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Abstract. We consider a family of orders of complex cubic fields which is sim-
ilar to one introduced by Levesque and Rhim. We find the Voronoi-algorithm
expansions and the fundamental units.
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§ 1. Introduction

Levesque and Rhin [4] introduced two families of complex cubic fields Q(«),
each of which depends on two parameters. Adam [1] obtained the Voronoi-
algorithm expansions of the order Z[a] for these two families, for one of which
Kihner [3] also found the Voronoi-algorithm expansions.

In this paper we shall consider a new family of complex cubic fields, similar
but different from those families above, i.e. Q(«), where « is the real root of
the irreducible cubic polynomial f(X) in Proposition 1.1.

We obtain the following results :

the Voronoi-algorithm expansions of the order Z[«],

the period length of these expansions goes to infinty,

the fundamental units of the order Z[o] .

Our method, in which we use an isotropic vector of the quadratic form,
is due to Adam [1] .

Proposition 1.1. Let f(X) = X% —c™X? + (¢ + 1)X — ¢™, where m, ¢ are
intergers such that m=1 and ¢=2. Then f(X) has only one real root « and
f(X) is irreducible except the case m = 1,c = 2.

Moreover if m22 , then « satisfies

1

1
m m
(1.1) e RS <a<cd"— i

Proof. Since the discriminant of f(X) is
Dy = —{4c*™ — (* + 20c — 8)c®™ + 4(c +1)*} <0 ,
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f(X) has only one real root « .

Since
m 2 m 6 2 8
f(C - Cm—l) =—c i + Cm—2 - Cm—l - c3m—3 < 0 and
1 c—1 1

f(cm - cm_l) = cm_l - c3m_3 >0 ((m? C) 7é (1? 2)) )

s <a<cd"— Y ((m, c) # (1, 2)) .
Therefore if (m, ¢) # (1, 2) , then f(X) is irreducible.
Furthermore we have

1 1 o 1 1 3 1 2

f(cm - cm—1 - Cm+2) =—c" + cm—2 B cm—1 cm+l B cm+2 cm+4

1 3 3 1

3m=3  B3m  Bm+3  3m+6

<0 (m=2) .

Hence if m=2 , then

1

m m
¢ cm—1 cm+2 <a<c cm—1 )

O

§ 2. Voronoi-algorithm and preliminaries

Let K be a cubic algebraic number field of negative discriminant. Let
l,a1,a3 € K be rationally independent. We say that R = [1, ay, ag] =
Z+ Z.ay + Z.ay is a lattice of K with basis {1, a1, as}. For w € R we define
F(w) = NKT(‘") = w'w”, where Ng denotes the norm of K over Q, and w’ and
w" the conjugates of w.

Definition 2.1. Let R be a lattice of K , and let w(> 0) € R. We say
that w is a minimal point of R if for all ¢ in R so that 0 < ¢ < w we have
F(¢) > F(w) . Let w,p € R such that 0 < w,p . We say that w is a minimal
point adjacent on the right (further on,we will not specify "right”) to ¢ in R
fw=min{ Y eR; ¢ <1, F(p) > F(y) } . We define the increasing chain
of the minimal points of R by :

Op=1, Oppr=min{ P eR; Op <9, F(Op) >F(¢p) } if £=0.
Then 61 is the minimal point adjacent (on the right) to 6 in R . Let O be
any order of K and R = O . By Voronoi we know that the previous chain is

of purely periodic form :

90:1a 013"' aol—la ol:€a 6013"' agol—la"'a
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where [ denotes the period length and ¢ is the fundamental unit of O . To
calculate such a sequence, it is sufficient to know how to find the minimal point
adjacent to 1 in a lattice R. Indeed, let 09(1) be the minimal point adjacent
tolin Ry =0 =[1, oy, ap] and ; = 99(1).
(i) We choose an appropriate point 0,V so that {1, 09(1), Hh(l)} is a basis
of Rl
(ii) 99(2) is the minimal point adjacent to 1 in Ry = %%Rl =
1, 1/99(1), Hh(l)/Og(l)] is equivalent to 0y = 9199(2) = 99(1)99(2) being
the minimal point adjacent to 6; in R;.

This process can be continued by induction.

We quote Adam([1],Lemma 2.2 from which we dropp one condition
F(0,0,1) > 1 as Lemma 2.1 for our convenience.

