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Abstract. The 2-generators of A7, Ag, Ag, M11, Mi> and M»» are computed
up to equivalence of their automorphism groups and the automorphism group
of a free group of rank 2. The actions of the automorphism group of the free
group on their defining subgroups are also computed.
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8§1. Introduction

Let a group G be generated by two ordered pairs (1, x2) and (y;, y2). Then
these satisfy the same defining relations for G if and only if there exists an
element « in the automorphism group Aut(G) so that (z§, z5) = (y1, y2)-
Suppose (y1, y2) = (1, 122) or (y1, y2) = (z2, x1), then substituting z; =
Y1, To = y; ‘Y2, Or T = yo, Ty = Y1, in the relations with respect to (z1,zo)
respectively, we have new relations for G with respect to (y1,y2). Let V(G)
be the set of all generating pairs (z1,27) of G and let V(@) be the set of the
orbits of Aut(G) on V(G). Then the transformations (z1, z2) — (z1, z122)
and (z1, 2) = (z2, z1) induce permutations on V(G) and they also induce
permutations on V(G), since every orbit of Aut(G) on V(@) is characterized
as the subset of V(G) having same defining relations. In the present paper for
G = A;, Ag, Ay, M1y, Mis and Msyo, one of the alternating groups of degree
7, 8, 9 or the Mathieu groups of degree 11, 12 and 22, we compute V(G) and
next compute how the permutation group generated by the transformations
acts on each of its orbits on V(G). In [4] and [6] the same was acheived for A
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and in [10] for Ag and PSL(2,7). Some related results for Ag and A7 are seen
in [7] and [8]. The authors note with thanks that computations were carried
out with the group algorithm programming system GAP[9].

Let F be a free group generated by uw and v. A normal subgroup N of F is
said to be a G-defining subgroup if G = F/N. Then the elements of Aut(F)
given by (u, v) — (u, v~ 'v) and (u, v) — (v, u) generate an equivalent
permutation group on the set of G-defining subgroups of F' as a permutation
group on XA/(G’), by a result of [6]. If G is a finite non-abelian simple group, the
action of the automorphism group of a free group is likely to be a symmetric
or an alternatng group on each of its orbits on the G-defining subgroups in
most cases, and it is intended to prove this fact under some general conditions
in some references (cf. [2], [3]). For the above groups we computed how a free
group with 2 generators acts on the G-defining subgroups. The results are
shown in tables at the end of the present paper and the summary is as follows.

Theorem 1.1. Let F be a free group generated by two elements and suppose
G = A;, Ag, Ag, M1y, M5 or Mss. Then the action of Aut(F') on each of its
orbits on the G-defining subgroups of F' is one of the types Sy, Am, 21 S,
9m—L.G  9m1A S 185, Ap1Ss, A3 S5, A3 81 A3 285 A3 2285, A3 22581
Sm2, A2, 2182, 2m LA 20 A2 22532 and Ai’nQZS;EQ. In particular m is
even if the action has a normal 2-subgroup.

Here we explain some of the notation in Theorem 1.1. First 215, is
a wreath product of a cyclic group of order 2 by a symmetric group S, of
degree n and, as a permutation group, is of degree 2n with n blocks of length
2 and quotient action as S,. 2"7':S,, a non-split extension of 2"~ by S,,
is a subgroup of 21 S,, with the kernel consisting of all products of an even
number of 2-cycles on the blocks. Similarly 2" 'A,,, a semidirect product of
2"~ by A, is also a subgroup of 215,,. Next 2" 14,2 is of degree two times
that of 2"~ A,,, so of degree 4n, and the right-most symbol 2 means that a
cyclic group of order 2 interchanges the two orbits of 2"~ A,,, which is in fact
induced by the transformation (z1, z2) — (z2, z1). Also between two families
of wreath products A, 1S3 and S, 153 of degree 3n (with 3 blocks of length n)
there exist two families of incomplete wreath products which are denoted by
A32S3 and A322S3 respectively, and finally there are two similar subgroups of
Sp 1S3 which are denoted by A%S; and A%2QS§. In these cases there are no
subgroups isomorphic to S3 whose transpositions centralize one component of
A2 and interchange the remaining two components.

