\frac{\alpha^2 + c}{c^{m-1}\alpha} - c + 1 > 1$. Hence if s = m-1, then H > 1. Therefore $F(1 + \alpha_1) < 1$.

Let $\theta_g = u + v\alpha_1 + w\alpha_2$.

(1) By Claim 1 in the proof of lemma 3.3 we have $v \neq 0$ and $uv \geq 0$.

(2) We claim that $u \ge 0$, v > 0, $w \ge 0$.

Since $F(\theta_g) < 1$ and a > 1, we have $(w - \omega_1 v)^2 < 2$, then $wv \ge 0$ or $|w| \le 1$. If $wv \ge 0$, then v < 0 implies that $u \le 0$ and $w \le 0$, which is impossible because $\theta_g > 0$, so we have v > 0, $u \ge 0$ and $w \ge 0$. If wv < 0, then |w| = 1. If w = 1, then v < 0 and $u \le 0$. If u = 0, we have $F(\theta_g) > \frac{a}{2} + (1 - 2\frac{b^2}{a}) > 1$, and if u < 0, we have $\theta_g < 0$, which is impossible.

If w=-1, then v>0 and $u\geq 0$. We assume now that w=-1. Since $a(w-\omega_1 v)^2>1$, 2b<0, and $w-\omega_1 v<0$, by (2.1) $u-\omega_2 v<0$. Hence $u=[\omega_2 v]-1$, or $[\omega_2 v]$. If $u=[\omega_2 v]-1$, then by (2.2) we have $F(\theta_g)>1$. Hence $u=[\omega_2 v]$, so $\theta_g=[\omega_2 v]+v\alpha_1-\alpha_2$. If $v\geq 2$, then we have $\theta_g\geq [2\omega_2]+2\alpha_1-\alpha_2>1+\alpha_1$. If v=1 and $[\omega_2]\geq 2$, then $\theta_g>1+\alpha_1$. If v=1, $[\omega_2]=1$ and $s\geq 2$, then $\theta_g<1$ because $\alpha_1<\alpha_2$. If v=1, $[\omega_2]=1$ and s=1, then $F(\theta_g)>1$ because

$$F(1 + \alpha_1 - \alpha_2) = F(\frac{\alpha(c^m - \alpha)}{c^s + \alpha - c^m})$$

$$= \frac{c^{2m}(\alpha^2 + 1)}{(c^m - c)^2 \alpha^2 + (c^2 + c - c^{m+1})\alpha + c^m(c^m - c)} > 1.$$

Hence the case w = -1 is impossible. Therefore $u \ge 0, v > 0, w \ge 0$.

(3) We claim that v = 1.

Since $u = [\omega_2 v] + i$ (i = -1, 0, 1, 2), if $v \ge 2$, then $\theta_q \ge 1 + 2\alpha_1 + w\alpha_2 > 1 + \alpha_1$.

(4) We claim that $\theta_g = 1 + \alpha_1$.

Since $(w - \omega_1 v)^2 = (w - \omega_1)^2 < 2$, we have $0 \le w \le 2$. If u = 0, then w = 1 or 2. If w = 1 or 2, then $F(\theta_g) > 1$ because in (2.1) 2b < 0, $w - \omega_1 v > 0$, $u - \omega_2 v < 0$ and $(u - \omega_2 v)^2 > 1$. Hence $u \ne 0$. If $u \ge 2$, then $\theta_g > 1 + \alpha_1$. Therefore $\theta_g = 1 + \alpha_1$. \square

Lemma 3.5. For an integer s, $1 \le s \le m-1$,

if
$$\mathcal{R} = [1, \frac{c^s + \alpha - c^m}{c^s}, \frac{c^s + \alpha(\alpha - c^m)}{c^s}],$$
 then $\theta_g = \frac{\alpha}{c^s}$.

