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Abstract. A new proof of the one-dimensional Carlson inequality of discrete
and integral type is introduced. Also, a new proof of the multidimensional Carl-
son inequality of integral type is presented. Additionally, the duality between
the discrete and integral type of Carlson’s inequality are explored.

AMS 1991 Mathematics Subject Classification. 26D15, 42AXX, 42BXX, 47A30,
47A63.

Key words and phrases. Discrete and integral inequalities, Hilbert’s inequali-
ties, Carlson’s inequalities, multidimensional inequalities, the Hausdorff-Young
inequality.

0. Introduction

Inequalities are basic tools in the study of Fourier analysis. A classical re-
sult relating to LP-estimates for a function and its Fourier transform is the
Hausdorff-Young inequality (1912-1923) which states that, for any complex-
valued function g in the Banach space LP(T)

(0.1) 191l < llgllp

holds for 1 < p < 2. This inequality was proved by Young [19, 20] for even p’
and by Hausdorff [9] in the general case. It is easy to see that for functions
g(z) = Ae™?™™mT the inequality (0.1) turns to be an equality. With the other
words, the oscillating exponent maximized the Hausdorff-Young inequality.
Moreover, Hardy and Littlewood showed that the converse result was also
true, i.e. every maximizer of (0.1) must be the functions Ae ™2™ with some
constant A and integers m (see e.g. [21, p. 105], Theorem (2.25)). Their
proof is based on the one-functional relation for maximizers of the Riesz-
Thorin inequality (see (1.24) in [21, p. 98]), the properties of entire functions
and on the Riemann-Lebesgue theorem for Fourier coeflicients.

In 1924 Titchmarsh proved (0.1) for the space LP(R). Thus, it was natural
to consider the question about maximizers of the Hausdorff-Young inequality
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92 A. KAMALY

for the real-line group, i.e. to find the real-line analogue of the above Hardy-
Littlewood result. Of course, an oscillating exponent does not have to be a
maximizer (it is even non-summable on the real line). On the other hand, since
the decomposition of an oscillating exponent into Fourier series coincides with
the initial function, thus, in the real-line case, it will be natural to consider
a maximizer as a function which is invariant under the action of the Fourier
transform, i.e. the Gaussian function exp(—mz?). Moreover, if we consider
the n-dimensional version, then one may expect that if an extremal function
exists, it should be rotationally invariant. The n-dimensional norm will be a
power of the one-dimensional one, so we need an extremal function for which
a product of functions is radial in separate variables as well as in the variables
jointly. This is possible only for a Gaussian function. But if we admit that the
maximizer is Gaussian, we get the improved constant in the Hausdorff-Young
inequality. That is

S =

p
p/

0.2) Iflly < B2Ifll,,  with B, =

e

This inequality for the space LP(R™) and for even integer p’ was established
by Babenko [2] in 1961. The first problem in the proof of (0.2) is to prove the
existence of extremal functions. The difficulty is that the Fourier transform
is not a compact operator from LP(R") to LP' (@) So we can regularize
this operator. A very natural way to regularize Fourier series is to generate
the Abel means. This idea, in some sense, was realized by Babenko, who
introduced an integral operator K;f with the classical Mehler kernel

o0

K(w,y,t) = ) t"du(x)ipn(y)

n=0

where ,, are the Hermite orthogonal functions. Obviously, the operator K f
forms the Abel means of the Hermite expansions of the function f and K;f = f
for t = 1.