As PSL(2,q) is a permutation group of degree ¢ + 1, our program may
also work for PSL(2,q) when ¢ is a small prime power. But we may be able
to treat it as a matrix group with finite field elements in GAP because it will
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save memory space for storing IA/(G’) So in the present paper we restrict our
attension to above permutation groups of small degree.

§2. Computation and observations

Aut(F) is generated by Nielsen transformations (see e.g. [5] chapter 3). They
permute the G-defining subgroups of F' and the action is equivalent to the
following permutations on V(G) by [6]: (i) (z,y) — (z,z"y); (i) (z,y) —
(z,yz~b); (iii) (z,y) — (y,2); (iv) (z,9) — (2,9~ '). The permutations (i)
and (i) are conjugate under Inn(G), so they act on V(G) as a same permuta-
tion. Let the permutations (i) and (iii) be denoted by o~! and 7, respectively.
Then o is (z,y) — (z,zy). The permutation (iv) is obtained as a conjugate
of oro 707, Hence the permutation group on V(@) induced by Aut(F) is
generated by the action of o and 7 on V(G). In this way the action of Aut(F)
on V(G) is obtained.

The automorphism groups of alternating groups are symmetric groups, ex-
cept in the case Ag. So in our cases Aut(G) = S, if G = A,,. Aut(M;1) = My,
but Aut(Mi2) =2 M122 and we construct it as a permutation group of degree
24 interchanging two orbits of Mjs. Finally Aut(Mag) = Mys2 is of degree 22
(see e.g. [1]).

We compute Aut(G)-conjugacy classes of pairs (z1, z2) with z1, 22 € G
and enumerate the representatives of the conjugacy classes such that z; and
z5 generate G, which are V(G). Next for each pair (z1, z2) in V(G) we
see what elements in V(G) are Aut(G)-conjugate to (z, z122) and (z9, )
respectively. This determines the action of o and 7 on IA/(G) We list the
representatives and lengths of the orbits of the permutation group on V(G’)
induced by Aut(F). Finally we will determine how this permutation group
acts on each of its orbits.

Consider any one of the orbits of Aut(F) on V(G) and let it be denoted by
Q. Let ¢ and b be permutations obtained by restricting the action of ¢ and
7 to Q respectively and let H = (a, b). We ask whether H is primitive by
using the GAP-command IsPrimitive. If it is, then we seek an element of H
satisfying the following.

Theorem 2.1. (Jordan, see [11]) If a primitive group of degree n contains
a cycle of prime degree p with n — p > 3, then the group is either alternating
or symmetric.

Then computing the signs of permutation ¢ and b, we can determine whether
H is alternating or symmetric.
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Here we note that we may use the MAGMA-command IsAlternating or
IsSymmetric. However it was sufficient to use the above theorem to determine
alternating or symmetric in the GAP-system.

If H is not primitive, then the GAP-command Blocks gives blocks of im-
primitivity and in our cases the length of a block was 2 or one third of the
length of . Let Q be the set of the blocks, let H, @ and b be the images of
H, a and b on Q respectively, and let K be the kernel of H — H. In either
case we compute @ and b and if the degree of H is rather large, we apply the
above method in order to see if H is alternating or symmetric, and if not, we
compute it directly. Then we use the following lemmas.

Lemma 2.2. Let |2] = 2m and suppose that H has a block of length 2
and that A, C H. If there exists an element h € H such that its order |h/|
is different from |h| and that h has a fixed point on Q, then K contains all
products of an even number of 2-cycles on blocks, hence 2™ ! < |K|, and H
contains a subgroup isomorphic to A,,. Furthermore if H contains an element

k with sign(k) = —1 and sign(k) = 1, then H = 2 H

Proof.  The condition on A implies that K # 1. Then we have K contains all
products of an even number of 2-cycles on blocks, since A,, C H and since the
length of the block is 2. Let the j-th block be 5 = {4,5'}. If we take a 3-cycle 5
and an odd-cycle f of H with s = (1,2,3) and = (3,4, .., 2 + 1), then we may
assume that s is a product of two 3-cycles and so is ¢ and we may set {j,5'} so
that s = (1,2,3)(1',2",3") and t = (3,4, ..,2l + 1)(3,4',.., (2l + 1)’). Hence we
have (s,t) =2 Ay, q. If m = 21+2, then we may have either r; = (21,214 1,2+
2)((21), (21 + 1), (20 + 2)") or o = (21, (21 +1)", 20 + 2)((21)", 21 + 1, (21 + 2)").
In the latter case row =7 with w = (21 + 1, (21 +1)")(21 + 2, (2l + 2)') € K.
So in either case we have (s,t,71) 2 Ay 9 as a subgroup of H.