 $\begin{array}{l} \textit{Proof.} \ \ \text{we can write } F \ \ \text{in the form } (2.1) \ \ \text{and } (2.2) \ \ \text{with } \\ a = \frac{1}{c^2 s \alpha^2} (c^{2s} \alpha^2 - c^{m+s} \alpha + c^{2m}) + c^{2m-2s} - \frac{c+1}{c^s}, \\ 2b = \frac{1}{c^s \alpha} \{ (2c^s - c - 1)\alpha - c^m \}, \ \omega_1 = \frac{1}{\alpha}, \ \omega_2 = \frac{c^{m-s} (\alpha^2 + 1) - \alpha^2 - \alpha}{\alpha^2}. \\ \text{By } (1.1) \ \ \text{we have } 0 < \alpha_1 < 1, \ 0 < \alpha_2 < 1, \ 0 < \omega_1 < \frac{1}{3}, \ [\omega_2] = c^{m-s} - 2, \ a > 2 \\ \text{and } 4b^2 < a. \ \ \text{If } (s,c) \neq (m-1,2), \ \text{then } \omega_2 > 1. \ \ \text{If } (s,c) = (m-1,2), \ \text{then } \\ \frac{\sqrt{2}}{2} < \omega_2 < 1. \ \ F([\omega_2] + 1 + \alpha_1 - \alpha_2) = F(\frac{-\alpha^2 + (c^m + 1)\alpha - c^s}{c^s}) \\ = \frac{\alpha}{c^s} + \frac{1}{c^2 s \alpha} \{ (c^{2m} - c^{m+s} + c^m - c^{s+1} + c^{2s} - 2c^2)\alpha + c^s(\alpha - c^m) + \frac{c^{2m}}{\alpha} \} > 1. \\ F([\omega_2] + 1 + \alpha_1) = F(\frac{\alpha}{c^s}) = \frac{c^m}{c^{2s}\alpha} < 1. \end{array}$

Let $\theta_q = u + v\alpha_1 + w\alpha_2$.

(1) By Claim 1 in the proof of Lemma 3.4 we have $v \neq 0$ and $uv \geq 0$.

(2) We claim that $u \ge 0$, v > 0, $w \ge 0$.

By (2) in the proof of Lemma 3.4 if $wv \ge 0$, then $u \ge 0$, v > 0, $w \ge 0$, and if wv < 0, then w = -1. Suppose that w = -1. Then $\theta_g = u + v\alpha_1 - \alpha_2$, $u \ge 0, \ v > 0 \text{ and } (w - \omega_1 v)^2 > 1. \text{ If } u \le [\omega_2 v] - 1, \text{ then } (u - \omega_2 v)^2 > 1$ and $F(\theta_g) > 1$. If $u = [\omega_2 v], \text{ then } \theta_g = [\omega_2 v] + v\alpha_1 - \alpha_2$. If $v \ge 3$, then $\theta_g \ge [\omega_2 + 2\omega_2] + 3\alpha_1 - \alpha_2 \ge [\omega_2] + 1 + \alpha_1 + 2\alpha_1 - \alpha_2 > [\omega_2] + 1 + \alpha_1.$ If v=2 and $\omega_2>1$, then $\theta_g \geq [\omega_2]+1+\alpha_1+\alpha_1-\alpha_2>[\omega_2]+1+\alpha_1$. If v=2 $\text{ and } \tfrac{\sqrt{2}}{2} < \omega_2 < 1, \text{ then } \theta_g = [2\omega_2] + 2\alpha_1 - \alpha_2 = 1 + \alpha_1 + \alpha_1 - \alpha_2 > [\omega_2] + 1 + \alpha_1.$ If v = 1, then $F([\omega_2] + \alpha_1 - \alpha_2) = \frac{1}{c^{2s}} \{ 2c^{2s} + \frac{c^{2m}}{\alpha^2} + \frac{c^m}{\alpha} (c^m + 1 - 2c^s) + \frac{2c^s}{\alpha} (c^s \alpha - c^m) + 2c^s \alpha (\alpha - c^m + 1) + c^m (c^m + 1 - 2c^s) \} > 1$. If $u = [\omega_2 v] + 1$ and $v \ge 2$, then $\theta_g \ge [2\omega_2] + 1 + 2\alpha_1 - \alpha_2 > [\omega_2] + 1 + \alpha_1$. If $u = [\omega_2 v] + 1$ and v = 1, then $\theta_g = [\omega_2] + 1 + \alpha_1 - \alpha_2$. If $u \ge [\omega_2 v] + 2$, then $\theta_g > [\omega_2] + 1 + \alpha_1$.

