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Abstract. In a pseudo-Riemannian manifold, we consider curves through a
fixed pseudo-Riemannian submanifold. The first variation formula and the sec-
ond variation formula of a reflecting geodesic are obtained. Moreover, we study
the index form and conjugate points for a reflecting geodesic. Variation formu-
lae for energy are also considered.

AMS 1991 Mathematics Subject Classification. Primary 53C22, Secondly
53C50.

Key words and phrases. reflecting geodesic, pseudo-Riemannian submanifold,
index form, conjugate point.

§0. Introduction

In the paper [2], Innami considered a geodesic reflecting at a boundary point
of a Riemannian manifold with boundary. Let M be a Riemannian manifold
with boundary OM =: B # () which is a union of smooth hypersurfaces.
A broken geodesic on M is said to be a reflecting geodesic if it satisfies the
reflection law. As usual, a variation of a reflecting geodesic v through reflecting
geodesics yields a Jacobi vector field Y along « which satisfies the Jacobi
equation. In the case of a reflection, such a Jacobi vector field is discontinuous
at the boundary in general, but certain conditions hold at the boundary. In
this case, he defined and studied the index form, conjugate points and so on,
as in the case of a usual geodesic. We note that Hasegawa studied special
cases in [1] and [2].

In this paper, we consider the case where M is a pseudo-Riemannian man-
ifold and B is a pseudo-Riemannian submanifold. We generalize the notion of
a reflecting geodesic and generalize some of Innami’s results in a sense.
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140 N. ABE AND M. TAKIGUCHI

In Section 1, for a piecewise smooth curve on M through a point of B, we
define a variation of such a curve. The details will be described in Definition
1.1. In Section 2, we prove the first variation formula of arclength for the
variation above. In Section 3, we provide the second variation formula. In
Section 4, we formalize the index form for our case. In Section 5, we consider
the variation of a reflecting geodesic through reflecting geodesics and give
definitions of an admissible Jacobi field and a conjugate point. In Section 6,
we study a reflecting geodesic whose tangent vector at a point of B is normal
to B. In Section 7, we consider the first and second variation formulas of
energy.

The authors would like to express their sincere gratitude to Professor S.
Yamaguchi for his constant encouragement.

§1. Preliminaries

Let M be a pseudo-Riemannian manifold with a metric < -,- > and D the
Levi-Civita connection. A tangent vector v to M is said to be

spacelike  if <v,v >>0 or wv=0,

null if<v,o>=0 and v #0,

timelike if <wv,v ><0.

The category into which a given tangent vector falls is called its causal
character. The norm |v| of a tangent vector is | < v,v > |% . A curve o in M
is spacelike if all of its velocity vectors o/ () are spacelike; similary for timelike
and null. An arbitrary curve need not have one of these causal characters,
but a geodesic always does. The class of curves « with |o/| > 0 consists of all
spacelike regular curves and all timelike (hence regular) curves, the two cases
distinguished by the sign of «; that is, € := sgn(< o/,d/ >) = +1.

Let B be a pseudo-Riemannian submanifold in M and Q the set of all
piecewise smooth curves « : [a,b] — M through B.

Definition 1.1. Let « : [a,b] — M be a piecewise smooth curve such that
a(to)€ B (to € [a,b]) . A piecewise smooth variation of o in  (or, simply, a
variation of « in §2) is a map

¢ :[a,b] x (=6,0) = M,

for some § > 0, such that

(1.1) ps(-) ==l 5) €,

(1.2) wo(t) = alt) for all a <t <b,
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(1.3) p(to(s),s) € B,

where a = ag(s) < ai(s) <--- <tg(s) = aj(s) <--- <ap(s) < agti(s) =b
are the breaks of ¢ (a;(0) = a; (¢ =1,---,k) and to(0) = tp = a;). We assume
that a;(s)’s are smooth with respect to s.

A fized endpoint variation ¢ of « is a variation such that

(1.4) v(a,s) =ala) and (b, s) = a(b).

There is no loss of generality in assuming that ai(s) < --- < tp(s) = a;(s) <
--< ag(s) are the breaks of ¢, since we can always add trivial breaks at which

a or ¢ is smooth. The vector fields Y and A on a given by Y (¢) := (?)_QO (¢,0) and
s
D
A(t) == a—g—(’o(t 0) are called variation vector field and transverse acceleration
s 0s

D D
vector field of ¢ respectively, where 8_ =D 2 and — := D 2 . Unusually, in
S

our case, Y and A are not piecewise smooth vector fields, for they are, possibly,

discontinuous at breaks. We write X (¢,s) = 8—('O(t, s) (X (t)= X (¢,0) = &/ (t)),

ot
Y(t,s) = g—f(t, s) (Y(t) = Y(£,0)) and A(t,s) = Bg—f(t, s) (A(t)= A(t,0)).

For a function or vector field f on [a,b], we put A.f = f(t —0) — f(t+0)
(t € (@), Auf = —F(a+0) and Ayf = [(5—0), where [{t£0) = lim f(t).

Let I be an interval in the real line R. A geodesic in M is a curve y: [— M
whose vector field 4 is parallel, that is, 4" = D, = 0. Furthermore a
piecewise smooth curve « such that |o/| > 0 is said to have constant speed and
constant sign if |o/| = constant and sgn(< o/, o’ >) = constant, respectively.
We note that geodesics have constant speed and sign.

Definition 1.2. A piecewise smooth curve a such that «(ty) € B is a reflect-
ing geodesic if a satisfies the following conditions:

(1.5) a is a geodesic on [a, t] and [to, b],
(1.6) A4, X is normal to B,
(1.7) Ay < X, X >=0,

where we ignore this condition in the case of {y = a or o = b,

(1.8) Ay X #0.
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From (1.5) and (1.7), a reflecting geodesic have constant speed and sign. If
Ay X =0 instead of (1.8), then « is a usual geodesic.