The condition on %k implies that there exists k' in the above alternating
subgroup with k = &’ and that k=% is a product of an odd number of trans-
positions. Hence K contains a transposition (4, j') for every j. If H contains
7 = (1,2), then we may assume r = (1,2,1',2"), (1,2',1',2), (1,2")(1,2) or
(1,2)(1',2"). The last case clearly gives a subgroup isomorphic to S,,. For
the remaining cases, r(1,1’), r(2,2') and (1,1")r(1,1’) are equal to (1,2)(1’,2)
respectively. Thus the last assertion holds. a

The existence of k in Lemma 2.2 depends only on the signs of a, b, @ and b
as sign(k) = —1 and sign(k) = 1. We note that the case for 2.5, occurs
when an odd permutation of H is also odd in H in Theorem 1.1.

If H has 3 blocks, we have H = S3. In this case we compute some stabilizing
elements of the blocks whose normal closure generates the stabilizer and check
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whether one component of the stabilizer is primitive and so on. Thus as above
we find whether K acts on a block as an alternating or a symmetric group.
Next we find an element not acting with the same order on all blocks. This
gives A3 C K, where || = 3m. Then computing the signs of the stabilizing
elements on each block of 2, we determie K to be one of A3, A3 2, A3 22 or
S8

Lemma 2.3. If K = A3 or A3 2? and if any transposition of H is an odd
or even permutation on ) according as m is even or odd, then H does not
contain a subgroup isomorphic to a split extension of K by S3. Otherwise H
contains a subgroup isomorphic to such a split extension.

Proof. Let Qy = {1,2,---,m}, Qy = {1',2',---.m'} and Q3 = {17,2”,---,
m”} be the blocks and let £ be a transposition of H interchanging Q1 and Q.
If ¢ itself is an involution and fixes every point of €23, then ¢ does not satisfy the
condition of the Lemma. In this case ¢ and one of its conjugate interchanging
Q9 and {23 generate a subgroup isomorphic to Ss, any of whose involutions cen-
tralizes one component of K. Then this subgroup and K generate a subgroup
of H isomorphic to a split extension of K by Ss.

Let t2 be the constituent of #2 on Q5 and let ¢3 be the constituent of ¢ on Q.
Since A2, C K, by taking a product of ¢ and an element of K, we can choose t3
either an identity or a transposition, and so does ¢t3. By the above argument we
may assume that both of o and ¢3 are not identities. If ¢5 is a transposition,
then we may set ¢t = (1,1,2,2')--- and t*> = (1,2)(1',2'). Then we have
A3 2?2 C K, since t? € K. By taking a product of ¢ and (1’,2)(1”,2") which is
a conjugate of t2, we may assume for the Lemma that ¢, is an identity and #3 is
a transposition. Hence there exist an element (1,1')(2,2")--- (m,m)(1"”,2").
Then this element together with its conjugate (1,2)(1’,1")(2/,2") - (m/,m")
generates a subgroup isomorphic to S3 but its involution does not centalizes a
component of K. If K = A3 2, then (1,2)(1’,2')(1",2") € K, and the product
of this element and the last involution becomes an involution interchanging
Q9 and 23 and stabilizing all the points of ;. So in this case as in the first
paragraph we have a subgroup of H isomorphic to a split extension of K by
Ss3. Now it is easy to see that these two types of subgroups isomorphic to S3
are distinguished by the signs in the Lemma. O

In fact we first see whether the subgroup (a, a’) of H is transitive on Q. If
it is transitive, then the method mentioned above gives the structure of H. If
not, we see that it has two orbits on {2 which are interchanged by b and how
the subgroup acts on one of its orbits by the above argument. This completes
the computation.