Therefore the case wv < 0 is impossible.

Therefore we have $u \ge 0$, v > 0, $w \ge 0$.

(3) We claim that v = 1 or 2 and w = 0 or 1.

We have $\theta_g = [\omega_2 v] + i + v\alpha_1 + w\alpha_2 \ (i = -1, 0, 1, 2).$

If $v \ge 3$, then $\theta_g \ge [3\omega_2] + i + 3\alpha_1 + w\alpha_2 \ge [\omega_2] + 2\alpha_1 + \alpha_1 + w\alpha_2 > [\omega_2] + 1 + \alpha_1$. Hence v = 1 or 2. Since a > 2 and $\omega_1 < \frac{1}{3}$, $(w - \omega_1 v)^2 < 1$, so w = 0or 1.

(4) We claim that v = 1.

Suppose that v=2. Then $\theta_g = [2\omega_2] + i + 2\alpha_1 + w\alpha_2$, so i=-1 or 0. If w=1, then $\theta_g = i + \frac{\alpha^2 + (2-c^m)\alpha}{c^s}$ and $F(\theta_g) = i^2 + \frac{1}{c^s} \{(\alpha-2)(\alpha-c^m) - \frac{2c^m}{\alpha}\}i + \frac{c^m}{c^{2s}\alpha}\{(c^m-4)\alpha + 2(\alpha-c^m+2) + \frac{c^m}{\alpha}\} > 1$ (i=-1,0). If w=0, then $\theta_g = -1 + i + \frac{2\alpha}{c^s}$ and

$$F(\theta_g) = \frac{1}{c^{2s}\alpha} \{4c^m + 2(i-1)c^s\alpha(c^m - \alpha)\} + (i-1)^2 > 1 \quad (i = -1, 0).$$

Therefore we have v = 1.

(5) We claim that $\theta_g = [\omega_2] + 1 + \alpha_1$.

We have $\theta_g = [\omega_2] + i + \alpha_1 + w\alpha_2$ (i = -1, 0, 1). If w = 1, then i = -1, or 0 and

$$F(\theta_g) = i^2 + \frac{1}{c^s} \{ (\alpha - 1)(\alpha - c^m) - \frac{2c^m}{\alpha} \} i + \frac{c^m}{c^{2s}\alpha} \{ (c^m - 2)\alpha + \alpha - c^m + 1 + \frac{c^m}{\alpha} \} > 1 \quad (i = -1, 0).$$

If w = 0, then

$$F(\theta_g) = \frac{1}{c^{2s}\alpha} \{c^m + (i-1)c^s\alpha(c^m - \alpha)\} + (i-1)^2 > 1 \quad (i = -1, 0).$$

Therefore we conclude that $\theta_q = [\omega_2] + 1 + \alpha_1$.

Lemma 3.6. If $\mathcal{R} = [1, \alpha - c^m + 1, \frac{c^m}{\alpha} - 1]$, then $\theta_g = 1 - \alpha + \alpha^2$.

Proof. We can write F in the form (2.1) and (2.2) with

 $a = \alpha^2 + 1$, $2b = \alpha(c^m - \alpha) - 2$, $\omega_1 = \frac{1}{\alpha}$, $\omega_2 = \alpha + \frac{1}{\alpha} - 1$. By (1.1) we have $0 < \alpha_1 < 1$, $0 < \alpha_2 < 1$, $0 < \omega_1 < 1$, $\omega_2 > 1$, a > 4 and $4b^2 < a$.

Let $\theta_g = u + v\alpha_1 + w\alpha_2$.