Lemma 2.1(Adam[l],Lemma 2.2). Let F be a positive quadratic form in
three variables with real coefficients of rank 2 such that F(1, 0, 0) = 1. Sup-
pose that F' has an isotropic vector (ws, 1, wi). Then we can write

(2.1) Flu,v,w) = a(w — w1v)® 4 2b(w — w1v) (u — wav) + (u — wyv)’

and

b b 2
(2.2) F(u,v,w) :g{w — (w1 +2—wo)v +2-u} + g(w — wyv)?
a a

+(1—- 2%)(u — wgv)z

with b? < a.

Let R be a lattice of K with basis {1, a1, as} and F(w) = '’ (w € R).
For (u, v, w) € Z3 we define F(u,v,w) = F(u + va; + was) =
(u+vayg + was) (u+vay +was)”’ . Further,we can consider F' as a quadratic
form in three variables with real coefficients. Then, F' is positive, the rank of
Fis 2 and F(1, 0, 0) = 1. Hence we can write F' in the form (2.1) and (2.2)
with @ = aha¥, b = 1(ah + o). We find w; and ws by the formulas

_ a& _a&, _ 1 / " / "
w1 = —— " w2__§{(a1+a1)+w1(a2+a2)}'
Qg — 0y

§ 3. Main theorem and preliminary results

Let f(X) = X3—c™X?+(c+1)X — ™, where m, ¢ are intergers such that
m=2 and ¢22. By Proposition 1.1 f(X) is irreducible and has only one real
root.
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Theorem 3.1. Let « be the real root of the polynomial f(X), K = Q(«),
and O = Z|a]. Then

(i) The chain of the minimal points of O is : for 1 < s <m —1
0o =1, 0352 = (¢ +a—c™)(z25)" 03s—1 = (525)°,

O3, = a(72=)", O3m—2 = a(l + a — ™) (7)™ and
O3m—1 = a(cma_a)m

(ii) e = a(z2%5)"™ is the fundamental unit of O and Voronoi-algorithm
expansion period length is [ = 3m — 1.

Remark 3.2. The following relation holds among the minimal points of O :
02 = abllp + 01, 0351 = 03,3 + 0352 for 2= s <m —1, 03,1 = alblzp, 3 +
93m—2-

For the proof of Theorem 3.1, we prepare six lemmas .
In the following lemmas we denote 6, the minimal point adjacent to 1 in a
lattice R of K.

Lemma 3.3. For an integer s, 1 < s <m — 2,

s S( 2 1) —
it R=[,a—c™+1,%], then egzw.
« o

Proof. We can write F' in the form (2.1) and (2.2) with

2s m m—s
¢ _ a(cd—a) ¢ .
a=Ga,2b= =G5>, wi=“—,wr=a—1

By (1.1) we have

0<a1 <1, 0<ay<l, 0<w; <1, [w]=c"—2,

25 25 25
2s c c 2s c
€T Bme1  @miz SOSC T Gt
where [ ... | is the greatest integer function. From the last inequality we have
m 2
2 —1<a,then a>3. Since 2 = 2" -0 1 42 < ¢

“a cm
Let 0, = u + vy + wos.

Claim 1. v # 0 and uv = 0.

Suppose that v = 0. If u = 0, then F(§,) = aw® > 1. If w = 0, then
F,) =v? =21 Ifu# 0and w # 0, then F(,) > %—i—(l—Q%) > 1.
Therefore v # 0. Since F(6,) < 1 and 4b*> < a, we have (u — wyv)® < 2; but
wy 2 V2 — 1, then uv > 0. (cf. the proof of Adam [1],Proposition 2.3)
Claim 2. v 20,v>0,w =0

Since F(0,) < 1 and a > 3, we have (w — wiv)? < 1, then wv > 0.

If v <0, then v £ 0 and w < 0, which is impossible because 6, > 0, so we
have v > 0, u =2 0 and w = 0.
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Claim 3. w > 0.

Since (w — wyv)® < 1, w = [wyv] or [wiv] + 1. Since F(0,) < 1 and 4b* < a,
we have (u — wyv)® < 2, then u = [wyv] + i, where i = —1,0,1 or 2.

Suppose that w = 0. Since in (2.2) §(w — wiv)? = %vz, v=1.

Since u = [wo] +4=c¢" — 241 (i = —1,0,1,2), we have 0, = u + a3
=a—1+i (i =-1,0,1,2). Since F(f,) = & + (™ —a)(i—1)+ (i —1)> > 1
(i =—1,0,1,2), w > 0.