For each s € (—0,9), let L(s) be the length of the longitudinal curve ps : t—
©(t,s). We shall find formulas for the first and second variation of arclength
on @, that is, for

dL d’L
L'(0) = —|s o and L"(0) = Fr) |s=0,

where the latter is considered when L'(0) = 0.

§2. First variation

For a variation ¢, we define a curve §3; : (—=0,0) — M by Gi(s) = p(a;(s), s)
(¢ =0,1,---,k+1). In particular, we put 3(s) := Bj(s) = ¢(to(s),s). Hence 3
is a curve on B. First we show that variation vector fields have the following
properties.

Lemma 2.1. Let a : [a,b] — M be a piecewise smooth curve such that
a(ty) € B. If v is a variation of « in Q with the variation vector field Y, then

(2.1) at(0)X (a; — 0) + Y (a; — 0) = a;(0)X (a; + 0) + Y (a; + 0).
In particular,
(2.2) th(0)X (to — 0) + Y (to — 0)

= t0(0) X (to + 0) + Y (to 4 0) € Th,) B.

d d
Proof. Since a curve 3; satisfies that 3.(s) = Ego(ai(s)—o, s) = ﬁtp(ai(s)—i-(),
s), it follows that

dp

9y
8t( ( ) —0,8) + g(az(s) —0,8)

(2.3) a;(s)

o Oy ) 8_90 )
= ai(s) 5, (ai(s) +0,5) + 5 -(ai(s) +0,5).

In particular, since 3 is a curve on B, we have 3'(0) € Ty, B- O

This lemma shows that variation vector fields are element of the set Tafl
defined as below:
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Definition 2.3. If o € , the set T, consists of all piecewise smooth
vector fields Y on «a, which possibly may be discontinuous at tg, such that for
1=1,---k

(2.4) there is a real number d; such that

d; X (a; —0) +Y(a; —0) =d; X (a; +0) + Y(a; +0),

and, in particular,

(2.5) de(t() - 0) + Y(to - 0) = de(tU + 0) + Y(to + 0) € Ta(to)B-

For example, piecewise smooth vector fields ¥ on « such that Y(ty —
0) =Y (tp + 0) € Ty (4,)B are elements of Ty ).

Conversely, given Y € T, we can choose a variation ¢ whose vector
field is Y. In fact, we can know this claims from the following lemmas.

Lemma 2.4. Let o € Q and Y be a piecewise smooth vector field on « such
that Y (to — 0) = Y (to + 0) € Ty, B. Then there is a variation of a in
whose variation vector field is Y.

proof. We take t; and t2 (t; < tp < t2) such that «|[t1, %], a[to, t2], Y|[t1, to]
and Y'|[to, t2] are smooth and «|[t1, t2] lies within one coordinate neighborhood.
Choosing ¢ > 0 sufficiently small, we can construct a variation as follows. Let

p(t,s) = expq) (sY (t)) on [a, 1] X (—d,0) and [t2,b] x (—6,0).

Then we have ¢(t,0) = «(t) and g—f(t,O) =Y (¢).

Next we take a curve 3 : (—4,0) — B such that 3(0) = «(tp) and §'(0) =
Y (t9). And we extend Y'|[t1,to] and Y'|[to, t2] to a smooth vector fields Z~ and
Z7T on a neighborhood of a[t1,ty] and «l[tg, t2] respectively which satisfy the
following conditions:

0
Z;E(s) =f'(s) and Z;E(tl,s) = a—f(tl,s),

for I = 1,2. Let ¢ be a local 1-parameter group of transformations which
induce Z* and

_ [ s (at) on [ty to] x (=6,0)
plhrs) = {wi(a(t)) on [ty 2] x (=6,8) -

Then we get a desired variation. O
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Lemma 2.5. Ifa € Q and Y € T,Q, then there is a variation of a whose
variation vector field is Y .

proof. There is a real number d; such that, for i =1, - - k,
Y(ai - 0) + diX(ai — 0) = Y(ai + 0) + diX(ai + 0).
We define a function f by, for i =0, - -, k,

(t — ai)di_H — (t — ai+1)di
Qi1 — a4

ft) =

on [a;, ai1],

where we put dy = dp,1 = 0. Then, let Y (t) = Y (¢) + f(¢)X(t). Since
Y(a; £0) = Y(a; & 0)+d; X (a; £ 0), by Lemma 2.4, there is a variation v of
« whose variation vector field is Y. Let ¢ : [a,b] x (=§,0) — M such that
©(t,s) = 1p(t(t, s), s), where

t(t,s) =t — f(t)s.

It follows that

‘;S (t,0) = —F (DX (1) + Y (2).

Hence ¢ is a desired variation. O

We compute the first variation formula.

Proposition 2.6. (First Variation Formula) Let o : [a,b] — M be a
piecewise smooth curve with constant speed ¢ > 0 and sign € such that a(ty) €
B. If p is a variation of o in  with the variation vector field Y, then

L’(O):—E/ <Y, >dt+- ZA <Y,d >+ <Y,o > |,
€Ja z 1
where a1 < --- <tp=a; <---<ay are the breaks of a.
proof.  If the s-interval (—d,0) is small enough, | X (¢, s)| is positive, hence
differentiable. Differentiating both sides of

k+1

Z/ X(t,s)|dt,
alls

we have

k+1

(2.6) Z{/ﬂ ) |X (t,5)|dt
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+ai(s)| X (ai(s) = 0,)] = ai_ ()| X (ai-1(s) +0,9)[}

—/ —1X(t,5) |dt+2 (5){1X (ai(s) = 0,5)] — | X (as(s) +0,5)][}.