(1) By Claim 1 in the proof of Lemma 3.3 we have $v \neq 0$ and $uv \geq 0$.

(2) By Claim 2 in the proof of Lemma 3.3 we have $u \ge 0$, u > 0 and $w \ge 0$.

(3) We shall show that if $v \leq c^m - 1$, then w = 1.

Suppose that $v \leq c^m - 1$. Since $4b^2 < a$, we have $(u - \omega_2 v)^2 < 2$, so $u = [\omega_2 v] + i$ (i = -1, 0, 1, 2). Since a > 4, we have $(w - \omega_1 v)^2 < 1$, so $w = [\omega_1 v] + j = j$ (j = 0, 1). Since $[v\alpha] \leq [v\alpha + \frac{v}{\alpha}] \leq [v\alpha + 1] = [v\alpha] + 1$, we have

$$[\omega_2 v] = [v(\alpha + \frac{1}{\alpha} - 1)] = [v\alpha] + k - v \quad (k = 0, 1).$$

Hence we have

$$\theta_g = [\omega_2 v] + i + v\alpha_1 + j\alpha_2 = [v\alpha] - c^m v + i + k + v\alpha + j(\frac{c^m}{\alpha} - 1).$$

If we put $x = [v\alpha] - c^m v + i + k$, since $c^m - 1 < \alpha < c^m$, we have $-v + i + k \le x \le -1 + i + k$. Hence

$$x(c^{m} - \alpha) + v\frac{c^{m}}{\alpha} \ge (-v + i + k)(c^{m} - \alpha) + v\frac{c^{m}}{\alpha}$$
$$= (i + k)(c^{m} - \alpha) + v\left\{\frac{c^{m}}{\alpha} - (c^{m} - \alpha)\right\} > 0.$$

Therefore if j=0 and $x\neq 0$, then we have $F(\theta_g)=F(x+v\alpha)=x^2+v\{x(c^m-\alpha)+v\frac{c^m}{\alpha}\}>1$. If j=0 and x=0, then $F(\theta_g)=v^2\frac{c^m}{\alpha}>1$. Therefore we conclude j(=w)=1.

(4) We claim that if $v \leq c^m - 2$, then $F(\theta_g) > 1$.

If $v \leq c^m - 2$, then we have

$$\frac{a}{2}(w - \omega_1 v)^2 = \frac{a}{2}(1 - \omega_1 v)^2 \ge \frac{a}{2}(1 - \frac{c^m - 2}{\alpha})^2$$

$$= \frac{1}{2}(c^m - \alpha)^2 + \frac{1}{2}(1 - \frac{c^m - 2}{\alpha})^2 + 2(\alpha - c^m) + 2 > 2 - \frac{2}{c^{m-1}} - \frac{2}{c^{m+2}}$$

Hence if $(m, c) \neq (2, 2)$, then $\frac{a}{2}(w - \omega_1 v)^2 > 1$, so $F(\theta_g) > 1$.

In the case $(m,c)=(2,2), \frac{a}{2}(w-\omega_1 v)^2>1$ is easily checked. Therefore if $v\leq c^m-2$, then $F(\theta_q)>1$.

(5) We claim that $\theta_q = [(c^m - 1)\omega_2] + (c^m - 1)\alpha_1 + \alpha_2$.

Now we shall consider the case $v = c^m - 1$. First we shall show that

(3.7)
$$c^{2m} - c^m - c + 1 < A < c^{2m} - c^m - c + 2$$
, where $A = (c^m - 1)(\alpha + \frac{1}{\alpha})$.