Claim 4. For an integer v if 1 S v < ™1,

c3+1

Cm+2
By (1.1) we have vc™ — (Zm=t + mmxz) < va < vc™ — —=r. From this, our
cm+2

vem —1 (v < G

then [va] =

vc™ — 2 (’U z 03—_’_1)

claim is deduced because 7= + 7= < 1 is equivalent to v < G5

Claim 5. 6, = [c®wq] + c*a1 + a.

We shall show that v < ¢®* — 1 implies that F(§,) > 1. Suppose that v
c¢®—1. Since wv] = 0, w = [wv]+1 = 1. So O, = v+ vag + as
[wav] + @ + vy + as :i—l—H)a—i—%s (¢ =-1,0,1,2) . we have

Il 1A

«

(3.1) F(fy) =(i = 1)° + (i = (™ —a) (v + —=)
+ W(C;ni__sa) + %(v - Cma_s)2 (i =—1,0,1,2).

Clearly if i =2 and v < ¢® — 1, then F(6,) > 1. We have

a J

I—(c"—a)(c® -1+

Cm—s) Cm—sa’

where J = ca{c™ 175 — 1 — (¢! — ™15 (c™ — )} + ¢™ — a. By (1.1)
if (s, ¢) # (m — 2, 2), then we have J > 0, so (¢™ —a)(c® — 1+ =) < L.
Hence if v £ ¢ — 1 and (s, ¢) # (m — 2, 2), then we have

. a . o
(3.2a) |(i—1)(c™ —a)(v+ cm_s)| <=1 —a)(c® — 1+ cm—s)
<|i—1 (i =—1,0,2).
If v < ¢®* — 1, then we have
a a

)

(3.2b) (0= 1)(™ =)o+ =) S [i = (™ —a)(c® =1+

< |i—1(c™ —a)(2¢® — 1) < |i — 1|(c™ — a)2¢®
1
cm—l Cm+2

cm—s

< i —1[2¢™72(

) <li—1|(1+ 2%) (i =—1,0,2).
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From (3.1), (3.2b) ifi = —1 and v < ¢* — 1, then F(6,) > 1.
If i = 1, then we have

(3.3) F(o,) = vale™ —a)” | C - 2y

cm a 2_ c™ « 2 A" -« 2
3.4 —(v — > —(c® — -2 -2 3
B9 -2y z ey (T g s
if v<¢ —2.
Hence if i =1 and v < ¢® — 2, then F(6,) > 1.
From (3.3) if i = 1 and v = ¢® — 1, then we have
F(0,) = ———{(¢" = 1)a?(e" — ) = 26" (¢" — a) + (" — )} + &
o) = mgile a’(c « < (c a) + (¢ @ ~

From this if i = 1 and v = ¢®* — 1 = 2, then F(0,) > 1 because

(c* — Da(c™ — )® = 2¢™(¢™ — a) 2 202 (c™ — @) — 2¢™ (™ — @)

= (™ —a){2(c+ 1)a—4¢™} >0 and % >1.

Ifi=1landv=¢"—1=1 (i.e. s =1,¢=2), then we have F(0,) > 1,

because from (3.6) in the proof of Lemma 3.3 a(a—¢™) + ¢ > 0, thus we have
m 2 m

F(0,) = =0 + (1= o)

= r{ala—cm)+cHem = (" —a)}+1> 1.

Therefore if i =1 and v < ¢® — 1, then we have F(6,) > 1.

If 1 = 0, then we have

va(ec™ Zem 2

(3.5) F(#y) = ———+ —(v— ) +1—(c"—a)(v+

Cm—s o Cm—s

Cm—s)'

From the case i = 1 and (3.2a) if i =0, v £ ¢* — 1 and (s, ¢) # (m — 2, 2),
then we have F'(8y) > 1. If i =0, v =¢®* — 1 and (s, ¢) = (m — 2, 2), then we
have

(T Dt — ) 4 A ) e~ e — )

+ ™2 —alc™ —a) (™t a)} +1>1 .

Therefore v < ¢® — 1 implies that F(6,) > 1.



VORONOI-ALGORITHM EXPANSION

Now we shall consider the case v = ¢*. We have

0, = [wac’] + i+ Car + ([wic®] + j)as
S
=" 14t Cla— "+ 1)+ (1 +j)%

=—l4i+cfa+(1+)) (i=-1,0,1,2), (j=0,1) .