The idea of the proof of this moment is similar, in some sense, to the one of
Hardy and Littlewood. Namely, since K; is a good (compact) operator, then
by a weak compactness argument, a solution go, ||gol[, < 1 of the extremal
problem

1Ktgollyy = sup [[Kiflly = pp,t
lfllp<1

will exist and satisfy an integral identity, whose right-hand side contains | f |p’_2
(see (25) in [2]). But the application of the method of entire functions (in fact
the property that bounded entire functions are only constants) requires to
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avoid operations with absolute values. Since [f|P'~2 = (ff)?'/27!, thus to
save uniqueness we can require that the value of p’ will be even integers. Then
using the Phragmen-Lindel6f method and rearranging contour integrals in the
complex plane, one can calculate the value p, ; and as a consequence, get the
inequality

1Kl < pp,ellgllp-
A limiting argument gives the inequality (0.2) since

lim p,; = B,.
t—0+ " 2 P

Babenko mentioned that the equality in (0.2) can be realized for the func-
tions f(x) = exp(—az? + ibx), a > 0 and introduced the hypothesis that the
inequality (0.2) was still true for all values 1 < p < 2 and that extremal
functions must be the Gaussians.

The first part of Babenko’s hypothesis was proved by Beckner [4] in 1975,
i.e. he established the inequality (0.2) for all 1 < p < 2. Now B, is called the
Babenko-Beckner constant. He also showed that for all 1 < p < 2 the sharp
constant (found by Babenko) in (0.2) is given by the Gaussians. However,
Beckner’s method did leave open the question whether the Gaussians were the
only maximizers or not. The positive answer was given by Lieb [15] in 1990.

Further, for the even integers p’, Andersson (1992) [1] and for all p, Sjolin
(1994) [18] proved a Babenko-Beckner type of the classical Hausdorff-Young
inequality (0.1) for functions in the space L?(T), with small supports. One
defined

/g\ ! n 53
H,y, = sup{“ b . 4 e Lr(1™), supp g € B(0,a), Hgllp#o}

lgll,
and let H, := lim, ,o+ H,, (see [11, p. 3]). In these terms, the one-
dimensional result of Andersson and Sj6lin states that
H, =B,.

The author proved the identity H, = By for p € [1,2], using other reasons.
Namely, we proved Carlson’s inequality on n-dimensional torus and applied
it to find some upper bounds for H, ,. One of the possible estimates is the
following

(0.3) Hy,o < (14Coa)B?, 1<p<2.

Moreover, the author mentioned some applications of the Babenko-Beckner
constant to related problems of Fourier Analysis [12]. O
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1. On Carlson’s Inequality of discrete and integral type

For an even, periodic, real-valued function f on R such that f € A([—7,7])

~

and f(n) = a, > 0 for all n € N with ap = 0, Fritz Carlson (1934) proved that

(1.1) ian <V (i ai) 4 (i n2ai> 4

holds and /7 is the best possible constant. By the mean value theorem for
integral together with partial integration he [6] got

£
(1.2) 72(0) = —2 / f(@) ' (x)de

for some ¢ € (—m,m). Acting the Schwarz-Cauchy inequality on (1.2) and
using Parseval’s identity were other parts of Carlson’s proof. He also noted
that (1.1) does not follow from Holder’s inequality [14] in the following way

oo oo % oo % 00
(i) (£ (59
n=1 n=1 n=1 n=1

because Yo~ n~" — oo as h — 1. However, in 1936 Hardy [7] presented
a simple proof of (1.1) and observed that (1.1) in fact followed even from the

1 1
Schwarz-Cauchy inequality Y07 | 0, < (oo, 22)® (302, y2)? applied to

n=1*"n

4

1 1
the sequences z,, := a, (a + ﬂn2) * and y, := (a + ﬂn2) > and he even got
the best possible constant /7 by making a suitable choice of @ and S and
invoking Parseval’s identity.