Since the causal character of longitudinal curves is preserved for small |s|,
we can compute

(2.7) %|X(t, )|

_ %(5 < X(t5), X(t5) >) 32 < %—f(t, 9, X(hs) >

=e< %(t,s),X(t,s) > /|1 X (¢, )]

and

0 DX
—& <Y(t S) X(t,S) >—<Y(t,8),w

Hence we have

(t,s) >.

k+1

b
Z <Y(t > |0 —%/ <Y(t), " (t) > dt

b
:—ZA <Y,d > +- <Ya>|”—5/ <Y (t),a"(t) > dt.
CJa
zl

In the case of tg = @ or b, we ignore the condition Ay, < X, X >= 0 from
now on.

Lemma 2.7. Let a : [a,b] = M be a piecewise smooth curve with Ay, <
X, X >=0 such that a(tg) € B. Then the followings are equivalent:

(2.8) Ay, X is normal to B.
(2.9) <Y(tg—0)+Y(tog+0),A, X >=0 for any Y € TpQ.

(2.10) Ay <Y, X >=0 foranyY € T,
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proof. For simplicity, we put Xy := X(to £0), Y3 := Y (to £ 0), d := £;(0)
and AX := Ay, X.

(2.8)=(2.9)=(2.10): If AX is normal to B, then, from (2.2),
< (dX_+Y_)+ (dX+ +Y,),AX >=0.
Since < X_ + X4, AX >=0, it holds that
<Y_+Y,AX >=0.
Hence, by (2.2), we have
Fi=<Y_ X_>-—<Y, X, >=<Y_ X,>-<Y, X >

=< Y, —dAX,X; > — <Y_ +dAX,X_ >
=<V, Xy>—<Y_,X_>-d<AX, X, +X_>=—F.
It follows that F' = 0.
(2.10)=(2.9)=-(2.8): Suppose F' = 0. Then, from (2.2), we get

2<dX +Y ,AX >=< (dX_ +Y )+ (dX; +Y,),AX >

=<Y_+Y,,AX >
=<Y_ X >-<V X, >-<YV_ X, >+<Y,X_ >
= <Y, —dAX,X; >+ <Y_+dAX,X_ >
=—<Y , X, >+<Y X >+d<AX, X, +X_ >
=0.

It follows that < dX_ +Y_,AX >= (. This means that < y,AX >=0
for any y € Tj, ;) B from Lemma 2.4. Hence AX is normal to B. a

For a fixed endpoint variation ¢, the first and last transverse curves are
constant, so all longitudinal curves run from «(a) to a(b). In particular, the
variation vector field Y vanishes at a and b, and so does the last term in the
first variation formula. Given any neighborhood U of a point ¢ € I there is a
smooth real-valued function f on an interval I, called a bump function at t,
such that 0 < f <1 on I, f =1 on some neighborhood of ¢t and suppf C U.

Corollary 2.8. A piecewise smooth curve a with constant speed ¢ > 0 and
sign € such that a(ty) € B is a reflecting geodesic or a geodesic if and only if
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the first variation of arc length is zero for every fixed endpoint variation of «

in Q.

proof. We assume that « is a reflecting geodesic. Then o’ =0 and Ay 0 =0
(i# j). Hence, for i # j, we get

A, <Y, o >=< A, Y,d (a;) >=0,

since (2.1). For fixed endpoint variations, Y (a) and Y (b) are zero. Moreover
using Lemma 2.7, we have L'(0) = 0.

Conversely, suppose L'(0) = 0 for every fixed endpoint variation . First
we show that each segment «|I; is geodesic, where

(211) I; = [ai_l,ai] (Z: 1,-'-,k+1).

It suffices to show that o/'(t) = 0 for ¢t € I, where I? := (a;_1,a;). Let
y be any tangent vector to M at a(t), and let f be a bump function at ¢ on
[a,b] with suppf C [t — (,t+ (] C I;. Let V be the vector field on « obtained
by parallel translation of y, and let Y = fV. Since Y (a) and Y (b) are both
zero, exponential formula (%, s) = expyy (sY (t)) produces a fixed endpoint
variation of o whose variation vector field is Y. Since L'(0) = 0, the formula
in Proposition 2.6 reduces to

b t+¢
0:—/ <Y,a”>dt:/ < fv,a" > dt.
a t—C

This holds for all y and ¢ > 0. Hence <y, (t) >= 0 for all y € T(4y) M.
Thus we have o = 0.

As before, let y be an arbitrary tangent vector at «(a;) (i # j), and let f
be a bump function at a; with suppf C I; U ;11 (i # j). For a fixed endpoint
variation with vector field fV the first variation formula now reduces to

0=L'0)= EAai <Y, o >= £ < Y, Ao, > for all y.
c c

Hence A, =0 (i # 7). This shows that (1.5) is true and A,, < Y,a/ >=
0 (i # 7).
Finally Lemma2.7 implies (1.6). O

83. Second variation

For a variation ¢ of a curve «, our aim is to compare L(s), |s| small, with
the length L(0) of o. Thus L”(0) is needed only when L'(0) = 0. By Corollary
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2.8, it suffices to find a formula for L”(0) in the case where « is a reflecting
geodesic. Let R be the Riemannian curvature tensor defined by

R(X,Y)W := DxDyW — DyDxW — Dix y )W,

for any vector field X, Y and W on M, and S the shape operator defined
by
Sz (V) := —tanDy Z,

for any vector field V tangent to B and Z normal to B. A vector field YV
on a piecewise smooth curve « : [a,b] = M is a tangent to a if Y = fd! for
some function f on [a,b] and perpendicular to « if <Y,o/ >=0. If |&/| > 0,
then each tangent space Tj,;) M has a direct sum decomposition Rd' + o'+
Hence each vector field Y on « has a unique expression Y = Y7 + Y, where
YT is tangent to o and Y1 is perpendicular to «, that is,

<Y,d > ,

YL:Y—ﬁOé
<a,o >

If y is a nonnull reflecting geodesic, then (Y')” = (Y7) and (Y')+ = (Y 1)".
Definition 3.1. Let v : [a,b] — M be a reflecting geodesic such that (to) €

B and Ay, X is nonnull. A linear operator P : T, — T ;,)B is defined by

< ALY, AR X >

3.1 P(Y):=Y(ty+0) —
(3.1) (Y) ==Y (to +0) <AL X, ALX >

X (to + 0)

<Y(to+0), A, X >
< X(to+0), A X >

:Y(t0+0)— X(t0+0).