‘¢
o
If i = —1 and j = 0, then we have
P2t cat Sy =420 —a)it2)- <
« cm

Since

« 1 1
2¢°(c™ —a)(1 + —) <4 (™ —a) £4c™ 73 (™ —a) < 4(- + =) < 3,
(™ —a)(l + cm) c’(c a) £4cm (™ - a) (c + 04)

we have F(0y) > 1. If i = —1 and j = 1, then we have

2¢* ca 2ca(c™ — )
F(-2 s =4 — 45 (™ — _
( +ca+a) ™ —a)+ o g
2 a(c™ — 1 1
—(cm ){a(cm—a)—l}—i—czs(cm—a)(&—c—m)>1.

If i =0 and j = 0, then we haveF(—1+csoz+‘;—s):1+N, where

2s mo__ 2 1
N:—cs(cm—a)(l+g)+c a(cm @) (1+—=)
c c !
Since
(™ — a) (™ — «)
N = _m S(.m __ <0’
o {=c" —a+(" —a)a+ " }

we have F'(0,) < 1. Therefore 0, = [c*wa] + cPa1 + 2. O
Lemma 3.4. For an integer s, 1 < s <m —1,

if R=[1,—— ¢ ¢ tola—c )], then 0y =— .
c+a—cm c+a—cm c+a—cm

Proof. We can write F' in the form (2.1) and (2.2) with

1 2m
a = 5{(02m+02s—05+1—08)a+ Ca _cm-{—s}, 2{):—%,
W = c’+a—c™
1= (em—cs—1)a—cm—sFlfem—cstetl?

55
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cm—c)a?—cm P a42c™

2(4)2 =

where D = a(c®* +a—c™)'(¢* + a—c™)" = (¢™ — c%)a? — c*(¢™ — c®)a + ™,

and G = c*a? + (¢ — 2¢25 + 5 — ™ 4 S + S,

By (1.1) we have 0 < 1 < 1, 0 < s < 1,0 < w1 < 1, we > 1, and a > 1.
We claim that 4b% < a.

First we shall show that if (s, ¢) # (m — 1, 2), (m — 1, 3), then |2b| < 1:

this is equivalent to D — G > 0. We have

D-G=("a—-2"a— 2t — st o8 43625 + cm+1)a + ™M — s
:{Cm(cm _403) +C2s + (Cm —205)(04—Cm) +cm+1 _Cs+1 +2025

-2+ " 4+ cfla—c™) >0

if (s,¢) # (m —1,2), (m—1,3). Since a > 1, if [2b] < 1, then 4b® < a.
Hence if (s, c) # (m —1,2), (m — 1, 3), then 46> < a. In each case of
(s,¢) = (m—1,2), (m—1,3), 46> < a is easily checked. Hence we have
4b? < a.

We claim that if s =1, then a; > as and if s = 2, then a; < as.
we consider the defining polynomal g(X) of a(c™ — ), i.e.

g(X) =X =20+ D)X2+{®" + (c+ 1)’} X — 2™+,
Since g(c — CZWL%) <0 and g(c) >0,

1
 2m—2

(3.6) c <a(d™—-a)<c.

If s 2 2, then ¢ — a < ¢® + a(a — ™). Hence if s 2 2, then a; < as.
From (3.6) ¢ + a(a — ¢™) < zm=s, and from (1.1) 7= < ™ — o

Therefore if s = 1, then a; > as. We have

c? o 1

cs—i-a—cm) T (e —c)a(a—c) +em T H’

F(14+a1) =F(

™

where H = (¢™™* = 1)(& —1) +
If s=m —1, then

If1<s<m-—2, then H> 1.

c2saq”

« cm
H=(c— l)cm_1 + Dy c+1
2
« c a” +c
2 cm—l cm—la_c+1: cm—loé_c—i_l'