We observe that $c^{2m} - c^m - c + 1 < A$ is equivalent to

$$(3.8) c\alpha + c^m \alpha (\alpha - c^m) + \alpha (c^m - \alpha) - 1 + c^m - \alpha > 0.$$

From (3.6) we have $c(\alpha - c^m) < c\alpha + c^m \alpha (\alpha - c^m)$, further from (1.1) $-\frac{1}{c^{m-2}} - \frac{1}{c^{m+1}} < c\alpha + c^m \alpha (\alpha - c^m)$. From this and (3.6) we have (3.8). Hence we have $c^{2m} - c^m - c + 1 < A$. In the same way, $A < c^{2m} - c^m - c + 2$ is more easily proved. Therefore by (3.7) we have easily proved. Therefore by (3.7) we have $[A] = [(c^m - 1)(\alpha + \frac{1}{\alpha})] = c^{2m} - c^m - c + 1. \text{ So if } v = c^m - 1, \text{ then } \theta_g = [\omega_2 v] + i + v\alpha_1 + \alpha_2 = [(c^m - 1)(\alpha + \frac{1}{\alpha}) - (c^m - 1)] + i + (c^m - 1)(\alpha - c^m + 1) + \frac{c^m}{\alpha} - 1 = -c + i + c^m \alpha + \frac{c^m}{\alpha} - \alpha = \alpha^2 - \alpha + 1 + i \ (i = -1, 0, 1, 2). \text{ If } i = -1 \text{ and } v = c^m - 1, \text{ then } F(\theta_g) = F(\alpha^2 - \alpha) = \frac{c^m}{\alpha} (\alpha - c^m + 1 + \frac{c^m}{\alpha}) > 1. \text{ If } i = 0 \text{ and } v = c^m - 1, \text{ then } F(\theta_g) = F(\alpha^2 - \alpha + 1) = \frac{c^m}{\alpha^2} (\alpha - c^m)(\alpha - 1) + (c^m - \alpha)^2 - (c^m - \alpha) + 1 < 1. \text{ Therefore we conclude } \theta_g = [(c^m - 1)\omega_2] + (c^m - 1)\alpha_1 + \alpha_2 = \alpha^2 - \alpha + 1.$

Lemma 3.7. If
$$\mathcal{R} = [1, \alpha - c^m + 1, \frac{c^m - 1}{\alpha}]$$
, then $\theta_g = \frac{1 - c\alpha + \alpha^2}{c}$.

Proof. We can write F in the form (2.1) and (2.2) with

$$a = c^{m-2}\alpha, \ 2b = \frac{\alpha(c^m - \alpha)}{c}, \ \omega_1 = \frac{c}{\alpha}, \ \omega_2 = \alpha - 1.$$

 $a = c^{m-2}\alpha$, $2b = \frac{\alpha(c^m - \alpha)}{c}$, $\omega_1 = \frac{c}{\alpha}$, $\omega_2 = \alpha - 1$. By (1.1) we have $0 < \alpha_1 < 1$, $0 < \alpha_2 < 1$, $0 < \omega_1 < 1$, $\omega_2 > 1$ and a > 3.

By (3.6) 2b < 1, so $4b^2 < a$.

Let $\theta_a = u + v\alpha_1 + w\alpha_2$.

- (1) By Claim 1 in the proof of Lemma 3.3 we have $v \neq 0$ and $uv \geq 0$.
- (2) By Claim 2 in the proof of Lemma 3.3 we have $v \ge 0$, v > 0, and $w \ge 0$.
- (3) By Claim 2 in the proof of Lemma 3.3 we have w > 0.

(4) we claim that $\theta_g = -1 + (c^{m-1} - 1)\alpha_1 + \alpha_2$. We shall show that $v \leq c^{m-1} - 2$ implies that $F(\theta_g) > 1$. Suppose that $v \leq c^{m-1} - 2$. Since $[\omega_1 v] = 0$, $w = [\omega_1 v] + 1 = 1$. By Claim 4 in the proof of Lemma 3.3 we have $[v\alpha] = vc^m + k$ $(k = -2 \ or \ -1)$. So we have

 $\theta_g = u + v\alpha_1 + \alpha_2 = [\omega_2 v] + i + v\alpha_1 + \alpha_2 = x + v\alpha + \frac{e^{m-1}}{\alpha},$ where x = k + i (i = -1, 0, 1, 2). We have