It follows from (2.2) that

3.2 P(Y)=Y(ty—0) — X(to—0

(3.2) (Y) =Y (to — 0) ALK ALX S (to — 0)
Y(ty — 0), Ay X

:Y(tU—O)—z (to = 0), Ay ~ X(t — 0)

If Y € T,Q is tangent to -y, then P(Y) = 0. For a continuous vector field
Y such that Y (to) € Ty, B, P(Y) =Y (tp) holds.

We prepare the following lemma for the proof of the second variation for-
mula.



GEODESICS REFLECTING 149

Lemma 3.2. Let a : [a,b] — M be a piecewise smooth curve such that
a(ty) € B. If v is a variation of « in Q with the variation vector field Y, then

(3:3)  a(0)X (ai — 0) + 2a(0)Y" (a; — 0) + A(a; — 0) + (a}(0))2X" (a; — 0)

= a!’(0)X (a; +0) + 2a5(0)Y’(a; + 0) + A(a; +0) + (a5(0))2 X (a; +0).

In particular, if a is a reflecting geodesic, then

(3.4) 2a;(0)Y"(a; — 0) + A(a; — 0) = 2a;(0)Y"(a; + 0) + A(a; +0),
for i # 4, and
(3.5) t0(0)X (to — 0) + 2t5(0)Y'(to — 0) + A(to — 0)

= 5(0) X (to + 0) + 2t4(0)Y” (o + 0) + A(to + 0).
proof. We use a curve f§;(s) = ¢(a;(s), s) as in §.2. Then we have

i (s) = D (5)5(s)

— a/(s)X (ai(s) — 0,5) + 2@@)%(%(3) _0,5)

+A(a;i(s) —0,s) + (a;(O))QX'(aZ- —0)
— ()X (ag(s) + 0, 5) + 2@@)%
+A(ai(s) +0,5) + (a;(0))* X' (a; +0).

(ai(s) +0, 3)

|

Theorem 3.3. (Second Variation Formula)  Let 7y : [a,b] = M be a reflect-
ing geodesic with constant speed ¢ > 0 and sign ¢ such that v(to) € B and
AX = Ay X is nonnull. If ¢ is a variation of y in €2, then

b
L"(0) = %/ (< YV Yt > - < RY, Y)Y, Y >}t

+2 <A > o2 < Sax(PV),P(Y) >,

where Y s the variation wvector field and A is the transverse acceleration
vector field of .

9 b
proof. Let h = h(t,s) = |a—f(t,s)|, so L(s) = / hdt. From (2.6), we have

oh e 0O0p DOy
s B S0t osot
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Thus we get
0%h 3 0 0Op D dyp Odp D Op  0Oh
92 s < asor " S arasat  os
_ € D 0p D 0y Op D D 0y € Op D&p
P marmsor T msma T R o msar
) D op Doy
Since 95 9t — Dt s and
DDop DDOop _ 0p 0p dp DDy

950500 950105~ 95 3¢ )35 T 0105 05

hold, hence we have

0?h ¢ D 0p D dyp dp R

2 <o mar > T <

(&p Oy, Op
0s Ot’ 0s Ot o’

Os 8t)8s

dp D D 0y 3 Op D Oy
< P a5 s RS ar s ot

0
Setting s = 0 in this equation produces the following changes: h — ¢ 7

, —
0 D o Do ot
v, 8f —Y, %B_Sto — Y and E%a_f — A, Thus, rearranging the curvature
term, we find
82

€
95z ls—0 = {< Y V> <Y,RY, Y)W >+ <+, 4 > -5 < 7Y >

d
Since 7 is a reflecting geodesic, it follows that < v/, A’ >= 7 <v,A>
and

€
Y/: 6_2 <YI,’}’I >7,+YU_3
hence c
<YV >= = < Yy >+ <Yt vt >
Substitution then gives

82

d
le o——{<Y’L Y > — <Y, R(Y,Y)y >+dt<7’,A>}.

Now, by (2.6), we have

k+1

(3.6) (s Z{/M 2|th)|dt
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()3 X080 — 015X a0}
k
Dl (I as) — 0,5)] ~ X (a1(s) +0,5)])

=1

Fal(s) (| X (as(s) — 0,8)] — X (ai(s) +0,5)]}).

Setting s = 0 in (3.6) produces the following changes:

| X (a;(s) — 0,5)] —| X (a;(s) +0,s)| = 0,

0 3
£|X(ta3)||t:ai(s)i0 — E < Y,(ai + 0),X(az Z‘:O) >,

and
d
X (ai(s) £0,5)] - % < Y'(a; £0), X(a; £0) > .
Thus we get
b
(3.7) 1) == / (<Y YY > - < RV, ),Y >)dt
a
e k+1 k
+E{Z <AX > +2> aj(0)A, <Y, X >
=1 =1

b
_ %/ (<YY vt s - < RY,Y)Y,Y >)dt
a

k k
+%{< AX > P43 Ay < A, X > 423 dl(0)A,, <Y, X >}
=1 =1

In the rest of proof, we use the notation simplified as in the proof of Lemma
2.7. We show the following facts:

Ato < A,X > +2dAt0 < Y’,X >=< SAX(dX+ + Y+),dX+ + Y+ > )

and
Ay < A, X > +2a5(0)Ag, <Y, X >=0 (i # ).