Hardy’s technique can be used for any periodic complex-valued function

~

f € A(T) with f(0) = 0. Moreover, another expression of (1.1) is

2

(13) Fllac < C(Hfllz!lf’llz)

which is equivalent to

(1.4 I£ay < € (1512012

Thus, the best possible constant C' (which depends on the definition of the

Fourier series of f) will be v/27 and 1 if f(n) = oL / f(z)e™"™®dx and
o] <

2r

f(n) = / f(z)e™ ™" dg respectively.
l21<5
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~

Here || f[| a(r) := Y ,nez |f(m)] and A(T) is the space of continuous functions
on T having an absolutely convergent Fourier series. Note that all the sums
are supposed to be finite. Furthermore, ||f|l2 = ||fll2(z) and [|f|l2 = || fl|z2(T)-

The author proved (1996) the multidimensional discrete inequality of types
(1.3) and (1.4) by applying Hardy’s technique and invoking the classical
Hausdorff-Young inequality [11].

n

qo

)|l 7] l_qla "3
1F lLaceny < KNy > D]l

(1.5) Pl=e

n
qo

1—
<K@l ™ | D 1Dl
|Bl=c

Here the absolute value of the multi-index 3 is equal to the positive integer
a > 1 such that a > % with ¢ > 1 and 1 < ¢ < 2 for the first respectively the

second part of (1.5) where ¢’ = q% is the dual exponent of q. The positive

T
constant K,Saq) depends only on n,« and ¢q. Furthermore, H]?qu = “ﬂl[‘?, ()

and || fllg = 1 fllLa(rn)-

~

In the case f(0) # 0, we obtain

1—
I Laceny < IFI+ K F e | D 1D flg

|Bl=c
The other versions of (1.5) for 1 < g < 2 are
74
Ifllaceny < KTl ™ | D2 ID%flly ) and

1Bl=a

qo

«@ l_qla —yy
£ 1lacrmy < K lg > I fllg
|Bl=a

The corresponding integral inequalities [3, 6] of (1.1) and (1.3) are

(1.6) /Ooo f()dz < /7 (/Ooo f?(ac)cm)i (/Ooo xzfz(x)dac>%



A. KAMALY

respectively

[T ywwse(f” |f(aa>|2dac)i ([ rwpas) .

There is equality in (1.6) when f(z) :=
s.

ﬁ, for any positive number r and

The inequality (1.6) is proved by Carlson [6] and Hardy [7]. The version
(1.7) was proved by A. Beurling [5]. The inequality (1.6) is generalized in
many directions [5, 8, 14]. B. Kjellberg [13] and D. Miiller (see [16], Lemma
3.1) proved a multidimensional extension of Carlson’s inequality of the integral
type. The purpose of the next section is to present new proofs of (1.1) and
(1.6). These proofs are established by application of Hilbert’s double series
theorem and its corresponding theorem for integrals.

2. One-dimensional cases

Hilbert’s inequality [8] states that for nonnegative sequences a := (a,) and
b= (by), n €N

holds for p > 1. There is equality here if ¢ or b is null.

The corresponding Hilbert’s inequality for integrals [8] is
1

(2.2)
[ st < s ([ rersa)” ([ )

for nonnegative functions f € L? and g € L*" and for p > 1. Here the equality
occurs if f =0 or ¢ = 0. In both (2.1) and (2.2) p' = ;%5 and the positive
constant smﬁﬁ is the best possible one.

p

=

Now, we give a very short proof of (1.1) and (1.6) but with a worse constant.
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Let p = 2 then by (2.1) we get

> (n+m)aya
n m

NGy, Qo Maqam
(2.3) :ZZ n+m ZZ n-+m

n>1m>1 n>1lm

N[

o0 % oo
=2 Z Z Zaj_ ::lm <27 (ngl n2ai> (Z ai) .

Similarly, for p = 2 and by (2.2) we obtain

(/Ooof(m)dx> //f x+x+y)ddy
<on([Ter) ([ o)

As we mentioned before, we derive (1.1) and (1.6) with the worse constant

V2m. O

(2.4)

3. Fritz Carlson’s inequality of integral type

Kjellberg and Miiller proved a multidimensional extension of Carlson’s in-
equality of the integral type, as mentioned before. Using the same technique
in the proof of (1.5) in [11], we get the recent result:

3.1. Theorem (Generalization of Carlson’s inequality of integral
type). Let absolute value of the multi-index 3 be equal to the positive
integer o > 1 and o > 7 with q = ﬁ where ¢ > 1. Let f be a real-valued

function on R such that f € L*(R*) N LY(R") and z°f € LY(R™). Then

n_
qla

(3.1) 1l ey < CL0)

o > 1128 fllzagen

|Bl=c

The positive constant Cf , does only depend on n, q and «.