From (3.6) a® + ¢ > ¢™a, so a’tc _ 41> 1. Hence if s = m — 1, then

cm—1lg

H > 1. Therefore F(1 +ay) < 1.
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Let 0, = u +vay + was.
(1) By Claim 1 in the proof of lemma 3.3 we have v # 0 and uv = 0.
(2) We claim that v = 0, v > 0, w = 0.
Since F(A,) < 1 and a > 1, we have (w — wiv)® < 2, then wv 2 0 or |w| < 1.
If wv 2 0, then v < 0 implies that © < 0 and w < 0, which is impossible
because 6, > 0, so we have v > 0, v 2 0 and w =2 0. If wv < 0, then |w| = 1.
If w = 1, then v < 0 and u < 0. If u = 0, we have F(f,) > & + (1 —22) > 1,
and if v < 0, we have 6, < 0, which is impossible.
If w= —1, then v > 0 and v = 0. We assume now that w = —1. Since
a(w—ww)® > 1,26 < 0, and w — wiv < 0, by (2.1) u — wyv < 0. Hence
u = [wov] — 1, or [wov] . If u = [wov] — 1, then by (2.2) we have F(6,) > 1.
Hence u = [wev] , so O, = [wov] + vy — ap. If v 2 2, then we have 6, =
Rwa] +201 —ae > 1+ ay. If v=1and [wy] =2, then 8, > 1+ ;. Ifv =1,
[wo] =1 and s 2 2, then §, < 1 because oy < avp. If v =1, [wp] =1land s =1,
then F'(6,) > 1 because

a(d™ — a)

F(1 — =F(——=
(14 a1 —a) (cs+a—cm

)
B (o + 1) o
(cm —¢)?a? + (2 +c—cmt)a+em(em —¢)

Hence the case w = —1 is impossible. Therefore u = 0, v > 0, w = 0.

(3) We claim that v = 1.

Since u = [wav]+i (1 = —1,0,1,2), ifv = 2, then 6, = 1 + 201 + wae > 1+0a4.
(4) We claim that 6, = 1+ ;.

Since (w — w1v)® = (w —w;)® < 2, we have 0 < w < 2. If u = 0, then w = 1
or 2. If w =1 or 2, then F(6,) > 1 because in (2.1) 2b < 0, w — wiv > 0,
u—wov < 0 and (u— wov)® > 1. Hence u # 0. If u > 2, then Oy > 1+ a.
Therefore 0, =1+ «a;. O

Lemma 3.5. For an integer s, 1 < s <m —1,

c+a—c" ¢+ ala—c™m)
7

a
|, then 6, = —.

CS

if R=11,

c’ c’

Proof. we can write F' in the form (2.1) and (2.2) with

1 — 1

a = pery: (02‘90[2 _ Cm-}-sa CZm) 62m 2s c;l; ,
_ 1 s m _ 1 _ "+ -0’ —a
20 = {2 —c—1la—-c"},wi ==, wy = — .

By (1.1) we have 0 < a1 < 1, 0 < s < 1, 0 < wy < %, [wo] =™ —2,a>2

and 4b? < a. If (s,c) # (m — 1,2), then wy > 1. If (s,¢) = (m — 1,2), then
2 m s

V2 <y < 1. F(lws] + 1+ o — ) = F(=2H el

=24 021%{(02m — s 4 cmm— St e? —2c)a+ cf(a— ™) + Clm} > 1.
C

F(lwo] + 14+ 1) = F(%) = &; <L

s
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Let 0, = u +vay + was.
(1) By Claim 1 in the proof of Lemma 3.4 we have v # 0 and uv 2 0.
(2) We claim that v = 0, v > 0, w = 0.
By (2) in the proof of Lemma 3.4 if wv = 0, then v 2 0, v > 0, w = 0, and
if wv < 0, then w = —1. Suppose that w = —1. Then 0, = u + va; — ax,
w>0,v>0and (w—ww)® > 1. Ifu < [wpw] — 1, then (u—wyw)® > 1
and F(0,) > 1. If u = [wov], then 0, = [wov] + vay — ay. If v = 3, then
99 z [w2+2w2]+3a1—a2 z [WQ]+1+C¥1+20[1 — Qg > [WQ] +1+a. If
v=2and wy >1, then §; = [wo] + 1+ 1 + a1 —2 > [wo] +14+0aq. Ifv =2
and ‘/75 <wy < 1, then 0y = [2wa]+2a1 —as = 1+ a1+ —an > [wo] +1+40a;.
If v = 1, then F([ws] + oy —a2) = - {2023+i—?+%(om+1—2cs)+2§(csa—
™)+ 2afa—cm+ 1)+ (™ +1—-2¢%)} > 1. If u=[wav]+ 1 and v = 2,
then 6, = 2ws] + 1+ 201 —ag > [we] + 1+ . If u = [wev] 4+ 1 and v = 1,
then 0y = [wo] + 1+ a1 — ap. If u 2 [wov] + 2, then O, > [wo] + 1 + a;.
Therefore the case wv < 0 is impossible.
Therefore we have u = 0, v > 0, w = 0.
(3) We claim that v =1 or 2 and w =0 or 1.
We have 0, = [wov] + i + vay +wae (i = —1,0,1,2).
If v 2 3, then 0, = [Bws] + i+ 3aq + was 2 [wa] + 20q + a1 + wag > [wo] +
1+ a;. Hence v =1 or 2. Since a > 2 and w; < %, (w—wlv)2 <l,sow=0
or 1.
(4) We claim that v = 1.
Suppose that v = 2. Then 0, = [2ws] + ¢ + 201 + way, so i = —1 or 0.