We give an observation on a case where H has blocks of length 2.
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Proposition 2.4. Ifanelement (z,y) in V(G) is not conjugate to (z~!, y=!)
in Aut(G) then they make a block of length 2 in an orbit of Aut(F) on V(G)

Proof.  First we note that the transformation (u,v) — (u~!,v~!) is con-
tained in Aut(F'). So such a mutually inverse pair of elements of V(G) as in
Proposition 2.4 represents a pair of elements in a same orbit of Aut(F) on
V(G). Now (z,y) goes to (z,zy) and (z~!, y~!) goes to (z~!, 2~ 'y !) under
a. The latter is conjugate to (z~!, (zy)™') by 7. Thus a mutually inverse
pair of elements in V(G) goes to another such a pair under a modulo Aut(G).
Clearly the same statement holds for b. Hence such a pair makes a block of
an orbit of Aut(F) on V(Q). O

In all cases in Theorem 1.1 that have blocks of length 2 the blocks are in
fact made up of these mutually inverse pairs. In the remaining cases (z,y)
is conjugate to (z7!, y~!) in Aut(G), in which case they represent a same
element of V(G).

TABLES

In tables below ’degree’ column shows the lengths of the orbits of Aut(F) on
V(@) and ’Aut(F)’ column gives the actions of Aut(F) on its orbits on V(Q).
The 2-generators are representatives modulo Aut(G) of the orbits of Aut(F)
on IA/(G) In cases for My, Mo and Mg, the 2-generators are given as prod-
ucts of specific generators a and b below each table.

No. 2-generators of A7 degree  Aut(F)
1 (1,2)(3,4), (1,3,5,2,4,6,7) 16 Az
2 (1,2,3)(4,5)(6,7), (2,3,4)(5,6,7) 21 Aoy
3 (1,2,3)(4,5)(6,7), (2,4,3,6,7) 21 So1
4 (1,2)(3,4), (2,5,3 6)( ,7) 24 A2S5;
5 (1a2)(3a4)a ( ’ )( 6? ) 30 810153
6 (1,2)(3,4), (1,3,2,4,5,6,7) 36 Sag
7 (1,2)(3,4), (1,3)(2, )(4,6,7) 36 A3,253
8 (1,2)(3,4), (1,3,6,4,7,2,5) 36 Aszp
9 (1,2)(3,4), (2,3,5,6,7) 40 Sao

10 (1,2,3)(4,5,6), (2,3,4,6,7) 48 223 Ayy
11 (1,2,3,4)(5,6), (2,3)(4,5,7,6) 56 227:S0g
12 (1,2)(3,4), (2,5,4,6,7) 72 Ay

13 (1,2,3)(4,5)(6,7), (2,3,4,5,6) 84 2154
14 (1,2,3)(4,5)(6,7), (2,4)(3,6,5,7) 84 2154
15 (1,2,3), (2,4)(3,5,6,7) 120 259 Ago
16 (1,2,3)(4,5)(6,7), (2,4)(3,5,6,7) 192 247 Ay82
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No. 2-generators of Ag degree  Aut(F)
1 ,2,3)(4,5,6), (1,4)(2,6,8,3,5,7) 15 S515;
2 (1,2,3)(4,5)(6,7 (3,4)(5,6,8,7) 42 A3,25;
3 (1,2,3)(4,5)(6,7 (1,4)(2,6,5,7,3,8) 45 S1518;
4 (1,2)(3,4), (2,5,7,3,4,6,8) 90 Soo
5 (1,2)(3,4), (1,3,5)(2,4,6,7,8) 96 Sos
6 (1,2)(3,4)(5,6)(7,8), (2,3)(4,5)(6,7,8) 96 A3l Ss
7 (1,2)(3,4), (1,3,2,5,7)(4,6,8) 198 Sios
8 (1,2)(3,4), (2,5,3,6,8,4,7) 252 Agso
9 (1,2)(3,4), (2,3,4,5,6,7,8) 260 215130

10 (1,2)(3,4), (2,3,5,6,7,8,4) 270 Sa70

11 (1,2)(3,4)(5,6)(7 (2,3,4,5,6,7,8) 384 S3s4

12 (1,2)(3,4), (2,5,3,6,4,7,8) 432 2215:G516
13 2,3)(4,5)(6,7 (2,3,4,5,6,8,7) 480 2239 Ay
14 2,3)(4,5)(6,7 (2,3 4)(5 6,8) 540 218970
15 (1,2)(3,4), (2,3,5,7,4,6,8) 768 2383 Asgy
16 1,2,3)(4,5)(6,7 (3,4)(5,6,7,8) 1092 21 Ss46
17 1,2,3)(4,5)(6,7 (3,4,5,6)(7,8) 1092 21 Ss46
18 (1,2,3)(4,5)(6,7), (2,3,4,5,6,7,8) 1296  2647:Sg48