In fact, let 5 : (—0,0) — B be [(s) := p(to(s),s), then §'(0) =dX; +Y, =
dX_ +Y_and §"(0) = AL +2dY| +eX, = A_ +2dY! + eX_ by Lemma
3.2, where Y{ :=Y'(to £0), Ay := A(tp £0) and e = t{(0). Thus we have

< SAX(dX+ + Y+),dX+ + Y+ >

=< Dﬂ’(U)/B,a AX >= A+ + QdY‘,F + €X+, AX > .



152 N. ABE AND M. TAKIGUCHI

Hence, from (3.5), we find
< Sax(dXy +Y4),dX: +Y, >
=<A_+2dY' +eX_,X_>-— <A, +2dY] +eXy, Xy >
=< A_+2dY',X_ > — < Ay42dY], Xy > +e{< X_,X_ > — < X, X; >}
=Ay <A+2dY' X >.
By (3.4), we have
Ay <A X > +2a5(0)A,, <Y, X >

=< Ay A, X (a;) > +2a5(0) < Ay, Y, X(a;) >=0 (i # 7).

It follows that

€

b
(3.8) L"(0) = / {(<YY YYs - <RY,Y),Y >}dt

C
A X > P42 < Sax(dXy +Y),dX, + Y, >)
C C

From (2.2), we get
0=<dAX +AY,AX >=d < AX,AX > + < AY,AX >,
(:< dX++Y+,AX >:d<X+,AX >+ <Y+,AX >)
where AY := A Y. Thus we have

d— <AY,AX > <Y}, AX >
O <AX,AX > <X, AX >

This completes the proof. O

For a fixed endpoint variation, since < A,4" > |> =0, L”(0) depends only
on the variation vector field Y.

§4. The index form

Let p and ¢ be points of M. And let Q@ = Q(p,q) C Q be the set of all
piecewise smooth curves a : [a,b] = M such that a(a) = p and a(b) = ¢. A
subspace T, in T, is defined by

T.Q:={Y €T,Q: Y(a) =0, Y(b) =0}.
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We assume that Az, X is nonnull and nonzero. If Y € Tafl, then

< Y(to+0), A X > < ARY A X >
< X(to+0), A, X > <A X, Ay X >

dy :=d; =

Hence, if Y,V € T,Q, then dy v = dy + dy.

When we assume that A;; < X, X >= 0 and Ay X is normal to B, if
Y € T,9Q, then, by Lemma 2.7, Y7 and Y are elements of val. Furthermore
followings hold:

(4.1) Ay, <Y,Y >=0, foranyY € T,Q.

(4.2) < norY (typ — 0),norY (ty — 0) >

=< norY (tg + 0),norY (ty +0) >, for any Y € T,10.

(4.3) Ay <YT YT >=0, forany VY € T,Q,
hence
(4.4) Ay <YE YL >=0, foranyY € T,

In fact, from (2.5) and (2.9),
< Y(to — 0) + Y(t() + 0), AtOY >= Y(to — 0) + Y(to + 0), —dyAtOX >

= —dy < Y(to — 0) + Y(to + 0),AtoX >=0.

Hence (4.1) holds. Since A; Y is normal to B, tanY (to — 0) = tanY (to +
0). Thus, by (4.1), (4.2) is true. Finally we show (4.3). Here, we can put
YT (ty—0) =cX(to —0) and YT (t; +0) = cX (t¢ +0) for some constant c, since
Ay <YT, X >=0and Ay, < X, X >=0. Thus we have

Ay < YT VT >= A < X, X >=0.

Lemma 4.1. Let P be a linear operator defined by definition 3.2. Then
(4.5) P(YH)=P(Y)  fordl Y €T,
and P : TVQ — Ty (1) B is a surjection.

proof. The proof is a straightforward calculation. For simplicity, we use the
notation as in the proofs of Lemma 2.7 and Theorem 3.3. If AX # 0, then

< AY+ AX >

PyHh=yrt-— "2~
¥ =73 <AX,AX > 1
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B <Yy, X, >
Yooy x s
T av e EEES G e SR S S eI LR
_ +_% +—<AX,+X><AY,AX>X+
+ L ! <<Y X >X — <Y, X, >X, AX > X,

<AX,AX >< Xy, Xy >

=P(Y). 0

Definition 4.2. The index form I, of a nonnull reflecting geodesic v € 2 for
which Ay, X is nonnull is the unique symmetric bilinear form

I:T,QxT,Q — R,

such that
IV(Ya Y) = L”(O)a

where L is the length function of a fixed endpoint variation of v in Q with
variation vector field Y € T, ).
Corollary 4.3. If v € Q is a reflecting geodesic of constant speed ¢ > 0 and
sign € such that y(tp) € B and AX := A, X is nonnull, then

€

b
L(Y,W) = / (<YY WY > - < ROV, W >)dt
a

C
+2 < Sax(P(V)), P(W) >,
for all 'Y, W € T,

From Lemma 4.1, it follows immediately that
L(Y,W) =LY W) forall V,W € T,Q.
Thus there is no loss of information in restricting the index form I, to

TyQ:={Y eT,Q:Y L4}
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We write LYL for this restriction.

Integration by parts produces a new version of the formula above.