If w = 1, then 0, = i+ a2t 2ocMa yng F(6,) = i + 2{(a = 2)(a — ") -
2 Y+ S {(c" —da+2@—-c"+2)+ <} >1 (i=-1,0).
If w =0, then f; = —1 4 i + 22 and

1

o

cm

F(0,) = {4 +2(i — )t —a)} + (i — 1) >1 (i = —1,0).

Therefore we have v = 1.

(5) We claim that 6, = [ws] + 1+ a.

We have 0, = [ws] + i+ a1 +was (1 = —1,0,1). If w =1, then i = —1, or 0
and

F(6,) =% + {0 = e—c™) — )i

™ m m ™ .
C2Sa{(c —2a+a—c +1+;} >1 (i=-1,0).
If w =0, then
1
F(0) = 5 {e" + (i~ Defale — )} + (i~ 17 > 1 (i=-1,0

Therefore we conclude that 0, = [wo] + 1+ ;. O
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Lemma 3.6. If R:[l,a—cm—i—l,%—l], then 6, =1—a+ a?.

Proof. We can write F in the form (2.1) and (2.2) with
a=a?+1,2b=a(c —a) -2, wlzé,wgza-i—é—l.
By (1.1) we have 0 < a3 < 1,0 < as < 1,0 <w; <1, wy > 1,a >4 and
4% < a.

Let 0, = u + vy + was.
(1) By Claim 1 in the proof of Lemma 3.3 we have v # 0 and uv 2 0.
(2) By Claim 2 in the proof of Lemma 3.3 we have u = 0, u > 0 and w = 0.
(3) We shall show that if v < ¢™ — 1, then w = 1.
Suppose that v < ¢™ — 1. Since 4b?> < a, we have (u —wzv)2 < 2,80u=
[wov] +14 (¢ = —1,0,1,2). Since a > 4, we have (w—wlv)2 <1, sow =
[wiv] +j =3 (j =0,1). Since [va] £ [va + 2] < [va+ 1] = [va] + 1,
we have )

[wov] = [v(a + o ]=wal+k—v (k=0,1).

Hence we have

m

. : . e
09:[wzv]+z+va1+]a2:[va]—cmv+z+k+va+](?—l).

If we put z = [va] — ¢™v 4+ i+ k, since ¢™ — 1 < a < ¢™, we have
—v+i+k<2<-1+i+k. Hence

=@+M@m—®+m¢§—@m—@}>o

Therefore if j = 0 and z # 0, then we have F(0,) = F(z+va) = z?+v{z(c™ —
a) + U%} > 1. If j =0and z = 0, then F(6,) = ’Usz > 1. Therefore we
conclude j(=w) = 1.

(4) We claim that if v < ¢™ — 2, then F(6,) > 1.

If v £ ¢™ — 2, then we have

m— 2
gw—ww):ga—wwfgga—ca )2
1 5 1 cm — 2 2 2
zg(cm—a) +§(1— a )2+2(a—cm)+2>2—cm_1—m

Hence if (m,c) # (2,2), then §(w —wyv)® > 1,50 F(f,) > 1.

In the case (m,c) = (2,2), §(w — wiv)? > 1 is easily checked. Therefore if
v < ¢™ —2, then F(6,) > 1.

(5) We claim that 6, = [(¢™ — Dws] + (¢™ — 1)y + as.

Now we shall consider the case v = ¢™ — 1. First we shall show that

1
(3.7) ™ —c™—c+1 < A< —c™—c+2, where A= (c"—1)(a+-).
a
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We observe that ¢?™ — ¢™ — ¢+ 1 < A is equivalent to
(3.8) ca+c"a(la—c")+ald™ —a)—1+"—a>0.