No. 2-generators of Ag degree  Aut(F)
1 (1,2)(3,4)(5,6)(7,8), (1,3,2,4,5,7,9,6,8) 25 Aos
2 (1,2,3)(4,5)(6,7), (3,8,4,6,5,7,9) 36 Asg
3 (1,2)(3,4), (1,3,5,7,2,4,6,8,9) 72 A
4 (1,2)(3,4), (1,3,2,4,5,6,7,8,9) 81 Ss1
5 (1,2)(3,4), (2,3,5,6,7,8,9) 90 Soo
6 (1,2)(3,4), (1,5)(2,6,3,7,9)(4,8) 114 Si14
7 (1,2)(3,4), (2,3)(4,5,6,7,8,9) 135 A325;
8 (1,2)(3,4), 1,5)(2,6,3,7)(4,8,9) 138 A4l Ss
9 (1,2)(3,4), 1,3,6,4,7,8,9,2,5) 162 Si62

10 (1,2)(3,4), (2,5,3,6)(4,7,8,9) 222 A3, S}
11 (3,4)(5,6)(7,8), (2,3)(4,5,7,9,6,8) 231  A3.25;
12 (3,4)(5,6)(7,8), (2,3)(4,5,7,9,8,6) 243 A3, 51
13 2,3)(4,5)(6,7) (3,4,5,8,9,7,6) 252 Aoy
14 2,3)(4,5)(6,7) (3,4)(5,8,7,9) 300  A3,25;
15 2,3)(4,5)(6,7) (3,4,6)(5,8)(7,9) 315 S315
16 (1,2)(3,4), (2,5,4,6,7,8,9) 324 S394
17 (1,2)(3,4), (1,3)(2,5)(4,6,7,8,9) 360 A35)253
18 (3,4)(5,6)(7 (2,3)(4,5,9)(6,7) 432 Su32
19 (3,4)(5,6)(7 (2,3,5)(4,7,9,8,6) 460 Ageo
20 (3,4)(5,6)(7 (2,3,5,7,4)(6,9,8) 486 Sass
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No. 2-generators of Ag (continued) degree Aut(F)
21 (152)(354)(5a6)(778)a (273)(4a5a639a877) 567 A?SQQZSPT
22 (172)(374)(576)(778)7 (27375777 4)(67879) 574 S574
23 (152)(354)(5a6)(778)a (233a4a5a7)(6a978) 612 21 5306
24 (152)(3a4)a (133a235a4a6a ) 79) 828 218514
25 (1,2,3)(4,5)(6,7), (2,3,4)(5,6,8,9,7) 864 Ageq
26 (152)(354)(5a6)(778)a (233a5a7a 9)(4a678) 940 21 5470
27 (1,2)(3,4), (2,3,5)(4,6,7,8,9) 2560 21279 A;950
28 (152a3)(4a )(637)5 (3a4a6395 » Oy ) 3120 21559:81560
29 (1,2)(3,4), (2,5,3,6,8,9)(4,7) 3144 257V A 509
30 (1,2)(3,4)(5,6)(7,8), (2,3)(4,5,7,6,8,9) 3304 21651:5 659
31 (1,2)(3,4)(5,6)(7,8), (2,3,5)(4,7,8,9,6) 3980 21 S1990
32 (1,2,3)(4,5)(6,7), (3,4,6,7,9,5,8) 4320 22199:85160
33 (1,2,3)(4,5)(6,7), (2,3,4)(5,6,8,7,9) 5760 22879 Ayggg
34 (15 )(3a4)(5a6)(778)a (233a4a5a7)(6a879) 5964 21 52982
35 (1,2,3)(4,5)(6,7), (3,4,5,8,6,7,9) 6300 21 53150
36 (172)(374)(576)(778)7 (273)(47 5)( e 9) 7452 20 53726
37 (1,2)(3,4)(5,6)(7,8), (2,3)(4,5,7)(8,9) 9288  2%643:.G,644
38 (1,2,3)(4,5)(6,7), (3,4)(5,6,8)(7,9) 12960  26479:S6450
No. 2-generators of My degree Aut(F)
1 b2ab3a'b%ad, aba”b? 66 As32
2 b2ab®a'0b%a’, ab3a®bab 96 Ayg2
3 a, b 288 214354,