Corollary 4.4. Let v €  be a reflecting geodesic of constant speed ¢ > 0
and sgn € such that y(to) € B and AX = Ay X is nonnull. If Y and
W €T, ) have breaks a1 <---<tyg=a; <---<ag, then

b
L, W) = =5 [T <yt e Ry )y W > d

c
€ €
4= < Sax(P(YV) + A Y, PW) > +- 3 < Ay, VY W(a;) > .
¢ © iz
proof. In Corollary 4.3, we can rewrite
d
<y wt s= 7 < vV wts o<yt wts

Then we get
b d
L(Y,W) = %/ {2 < VE whs - < v Wt s - < R(YV, )Y, W >}t
a

+% < Sax(P(Y)), P(W) >

b
= —%/ (<YY" Wt>+ <Ry, Y)Y, Wt >tat

k+1
4 o<yt wts e 4 % < Sax(P(Y)), P(W) >
i=1

b
_ _%/ (<YY" Whs £ <R, 4)y, W >)dt
a
I < ALY W) > 424, <V W >
C itj C
+= < Sax(P(Y)), P(W) >

For simplicity, we use the notation as in the proofs of Lemma 2.7 and
Theorem 3.3. Then we have

/ / /
Ay <YE Whs=<vLt wt> <yt wis>

=<y PWh) + <AZWEAX > X >

< AX,AX >
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— <yt Pt + <A WHAX > X, >

< AX,AX >

=< A Y, P(W) > + < A WH AX >

1

<AX,AX >

){<YH X_>— <yt x, >}
=< A Y, P(W) >,

d
since <V, X_ > - <YL X, >= Dpyor < vyhx> O

Corollary 4.8. Let v €  be a reflecting geodesic of constant speed ¢ > 0
and sgn € such that y(tp) € B and AX := Ay, X is nonnull. Then'Y € TVLQ

is an element of the nullspace of 17L if and only if Y satisfies following two
properties:

(4.6) Y is a Jacobi field on [a,tp] and [to, b],

(4.7) Sax(P(Y)) + A4, Y’ is normal to B.

proof. Let Y be in the nullspace of 1'7L and have breaks a; < --- < tg =
aj < ---< ay. First we show that each restriction Y'|I; is a Jacobi field. For a
fixed ¢ inside the interval I;, let y be an arbitrary tangent vector to M at y(t).
Construct W = fV as in the proof of Corollary 2.8. Then, since Y L ', we
have
e [t+¢
0=I1,(Y,W) = _E/t ; <YY"+ RY,y),fVt > dt.

It follows as before that Y + R(Y,~')y' is zero at ¢, hence identically zero
on I;, and so Y is Jacobi there. The proof that Y is differentiable on [a, t] and
[to, b] again follows the same pattern as for the proof of Corollary 2.8. Thus

0=1I,Y,W) = % < Sax(P(Y)) + A, Y, P(W) > .

Since P is a surjection, Sax (P(Y)) + A, Y is normal to B.

Conversely, if (4.6) and (4.7) hold, then Y is an element of the nullspace of
k. o
v

85. Conjugate points

Let v : [a,b] — M be a reflecting geodesic such that y(tp) € B and AX :=
Ay X is nonnull. Consider a variation ¢ : [a,b] x (=§,6) — M such that
o(t,0) = ~(t) and ps = @(+,s) is a reflecting geodesic for each s and the
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parameters to(s) at which the geodesics reflect is smooth for s. Let Y be the
variation vector field. Then, we can prove the following.

Lemma 5.1.

(5.1) Y'"+R(Y,X)X =0  on [a,ty] and [to,b],
(5.2) Sax(P(Y)) + Ay, Y' is normal to B,
(5.3) <Y, X >=Cit+Cy for some constant Cy and Cs.

Proof. (1): Since ¢ is a variation through reflecting geodesics, Y is a Jacobi
field along 7 on [a, tp] and [to, b], hence, satisfies (5.1).

(2): Let B : (—0,0) — B be B(s) = ¢(to(s),s). And we put Z(s) =
X (to(s) —0,8)—X (to(s) + 0,s). Then, we find

Sax(P(Y)) = Sz0)(8'(0) = (S2(8))(0) = —tan(Dg Z)(0).

Further, it holds that

Dy Z = th(s) - (1o (s) = 0,5) + - (1o(s) — 0,
~(th() o to(3) + 0,) + D (t0(s) +0,5))

_ %(tg(s) _0,5) — %(to(s) +0,5).

Hence, we have
Sax(P(Y)) = —tanAY".

(3): We set < X (t,s), X(t,8) >=c¢(s), then

DY DX
< W(t’ S),X(t, S) >=< g(t,S),X(t,S) >
19 1,
=5%9s < X(t,s),X(t,s) >= 5¢ (s).

Hence we get

<Y(t),X(t) >'=<Y'(t),X(t) >= %c'(()).
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Thus, for some constant C;(i = 1,2, 3), we have

Clt + 02 on [a, to]

The result follows from Ay, <Y, X >=0. 0

Lemma 5.2. If ¢ is a variation through reflecting geodesic of constant speed
¢ >0, then

(5.4) <Y, X >= const.
Furthermore,
(5.5) Y =yt on [a,to] and [to,b].

proof. Since < X(t,s),X(t,s) >= const., we find

< DY) x(ts) s=< 2 (15), X (1, 5) >
ot Os

10
= 99s < X(t,s),X(t,s) >=0.

Hence we get

0 DY
gn <Y(ts),X(ts) >=< W(t,s),X(t,s) >=0.

Since Ay, < Y, X >=0, (5.4) holds. Furthermore, we have

Y, X
SH2 2 X) = Dyvia

Y =DyY =Dx(Y+t4+ 2"~ =54~
X x( ToxX x> <X, X >

Definition 5.3. Let v be a reflecting geodesic such that y(¢)) € B and
Ay X is nonnull. If Y € T, satisfies the conditions (5.1), (5.2) and (5.3),
then Y is called an admissible Jacobi field along . Let [J, be the set of
all admissible Jacobi fields on . An admissible Jacobi field Y along v is a
perpendicular admissible Jacobi field if Y is normal to 7. Let JVL be the set
of all perpendicular admissible Jacobi fields on . An admissible Jacobi field
Y along v is a continuous admissible Jacobi field if Y (to) € T, ;) B. Let J;°"
be the set of all continuous admissible Jacobi fields on 7.

By Corollary 4.5 elements of the nullspace of LYL are perpendicular admis-
sible Jacobi fields. If Y is an admissible Jacobi field, then Y L v & there
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exist ¢; € [a,b] (i =1,2) such that Y (¢;) L v (i = 1,2) < there exist ¢; €[a, b]
(i = 1,2) such that Y (¢;) L v and Y'(¢2) L +, since (5.3). Y is an admissible
Jacobi field if and only if YT and Y1 are admissible Jacobis. Ty, jf and
J°" forms real vector spaces.