Proof of Theorem 3.1. Let

S = “f“qu(Rn) and T := Z ||5E6f||qu(Rn)-
|B|=c
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For ¢t > 0, define

0:= Z (1+t|xﬁ|q).

|Bl=c
Then

q

(3.2) T<| Y Nz’ fllzon
[Bl=c
Here and everywhere in this paper z° := [Thes xz’”

By Holder’s inequality we get

£l 22 ®n) :/R |f(z)|©@1© 4 dx

= (/n|f(x)lq®(x) dxf ( Rn@_% dx>$

,q, 1
(3.3) 1 K !
< (cn,aS + tT> / Z (1 + t|;1;5|11) dx
" LIBl=a
1 1
q d z
< (Cn,aS + tT) / & Z :
R™ (14 tC,, o|z|2¥) @
Because
(3.4) S (L+ta’|) =cnatt Y 289> 14 1C, ofx|
|Bl=a |Bl=c

Here ¢, o = sza 1 and the positive constant C), , does only depend on
n and o.

1

d qr
It is not hard to see that / 7qu is finite for o > % and
R (1 + |z|1o)a

- " gaT ( ) T (qizrqn(ll)aq)>
(3.5) /0 TEwEara () .
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Now, by (3.3) and (3.5) we obtain

1
q

/ diﬂu"] !
R7 (14 |:L'|q06)%
—7 % o0 n—1 %
= (tC,.0) T (cn,asw) [/ s
0 {zeRn—1:|z|=1} (1 _|_7nqa)7

= (M) (10, 0) T (08 + 1T) /0 T dr
+

£l @y < (tCp)~ 7@ <cn,aS+tT>

n

-

= B() (tq_f—zcn,as + tl‘q%T) ‘.

Here

n goatn(l—gq) | g1
qawn 1T (q_a> r ( a(¢—1)a )] a

w2 (1) (Cna) ¥

q

5= |

and w,_, is the surface area of the unit sphere in R*~!.

Choose t = 2, then by (3.2)

__n
g’ n

I fllpreny < BY) (cpo +1)s S~ Tawa

[e% l_qILa
= CENFpaiasy | Do 127 fllan

|Bl=c

Remarks.

1. For ¢ =2, n = a = 1 and for a real-valued function f, we have the
Beurling result (1.7) and for a positive function f, we obtain the classical
Carlson inequality (1.6) of integral type.

2. For ¢ > 1 and f € L*(R*) N LY(R") and z°f € L¥(R") we obtain

n_
qo

- [ l_qia
171z @y < 5 KSF i, |§| 12" fllporemy |
Bl=a

if we define © := 3" 5 _ (1 + t|z?|*"). The positive constant KT(Laq) is found in
(1.5) and for the positive constant cg, please see [12, pp. 5-6]. O
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4. A duality between the discrete and
integral type of Carlson’s inequality

In [7] Hardy noted that (1.1) implies (1.6). Applying this observation on the
second part of (1.5) we obtain

4.1. Theorem. Let the absolute value of the multi-index 3 be equal to
the positive integer « > 1 and o > % with 1 < q < 2 where ¢' = q%’l. Let
g be a positive function on R" such that g is a smooth function (for instance
g€ C’g"(]l/@)) and its support is localized on T". Further, g and w/’@ € Lq(]l/@).
Then

n

qo

(4.1) Il ey < KL

Lq(R”) 2. 1229l o )
|Bl=c

Proof of Theorem 4.1.  Let R denote the reflexion operator that is Rg

g = g(—z) then it is obvious that g = g, g = g and g = g. Define [ := g,
then g := Rf such that f( ) >0 for all m € Z™ and f € Lq(R") N CSO(R")
and its support is localized on T". Also, Rf >0, D8f = DPg = (2@9
and f(0) = g(0). So, f satisfies the second part of (1.5). Moreover, f(z) =
Y omenn Flm)e?mi<ma> with < m, 2 >:= S h—q mizy. Furthermore,

(4.2) F0) =lIfllacny, 9(0) = llgllLrgn) and
(4.3) 1fllzaceny = 19l oy 1D Fllzaceny = 11289 Loy

Now by the second part of (1.5) together with (4.2) and (4.3) we obtain (4.1)
for smooth functions g.