From (3.6) we have c(a — ™) < ca+ " a(a — ¢™), further from (1.1)

— =5 — Zr < ca+c™a(a—c™). From this and (3.6) we have (3.8). Hence
we have ¢?™ —¢™ —c+1 < A. In the same way, A < ¢ —¢™ — ¢+ 2 is more
easily proved. Therefore by (3.7) we have

[A] = [(c™ —1)(a+ )] =c® —c™ —c+1. Soif v =c™—1, then 0, = [wyv]+
itvon +ag =[(™—1)(a+ i) (™ —1)]+i+ (" —1)(a—cm+1)+% —-1=
—ctitcmat+ S —a=a’—a+1+i(i=-1,0,1,2). Ifi=—landv = c™ -1,
then F(0,) = F(a? — a) = %(a—cm—i-l—)—%) >1. lfi=0andv=c"—-1,
then F(0,) = F(a®—a+1) = S5 (a—c™)(a—1)+ (™ — a)? = (" —a)+1 < L.
Therefore we conclude 0, = [(¢™ — Dwz] + (™ — Dy +az =a?—a+1. O

m 2
"~1]. then @, = l=ceta’
o c

Lemma 3.7. If R=[l,a—c™+1,

Proof. We can write F' in the form (2.1) and (2.2) with

a=c""2a, szw,mz S,we=a—1

By (1.1) we have 0 < 1 < 1, 0 < a3 < 1,0 < w; < 1,ws > 1 and a > 3.

By (3.6) 2b < 1, so 4b” < a.

Let 0, = u +vay + was.

) By Claim 1 in the proof of Lemma 3.3 we have v # 0 and uv = 0.

) By Claim 2 in the proof of Lemma 3.3 we have v = 0, v > 0, and w = 0.
) By Claim 2 in the proof of Lemma 3.3 we have w > 0.

) we claim that 6, = —1+4 (¢™ ! — 1)ay + o.

We shall show that v < ¢™~! —2 implies that F(6,) > 1. Suppose that
v < ¢™™1 — 2. Since [w1v] =0, w = [wyv] + 1 = 1. By Claim 4 in the proof of

(1
(2
(3
(4

Lemma 3.3 we have [va] =vc™ +k (k= —2 or —1). So we have
0, = u+vog + g = [wav] + 1 + vy + ap =z +va+ Cma_l,
where z = k414 (1 = —1,0,1,2). We have

2 m Q
(3.9) F(0,) =z + z(c —a)(v—l—;)

m _ )2 m 2
L NCETES
c a c
By (1.1) if v £ ¢™~! and x # 0, then we have
(3.10) (™ = a) (v + D) £ Jal(e” —a)(e ! + =)
c c
1 1

<|z|(c™ — @)2c™ ! < |z2c™ Y

Cm—l cm+2 )

—lal(z+ Z) S al(2+ 55) (@ £0)



VORONOI-ALGORITHM EXPANSION

m_ . —
= c“<c%+cm1+3<%,501fv§cm 1 _ 2, then we have

Also by (1.1),

m 2

—Y 9y 224

m «a 2 c

(3.11) ;(U—;) Eg(cm_l—;—Q) = ( .

Q

[SCR N

from (3.9), (3.10), (3.11) if —3 < & < 1, then F(6,) > 1.
Therefore if v < ¢™~! — 2, then F(6,) > 1.
Now we shall consider the case v = ¢™~! — 1. We have
O, =+ (' —1a+ " (=3< 2 <1). From (3.9), (3.10) if z = -3,
then F'(6,) > 1. By (3.9) if £ = —2, then we have
F(0,) = 4—2(c™ —a)(¢m~t =14 2) 4 LT al—a) | o (o1 _ g _ )’

= i{cm(c —a(c™ — a)) + ca — " ("™ — a)c’%_1 + (¢t — e)a(c™ — a) +

(¢™ — )’} +1 > 1. By (3.9) if z = —1, then we have

F(0,) =1 (" —a)(" ™ =1+ )

m—1_ 1 mo__ 2 m 2
n (C )a(c a) _i_c_(cm—l_l_g)
c a c
1
=14 " (" — )" —a) —c} + —(" =)’ (" )
ca
1
(" —aferl-c"tal™ —a-1)} <L
ca
Therefore we conclude 6, = —1 + (¢! — 1)a + Cma_l - O
Lemma 3.8. If R = [1, ac—c;?:-l’ a(oéc_c_rna+1)]7 then 09 = a—c%m-{—l'

Proof. We can write F' in the form (2.1) and (2.2) with
cmaz—ca+cm 2b _ ca2—(c—1)a+cm
(em—1)a?—(cm—1)at+c™? - (em=1)a®—(cm—-1)atc™’

1 a’+(cm—2)a
W1 = gy w2 =2+ (cm—l)a2(—(cm—)1)a+cm — w1 (2b).