Lemma 5.4. Let Y be an admissible Jacobi field on o reflecting geodesic 7.
Then Y is the variation vector field of a variation ¢ of v through reflecting
geodesics.

proof. Let B:(—4,0) — B be a curve with 5(0) = v(t9) and §'(0) = P(Y).
Let A" (s) and B'“"(s) be the vector fields on 3 gotten by B parallel trans-
lation of tan X (to —0)(= tanX (to +0)) and tan¥”(to —0) + Sporx(1y—0) (P(Y))
(=tanY'(to + 0) + Shorx(t9+0)(P(Y))) along 3. And let A%°"(s) and B} (s)
be the vector fields on 3 gotten by normal parallel translation of nor X (ty +0)
and norY'(ty £ 0) — II(P(Y),tanX (ty = 0)) along . Where the function
IT is the shape tensor defined by I'I(V,W) = norDyW for any tangent vec-
tor field V and W to B. Finally, we put Ai(s) = A" (s) + A%°"(s) and
Bi(s) = B"(s) + B (s). If Zi(s) = Ai(s) + sBx(s) for all s, then
Z4(0) = X (to £0). Furthermore,

Z%(0) = AL (0) + B+(0) = Y'(to — 0).

For Z, as above, we now define a required variation ¢ as follows. Let exp
be the exponential map and #y(s) = dy s + to. Then

) — expﬂ(s)((t —10(s))Z_(s)) on t € [a,to(s)]
(5.7 o(t2) = { expg(o)(( — t0(5))Z4 (s)) on £ € [to(s), D]

defines a variation of y. The longitudinal curves of ¢ satisfy X (to(s)+£0, s)=
Z(s). Consequently, we have

X (to(s) —0,8) — X(to(s) +0,s)

= AT (s) — AT 4 (B2 () B (),

and this is normal to B.

If V' is the variation vector field of ¢, then V(ty £ 0) = Y (to & 0) since
P(V)= p'(0) = P(Y). By construction, it follows that

V(0 %0) = 2 (10 % 0,0) = (D Z:)(0) = Z4(0).

Thus we get V =Y. a
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Definition 5.5. Let v be a reflecting geodesic such that y(tp) € B and A,y X
is nonnull. We say that ~y(t2) is a conjugate point to v(t1) (t1 # t2) with
respect to B if there exists a nontrivial admissible Jacobi field Y along vy with
Y(tl) =0 and Y(tQ) =0.

Example 1. Let M = R? be the Euclidean plane and

ZEQ 2

B:{(x,y)|¥+z—2:1} (0<a<b).

And let r = (a,0) € B and p = (0,be), ¢ = (0,—be) € M, where e =
Vb2 —a?/b. A curve v :[0,2b] — M is defined by
t t
(5be(1 =) on [0,

y(t)=4 L v .
(3(25 —t),be(l — l_))) on [b, 2b]

It holds that y(0) = p, v(b) = r and (2b) = ¢. If Uy = 9/0x and
Uy = 0/0y are the natural frame field, then

gU1 —eUy on [0,b]
py=14 b
V' (t) = a :
—gUl —eUy on [b,2b]

Thus v is a unit-speed reflecting geodesic. We define a variation ¢ :
[0,2b]%(—0,0) — M of v by

acosf b(sinf —e)

Loy ) @ T g 0 on )

P(10) =9 4t = 2b) cos 0 he 4. 2 = 2b)(sinf +e) I.(6)
Two-n T we - )

where

t0(6) = \/(acos )2 + (bsin6 — be)?,
1-(6) = [0,10(0)] x (~5,0)
I,.(0) = [to(6),20] x (=46, 0).

Then we have

0 .
G_(g(t’ ) = _tO?H)Q (to(0) sin @ + t((0) cos H)Uy
bt

+

t0(0)2 (to(0) cos @ — to(0)(sin® — e))Us  on I_(0)
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and

0y B a(t — 2b)
20" = " i(0) — 202

00

b(t — 2b)
(to(6) — 2b)°
Since t{(0) = —be, the variation vector field Y is

aet a’t

a4 ot b

v =1 b ;b Zatls [0’2; .
t— t—

ae( ; )Ul o a ( b2 )U2 on [b, 2b]

((to(0) — 2b) sin @ + t((0) cos O)U;

((to(0) — 2b) cos @ — t(0)(sinf +€))Us  on I, (6).

It follows that )

Y (b—0) = ael:(r) + %Uz(r)

and
2

Y (b+0) = —aeU (r) + %UQ(T).

Thus an admissible Jacobi field Y is discontinuous for a # b. Furthermore
v(0)= p is a conjugate point to y(2b) = ¢ with respect to B since Y (0) = 0
and Y (2b) =0. We note that Hasegawa mentioned this example in [2].

Example 2. Let M = R? be the Euclidean space and B be a regular smooth
curve on
2 2 2
~ x Yy z
B={(z,y,2) M5+ 35+ 5 =1} (0<a<b).
Then p = (0, be, 0) is a conjugate point to ¢ = (0, —be,0) with respect to B
and B.