4 a, aba?ba*b?a’” 768 2383 Aoy
5 a, ba*babb?a® 792 2197:81952
6 a, a"ba%ba'%b 1296  2647:Sg48
7 a, a’bab®a? 1380 21 S690
8 a, aba’ba*b 1792 2%7 A 52
a=(1,6,9,8,4,3,2,10,7,11,5), b = (3,7,8,11)(4,5,9,6).
No. 2-generators of Mo degree Aut(F)
1 a*bab3abv?, ab®a®b°a 10" 18 Aqg
2 a*bab3ab?, b"a®b3a%ba 22 S99
3 a*bab3as?, a’b a3’ aba 22 S99
4 a*bab3ab0?, aba®b%abba 36 S36
5 a*ba’b3adb?, a’ b0’ adb? 36 Aqg2
6 a4ba2b3a6b5, abb3a*b®abb 40 S40
7 a*ba?b3ab0°, ba"b3a®b? 48 A352853
8 a*bab3ab0?, aba?b3a'0p3 48 Ayg
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No. 2-generators of Mis (continued) degree Aut(F)
9 a*ba®b3a®b°, a’ ba’badv’ 60 Soo 1S3
10 a*ba®b3adb®, a?b’a®b?a’b3ab 63 Ar 1S3
11 a, a’ ba’bat 64 Sea
12 a, a’basb? 64 231 A3y
13 b3a®b3a 108, a?ba" b3 adb? 90 S350 1S3
14 a, ab’a’ba"b3a* 96 247 Ayg
15 a*ba?b3adb®, a’ba''ba®b’ 117 Asg 1S3
16 a*ba’b3adb®, b3abvPab?a’ 120 Ayl S
17 a*ba?b?asb’, a®ba”b%a'b%a’ 120  A3,225;
18 a, a’b’a3b’a'0b? 160 S160
19 a*ba®b3adb®, ba*b”a®b°ab 162 Ss41.53
20 a, a’ba?b*abb7a® 180 S180
21 a, a’b8a’p? 180 S180
22 a*ba?b3adb°, a*ba®b®ab 192 Agy 1S3
23 a*ba’b3a®b’, ab3a®b°a’ba’ 198 A32S;
24 a*ba?b?asb’, ab’a’b’a’ba® 216 A3,2853
25 a*ba®b3adb®, b3a'%a*b7 a0 264 Agg 1 S3
26 a*ba?b3adb®, ba®b3ab%ab 288 Agg 1 S5
27 a, a3babb°albal 360 Asgo
28 a, b 360 A360
29 a, ab®ab3a’ba® 396 Asgg
30 a, a3b8a'%ba®ba” 396 Asgg
31 a, ab®a*b 672 2335 Asa6
32 a, a®ba’ba'0ba? 1080  2%39:S540
33 a, a’bPatba? 1776 2887 Aggg
34 a, abba’p’ 2120  2'9%9:8 460
35 a, a?ba”baSbh? 2288 211434,
36 a, b%a'%ab3a 2592 21295 A 596
37 a, a?ba®b’ab’a? 2808  2103:5 404
38 a, ab’ab’abb®a 3384  21691:G409
39 a, b5a®b5ab’a? 3400  21699:51700
40 a, a’b?a’b’a’b® 4400 22199 Ayg0q
41 a, b*ab3alb?a? 9728 22431 Ay432

a=(2,9,3,12,4,8,11,6,7,10,5), b = (1,2)(3,4,10,9,5,6,8,7, 12, 11).

No. 2-generators of Mooy degree Aut(F)
1 a’b¥ab®abb0, a’ b a"b0a5p7 33 S33
2 a"b¥ab®abb'0, a’b%a2b7a*b? 33 Ass
3 a"b¥ab®abp, baPbba’b7ab 33 S33
4 a"b¥ab®abp, b abtadbba” 33 Aszs
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No. 2-generators of My (continued) degree Aut(F)

5 a7bsab5a6610, ab?a®b%a2b 42 Ag12

6 a, b"a"b?a0b3at? 48  A342%5;