Remark. For q = 2 and invoking Parseval’s identity we get

/ng(x)dx < k) (/ng($)2d$>%[l_%] 3 (/R (mﬁg)%x)

|Bl=c

[N
sk

which gives (1.6) forn = a = 1.
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4.2. Theorem. Suppose f is a function on T" := {z € R" : |zx| < 1; 1 <
k < n} such that f(e?>™®) = 0 on T" \ Bs where Bs := Bs(0) = {z € R" :

|z| <6; 6:=1 —a} for0<a<i. Letg be defined on R" by

1_
f(e2’m) ifxeT
g(z) = .
0 otherwise.

Then f € A(T") if and only if ¢ € A(R™). Moreover, there are positive
constants C1, Cs (depending on a) such that

Cillgllagny < 1 fllacrny < Callgll awny-

Proof of Theorem 4.2. The technique is analogous to the case n = 1, due
to Rudin (see [17, pp. 56-57], Lemma 2.7.6). Let h be a smooth function on
R", for instance h € C>°(R"), such that Bs C supp h C T" and h = 1 on Bs
and h = 0 outside of the torus. The Fourier transform of DPh is (27ri:1:)5ﬁ; it
follows that

A

h<—>"— zekr
| |— 1+Cn,a|$|2a x

(4.4)

for some positive constants A and C,, ,, (see (3.4)). Because

N 1DPhI =1k Y |(2miz)?| and

|B]=2c |Bl=2c

- oo |D7R A
|h| _ Z|B|_2a| | <

B . by (3.4).
22 15)=20 | (2miz)B| = 14 Cp alz]>’ y (3.4)

Here « satisfies the conditions on (1.5) and A := 375 _,, |55\h| is finite . So,
h € A(R™) by the inversion theorem. If f € A(T") and F(z) := f(e2>"**) for
all z € R” then F' is bounded, uniformly continuous and translation invariant
(see [17, p. 15], 1.3.3). Moreover, ||F||gwn) = ||fll.4cr»), 9 = hF and hence
9 EA(R") and ||gllawn) < [[hllagn) I fllacrny. If g € AR™), then g = gh,
and so

(4.5) ]/”\(m) = /ng(x)e—27ri<x,m> dr = /ng(x)h(x)e—%ri<x,m> dr

for m € Z™. The inversion theorem holds for h by (4.4); substitution into (4.5)
yields

n

(4.6) Flm) = /A §(z)h(m — z) dz.
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By (4.4), there is a positive constant C5 such that ) ;. |h(m — )| < C, for
all z € R". Hence

fllacemy = D 1Fm)] < Cz/RA 9(z)] dz = Cal|gl| aen)

meZ™

by (4.6) and the proof is complete.

As a consequence of Theorem 4.2. we obtain

4.3.

Corollary. Let absolute value of the multi-index 3 be equal to the

positive integer a > 1 and o > % where 1 < ¢ < 2. Then

(4.7)

(1.5)

are equivalent. Here f € A(T") and f

qo

[ ]__q%
1l < KON raieny | 52 10 flliany | and
|Bl=a

n
qo

1= g%
|f||Lq(%fn) Z ||Dﬁf||Lq(’JI‘n)
|B|=cx

I fllacrny < K

~

0) = 0 for the discrete case (1.5)

(
and the real-valued function f € L*(R*) N LY(R™) and x°f € LY(R™) for the
integral version (4.7). O
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