By (1.1) wehave 0 < a1 < 1,0 < a < 1,0 <w; <1,a>1and |2b] < 1, so
4b% < a. Since 2 < 2wy < 4, 1 < ws < 2. We have

a =

F(lw] +0n) = F(1 4 ) ZF(ﬁM)

= <1
(em —1)a? — (¢™ — L)a+c™

So by Adam [1], Proposition 2.3 0, = [wa]+a1, [wa]+ai—az or [wa]—1+40y.
m m_2 _ m

Since F([wa] + a1 — ag) = F(a(ii;,%ﬂ)) = (Cﬁl_ci)afﬁc(c,?ff)iicm >1 and

[wg]—l—l—al:al<1,09:[w2]+a1: U

a—c™m+1"
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§ 4. Proof of the main theorem

Proof of Theorem 3.1. First we define
99(1) =1-—a+a?=aste=c" and Hh(l) = qa,

cMm—q
s—1 2 s m —
g,(35=2) — ¢~ (e 4l-a _ ¢ ta—c_ and Gh(BS 2 —q for 2<s<m—1
9 « c « ( ) =" = ’
(3s—1) __ s (3s—1) _ c*+a(a—c™
0" = yamen and 0,7 7= —om mns for 1Sssm—1,

99(38) — 2 and g, 39 — a(a—cc# for 1<s<m-—1,

0 (3m—2) _ 1-—cata® _ al-i—a—cm and 6 (3m-2) _ o
g c PR h )
0 (3m—1) _ 1

g — 14a—cm"

Next we define

Ri=[1, o a®, R,=][1,1/0,""Y, 0,""Y/6," Y] for 2<n<3m—1.
It is easily seen that R, = [1, 99("), Hh(")] for 1<n<3m-—2.
By Lemma 3.6 6, is the minimal point adjacent to 1 in R;.

By Lemma 3.3 6,%*=? is the minimal point adjacent to 1 in Rgy_s.

By Lemma 3.4 99(35_1) is the minimal point adjacent to 1 in Rgs_1.

By Lemma 3.5 99(35) is the minimal point adjacent to 1 in Rgs.

By Lemma 3.7 6,%™~? is the minimal point adjacent to 1 in Rap,_o.

By Lemma 3.8 6,%™~") is the minimal point adjacent to 1 in Rap,_;.

We define 6,, = []\, Hg(i). Then we have Nk (03,,—1) = 1 and Ng(0;) # 1
if 1 £4 < 3m — 2. Therefore, 03,1 is the fundamental unit ¢ of O, and the
Voronoi-algorithm expansion period length is [/ =3m — 1. O

Remark 4.1. In fact (ii) in Theorem 3.1 is valid for m = 1 provided ¢ = 4.

References

[1] B. Adams, Voronoi-algorithm ezpansion of two families with period length going to
infinity, Math. Comp. 64 (1995), 1687-1704.

[2] B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree,
Transl.Math.Monographs, vol.10, Amer. Math. Soc., Providence, RI, 1964.

[3] J. Kithner, On a family of generalized continued fraction expansions with period length
going to infinity, J. Number Theory 53 (1995), 1-12.

[4] C. Levesque and G. Rhin, Two families of periodic Jacobi algorithms with period lengths
going to infinity, J. Number Theory 37 (1991), 173-180.

[6] H. C. Williams, G. Cormack and E. Seah, Calculation of the requlator of a pure cubic
field, Math. Comp. 34 (1980), 567-611.

[6] H. C. Williams, G. W. Dueck and B. K. Schmid, A rapid method of evaluating the
regulator and class number of a pure cubic field, Math. Comp. 41 (1983), 235-286.

[7] H. C. Williams, Continued fractions and number-theoretic computations, Rocky Moun-
tain J. Math 15 (1985), 621-655.

[8] H. C. Williams, The period length of Voronoi’s algorithm for certain cubic orders, Publ,
Math. Debrecen 37 (1990), 245-265.

Kan Kaneko
Tokyo Metropolitan Yashio High School
3-27-22, Higashi-shinagawa, Shinagawa-ku, Tokyo 140, Japan