(3.9)
$$F(\theta_g) = x^2 + x(c^m - \alpha)(v + \frac{\alpha}{c}) + \frac{v\alpha(c^m - \alpha)^2}{c} + \frac{c^m}{\alpha}(v - \frac{\alpha}{c})^2 \quad (-3 \le x \le 1).$$

By (1.1) if $v \leq c^{m-1}$ and $x \neq 0$, then we have

$$|x(c^{m} - \alpha)(v + \frac{\alpha}{c})| \leq |x|(c^{m} - \alpha)(c^{m-1} + \frac{\alpha}{c})$$

$$< |x|(c^{m} - \alpha)2c^{m-1} < |x|2c^{m-1}(\frac{1}{c^{m-1}} + \frac{1}{c^{m+2}})$$

$$= |x|(2 + \frac{2}{c^{3}}) \leq |x|(2 + \frac{1}{2^{2}}) \quad (x \neq 0).$$

Also by (1.1), $\frac{c^m - \alpha}{c} < \frac{1}{c^m} + \frac{1}{c^{m+3}} < \frac{1}{3}$, so if $v \le c^{m-1} - 2$, then we have

(3.11)
$$\frac{c^m}{\alpha} (v - \frac{\alpha}{c})^2 \ge \frac{c^m}{\alpha} (c^{m-1} - \frac{\alpha}{c} - 2)^2 \ge (\frac{c^m - \alpha}{c} - 2)^2 \ge 2 + \frac{2}{3}.$$

from (3.9), (3.10), (3.11) if $-3 \le x \le 1$, then $F(\theta_g) > 1$. Therefore if $v \le c^{m-1} - 2$, then $F(\theta_g) > 1$.

Now we shall consider the case $v = c^{m-1} - 1$. We have $\theta_g = x + (c^{m-1} - 1)\alpha + \frac{c^{m-1}}{\alpha}$ $(-3 \le x \le 1)$. From (3.9), (3.10) if x = -3, then $F(\theta_g) > 1$. By (3.9) if x = -2, then we have $F(\theta_g) = 4 - 2(c^m - \alpha)(c^{m-1} - 1 + \frac{\alpha}{c}) + \frac{(c^{m-1} - 1)\alpha(c^m - \alpha)^2}{c} + \frac{c^m}{\alpha}(c^{m-1} - 1 - \frac{\alpha}{c})^2$ $= \frac{1}{c\alpha} \{c^m(c - \alpha(c^m - \alpha)) + c\alpha - c^m(c^m - \alpha)c^{m-1} + (c^{m-1} - c)\alpha(c^m - \alpha) + (c^m - c)c^{m-1} + (c^m - c)\alpha(c^m - \alpha) + (c^m - c)c^{m-1} + (c^m - c)\alpha(c^m - \alpha) + (c^m - c)c^{m-1} + (c^m - c)\alpha(c^m - \alpha) + (c^m - c)c^{m-1} + (c^m - c)\alpha(c^m - \alpha) + (c^m - c)c^{m-1} + (c^m - c)\alpha(c^m - \alpha) + (c^m - c)c^{m-1} + (c^m - c)\alpha(c^m - \alpha) + (c^m - c)\alpha(c^m - c)\alpha(c^m$

 $(c^{m}-\alpha)^{2}$ + 1 > 1. By (3.9) if x=-1, then we have

$$\begin{split} F(\theta_g) = & 1 - (c^m - \alpha)(c^{m-1} - 1 + \frac{\alpha}{c}) \\ & + \frac{(c^{m-1} - 1)\alpha(c^m - \alpha)^2}{c} + \frac{c^m}{\alpha}(c^{m-1} - 1 - \frac{\alpha}{c})^2 \\ = & 1 + c^{m-2}(c^m - \alpha)\{\alpha(c^m - \alpha) - c\} + \frac{1}{c\alpha}(c^m - \alpha)^2(c^{m-1} - \alpha) \\ & + \frac{1}{c\alpha}(c^m - \alpha)\{c + 1 - c^m + \alpha(c^m - \alpha - 1)\} < 1. \end{split}$$

Therefore we conclude $\theta_g = -1 + (c^{m-1} - 1)\alpha + \frac{c^{m-1}}{\alpha}$.