7 a’bBab®a’b10, a?b?a?b°a b8 48 Sug

8 a"b¥ab®abb'0, a’b’a'%b3adb” 48 S4g

9 a?b¥abb3a™b, ab®a®bab 60 A3,2853
10 a"b¥ab®abb'0, a'%p%a5b8a8 66 As32
11 a?b¥abb3a™b, a®b®aBb%ab* 72 A3,225;
12 a?b%a%b3a" b8, a®b’a*b’a'%b8a® 84 A%4225§2
13 a"b¥ab®abb'0, a’b*a"b8a5b7 84 S402
14 a, b 90 Soo
15 a, b6a2b'0a5b8 180 21 S99
16 a, aPbda2b3ab” 198 A3225]
17 a, ab’a*b%a?v’a® 216 A3,2853
18 a, b3a*b"atb? 288 Aogsg
19 a, batb"a'%bta” 360  Ajg0 1S3
20 a, a*bPa’b®a’b?t 420 A3,,25;
21 a, a?b’a’b%a7b° 432 Ayzo
22 a, ab?a®b%a’b°a? 480 2239: 5940
23 a, a®b%a® 480 Augo
24 a, a’b3a?b8a?? 486 Sis6
25 a, brab®a'b'a® 504 A3,2%2852
26 a, abba"b8a’ 576  2287:Sheq
27 a, a3b®a®ha’ 868 S4342
28 a, a®b3a’babb 900 21 Sus0
29 a, a’babb7ab* 1056 2527 Asog
30 a, a'%b%a%b"a10p? 1080 2939 Ag40
31 a, b2ab'%ab 1296 2647 Agyq
32 a, a’b?2a’b8at 1440 2719.G50
33 a, abb%a%p10¢7 b4 1512 2755 Azsg
34 a, a®b?abb%a®b®ad 1800 2399 Agq
35 a, a’b?atb" b’ 1920 2959 Aggg
36 a, b abBaBbbal? 2232 254,146
37 a, b a'vPa’bat 2232 21154,
38 a, b 9" b3a’b?a 2244 21511922
39 a, ab’a’b8a’ 2244 2151122
40 a, a*b8abp10ab? 2376 21187:51gg
41 a, ababBab® 2664  21331:5 339
42 a, bab>a®btat 2688 2671 Agry2
43 a, a?b*a'0b0410p3 2784  21391.8,40,
44 a, a®b*adp’ 3036 21558
45 a, a2ba’b*al? 3036 21 S1518
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No. 2-generators of My (continued) degree Aut(F)
46 a, abbtatbbadb? 3036 21Si518
47 a, b3a"b b 3072 21535 A 536
48 a, aba'0b?a*bta? 3240  21619:G, 600
49 a, b3atb'%a" b’ 3960 21970 A 95
50 a, a®b’ab0a 3960  21979:819s0
51 a, a®b?a5b°a®b” 3960 21970 A 95
52 a, alb8a®b7a® 3960  21979:819s0
53 a, bab*a®b8at 4032 21907 4,052
54 a, a*b>a®b8a5p° 4032 22015 45016
55 a, abb?abbPab? 4092 21 S2046
56 a, abb8a?bh? 4092 21 S2046
57 a, a®bPab3a b8 6000  22999:S5000
58 a, a®b%a''ba 6624 23311 Az3
59 a, a?b3a®b"al0b” 6656 21663 45642
60 a, a3b'0ab7a%p10 6660 21 53330
61 a, b3a®b?a’bda’ 6660 21 .S3330
62 a, a’b3a'%b"a?b’ 6720 23359 Azs4
63 a, a*b*a®b3ab? 6840 23419 A5499
64 a, ab?abadbBa’” 7680  23839:S3540
65 a, a?b 0678 7896  21973:519742
66 a, a*b"a®bbab? 9216 22303 Ay5042
67 a, aba’b®a®b” 9216 22303 Ay5042
68 a, a?b?at0b" b’ 9744 22435 9562
69 a, a®b"a*b?a®b” 10304 22575 Agsr62
70 a, a?b"a®va b 10920  22729:557502
71 a, b2a"b*abb8a8 10920  22729:597302

a=(1,5,12,21,6,18,4,2,19,14,17)(3, 20,8, 22,16, 7,9, 13,15, 10, 11),
b=(1,13,18,15,7,14,4,21,3,12,22)(2,11, 19, 16, 5,8, 6, 20, 10,9, 17).
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