Lemma 3.8. If $\mathcal{R} = [1, \frac{c^m - \alpha}{\alpha - c^m + 1}, \frac{c^m - \alpha}{\alpha(\alpha - c^m + 1)}]$, then $\theta_g = \frac{1}{\alpha - c^m + 1}$

Proof. We can write F in the form (2.1) and (2.2) with

$$a = \frac{c^m \alpha^2 - c\alpha + c^m}{(c^m - 1)\alpha^2 - (c^m - 1)\alpha + c^m}, \ 2b = -\frac{c\alpha^2 - (c - 1)\alpha + c^m}{(c^m - 1)\alpha^2 - (c^m - 1)\alpha + c^m},$$

$$\omega_1 = \frac{1}{\alpha^2 - \alpha + 1}, \ 2\omega_2 = 2 + \frac{\alpha^2 + (c^m - 2)\alpha}{(c^m - 1)\alpha^2 - (c^m - 1)\alpha + c^m} - \omega_1(2b).$$

$$\omega_1 = \frac{1}{\alpha^2 - \alpha + 1}, \ 2\omega_2 = 2 + \frac{\alpha^2 + (c^m - 2)\alpha}{(c^m - 1)\alpha^2 - (c^m - 1)\alpha + c^m} - \omega_1(2b).$$

By (1.1) we have $0 < \alpha_1 < 1$, $0 < \alpha_2 < 1$, $0 < \omega_1 < 1$, a > 1 and |2b| < 1, so $4b^2 < a$. Since $2 < 2\omega_2 < 4$, $1 < \omega_2 < 2$. We have

$$F([\omega_2] + \alpha_1) = F(1 + \alpha_1) = F(\frac{1}{\alpha - c^m + 1})$$
$$= \frac{\alpha}{(c^m - 1)\alpha^2 - (c^m - 1)\alpha + c^m} < 1.$$

So by Adam [1], Proposition 2.3 $\theta_g = [\omega_2] + \alpha_1$, $[\omega_2] + \alpha_1 - \alpha_2$ or $[\omega_2] - 1 + \alpha_1$. Since $F([\omega_2] + \alpha_1 - \alpha_2) = F(\frac{2\alpha - c^m}{\alpha(\alpha - c^m + 1)}) = \frac{c^m \alpha^2 - 2(c - 2)\alpha + 2c^m}{(c^m - 1)\alpha^2 - (c^m - 1)\alpha + c^m} > 1$ and $[\omega_2] - 1 + \alpha_1 = \alpha_1 < 1$, $\theta_g = [\omega_2] + \alpha_1 = \frac{1}{\alpha - c^m + 1}$.

62 K. KANEKO

§ 4. Proof of the main theorem

Proof of Theorem 3.1. First we define $\theta_g^{(1)} = 1 - \alpha + \alpha^2 = \alpha \frac{c + \alpha - c^m}{c^m - \alpha} \quad \text{and} \quad \theta_h^{(1)} = \alpha,$ $\theta_g^{(3s-2)} = \frac{c^{s-1}(\alpha^2 + 1) - \alpha}{\alpha} = \frac{c^s + \alpha - c^m}{c^m - \alpha} \quad \text{and} \quad \theta_h^{(3s-2)} = \alpha \quad \text{for} \quad 2 \leq s \leq m-1,$ $\theta_g^{(3s-1)} = \frac{c^s}{c^s + \alpha - c^m} \quad \text{and} \quad \theta_h^{(3s-1)} = \frac{c^s + \alpha(\alpha - c^m)}{c^s + \alpha - c^m} \quad \text{for} \quad 1 \leq s \leq m-1,$ $\theta_g^{(3s)} = \frac{\alpha}{c^s} \quad \text{and} \quad \theta_h^{(3s)} = \frac{\alpha(\alpha - c^m) + \alpha}{c^s} \quad \text{for} \quad 1 \leq s \leq m-1,$ $\theta_g^{(3m-2)} = \frac{1 - c\alpha + \alpha^2}{c} = \alpha \frac{1 + \alpha - c^m}{c^m - \alpha} \quad \text{and} \quad \theta_h^{(3m-2)} = \alpha,$ $\theta_g^{(3m-1)} = \frac{1}{1 + \alpha - c^m}.$ Next we define $\mathcal{R}_1 = [1, \alpha, \alpha^2], \quad \mathcal{R}_n = [1, 1/\theta_g^{(n-1)}, \theta_h^{(n-1)}/\theta_g^{(n-1)}] \quad \text{for} \quad 2 \leq n \leq 3m-1.$ It is easily seen that $\mathcal{R}_n = [1, \theta_g^{(n)}, \theta_h^{(n)}] \quad \text{for} \quad 1 \leq n \leq 3m-2.$ By Lemma 3.6 $\theta_g^{(1)} \quad \text{is the minimal point adjacent to 1 in } \mathcal{R}_1.$ By Lemma 3.7 $\theta_g^{(3s-2)} \quad \text{is the minimal point adjacent to 1 in } \mathcal{R}_{3s-1}.$ By Lemma 3.7 $\theta_g^{(3s-1)} \quad \text{is the minimal point adjacent to 1 in } \mathcal{R}_{3s}.$ By Lemma 3.8 $\theta_g^{(3s-1)} \quad \text{is the minimal point adjacent to 1 in } \mathcal{R}_{3m-2}.$ By Lemma 3.8 $\theta_g^{(3m-1)} \quad \text{is the minimal point adjacent to 1 in } \mathcal{R}_{3m-2}.$ By Lemma 3.8 $\theta_g^{(3m-1)} \quad \text{is the minimal point adjacent to 1 in } \mathcal{R}_{3m-2}.$ By Lemma 3.8 $\theta_g^{(3m-1)} \quad \text{is the minimal point adjacent to 1 in } \mathcal{R}_{3m-1}.$ We define $\theta_n = \prod_{i=1}^n \theta_g^{(i)}. \quad \text{Then we have } N_K(\theta_{3m-1}) = 1 \text{ and } N_K(\theta_i) \neq 1$ if $1 \leq i \leq 3m-2$. Therefore, θ_{3m-1} is the fundamental unit ε of \mathcal{O} , and the Voronoi-algorithm expansion period length is l = 3m-1.

Remark 4.1. In fact (ii) in Theorem 3.1 is valid for m=1 provided $c \geq 4$.

References

- [1] B. Adams, Voronoi-algorithm expansion of two families with period length going to infinity, Math. Comp. 64 (1995), 1687-1704.
- [2] B. N. Delone and D. K. Faddeev, *The theory of irrationalities of the third degree*, Transl.Math.Monographs, vol.10, Amer. Math. Soc., Providence, RI, 1964.
- [3] J. Kühner, On a family of generalized continued fraction expansions with period length going to infinity, J. Number Theory 53 (1995), 1-12.
- [4] C. Levesque and G. Rhin, Two families of periodic Jacobi algorithms with period lengths going to infinity, J. Number Theory 37 (1991), 173-180.
- [5] H. C. Williams, G. Cormack and E. Seah, Calculation of the regulator of a pure cubic field, Math. Comp. 34 (1980), 567-611.
- [6] H. C. Williams, G. W. Dueck and B. K. Schmid, A rapid method of evaluating the regulator and class number of a pure cubic field, Math. Comp. 41 (1983), 235-286.
- [7] H. C. Williams, Continued fractions and number-theoretic computations, Rocky Mountain J. Math 15 (1985), 621-655.
- [8] H. C. Williams, The period length of Voronoi's algorithm for certain cubic orders, Publ, Math. Debrecen 37 (1990), 245-265.

Kan Kaneko

Tokyo Metropolitan Yashio High School 3-27-22, Higashi-shinagawa, Shinagawa-ku, Tokyo 140, Japan