Example 3. Let M = R} be the Lorentzian space with the metric
< ($,y,z)7 (x,y,z) >= _]72 + y2 + 22

and
B ={(0,y,2)|y* +2° =1},

that is, a sphere S'(1) in the hyperplane z = 0. And take r = (0,1, 0) EB
and p =(c,0,0), ¢ = (d,0,0) € M with (1—¢c?)(1—d?) > 0. Let v: [0,é+d] —

M (¢c:= /|1 —¢?|, d:=+/|1l —d?|) be a curve defined by

AD L o) onfo.q

V() = d(tc—é) c+d—t

( i = ,0) on [¢,¢+d]
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Then v(0) = p, v(¢) = r and y(¢ + d) = ¢ hold. If Uy = 9/0z, Uy =

0]y, Uy = 0/0z are the natural frame field of R such that < Uy, Uy >= —1,
then

1
—gUo +-U; on 0,7
¢ ¢

V() =14 4 1 _
EUO - EUI on [E, c—+ d]
and
o 1—¢2 .
— on [0, ¢]
<y >={,%0 :
1—-d I
7 on [C, c+ d]
Thus 7 is a timelike or spacelike unit-speed geodesic. Since er have
e—0) = (c+0) = —(5 4+ & 11
(e=0)=7(e+0) =~ + DVlr) + (- + DUi(7)
and

T, B = Span{U,(r)},

7 is a reflecting geodesic. We define a variation ¢ : [0,¢+d] x (=6,8) — M
of v by

- (c(EE—t)’ tC(;SO’ tsiénO) on [0,d] x (=,)
LAC R —¢) (6+d—t)cos ¢+ d—t)sin - )
(d(td )’( +d dt) 9’( +d dt) 9) on (6,64 d] x (—5.9)

It holds that

6 in 6
i U+ %0, + 2220, on [0, x (=4, 0)
E(t’o) =9d5  cosd sin 6 - '
E_UO — TUI — (Z U2 on [E,E+ d] X (—(5, (5)
Let
v:=—sinf - Ui(p(c,0)) + cos 8 - Us(p(c, 0))
and 9 9
9P _

Then it follows that < v,w >= 0 since T;(p ¢)B = Span{v} and

w= (4 DYUo(p(e,0) + cosI(= + 2V (p(e,0)) + 5in (- + 2V (i(e,0).

Hence ¢ is a variation through reflecting geodesics. Furthermore it holds
that

9y —t‘°’1;9U1+“‘:}SQU2 on [0, x (4, )
—(t,0) = G g :
o0 _(c+ddt)sm0U1+(c+d dt)cos9U2 on [6,¢ + d] x (—3,0)
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Thus the variation vector field Y is

t

E U2 on [0, E]

c+d—t
d

This shows that Y is a perpendicular and continuous admissible Jacobi field

and 7(0) is a conjugate point to (¢ + d) with respect to B.

Y(t) = o
Us on [¢,c+d]

§6. Normal reflecting geodesics
In this section we treat special cases of reflecting geodesics.

Definition 6.1. Let 7 be a reflecting geodesic. If X (o — 0) is normal to B
(thus so is X (t9 4+ 0)), v is called a normal reflecting geodesic.

For example, a reflecting geodesic with y(a) = () is a normal reflecting
geodesic and so is a reflecting geodesic with y(a) or v(b) € B.

Proposition 6.2. An admissible Jacobi field Y on a normal reflecting
geodesic vy is the variation vector field of a variation @ of v through normal
reflecting geodesics if and only if

(6.1) Sxto+0)(P(Y)) +Y'(to = 0) are normal to B.

proof.  Let ¢ : [a,b] X (=d,0) — M be such a variation with the variation
vector field Y and (8 : (—d,0) — B a curve defined to be 3(s) = v(to(s), s).
Then £'(0) =P(Y) and we put

Zyi(s):=X(to(s) £0,s).

These are normal to B and

DX
ot
Hence Z! (0) = Y'(to £ 0). Furthermore, we have

Doy Zs = th(s) 2 (to(s) £ 0,5) + %(to(s) 10,8) = 2 1(5) £ 0, 5).

ot

tanZy =tanDg Zy = —Sz (4'),

hence
tanY'(ty £ 0) = —Sx(to+0) (P(Y)).

It follows that

Sx(to+0)(P(Y)) +Y'(to £ 0) = norY'(to + 0).
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Converse is the case of A" = B" — () in Lemma 5.4. O

Corollary 6.3. An admissible Jacobi field Y on a normal (reflecting) geodesic
v with ty = a is the variation vector field of a variation ¢ of v through normal
(reflecting) geodesics if and only if

Sx(a)(Y(a)) +Y'(a) is normal to B.

This coincides with the well-known fact, see Proposition 10.28 in [4] , for
example.

87. Variation of energy

Let a: [a,b] — M be a piecewise smooth curve. Then the integral
1 rb
E:—/ <d,d >dt
2 Ja
is called energy. Let E(s) be the value of E on the longitudinal curve

t —p(t,s), so
1 b dp O
E(s) = - e d
() 2/a<8t’8t>dt’

where ¢ is the variation of « in Q. By contrast with L, the function E
is always smooth without restriction on ¢. Formulas for the first and second
variations of £ are simpler analogues of those for L.

Lemma 7.1. Let a : [a,b] — M be a piecewise smooth curve such that
a(ty) € B. Let ¢ be a variation of o in Q, with Y and A the variation and

oy 0
transverse acceleration vector fields of p. If f = f(t,s) =< 8—(':, a—(’to >, then
10f d
7.]. ——|¢—() — Y’ ! = — Y " J— Y /
(7.1) 288|570 <Y' o > <Ya'>+ <Ya >,
182f !/ !/ !/ ! !/ !
(7.2) 5@|5:0:<Y,Y >— < RY,a)d,) Y >+ < A d >
n !/ !/ !/ !/ d !
=—<Y"+RY,d)d)Y >+ < A« >+%<Y,Y>.
proof. We readily compute
10f  DOp 9p D 0Op dp

20s 050t ot “dtos ot
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D D 0y 0Oy

20s2 T Otds’ Os Ot Os Ot Os’ Ot
Doy D dyp Op Oy Op &p D D 0y 0Op
e Z2ZF ZF R ZZ7F7F
Saiasoios T PG a Tt < dios9s ot
Hence it holds that
1of , d /
Y =— <Y, — <Y,
28| =<Y' d>=-< a>+dt<’a>’
162 ! ! ! ! ! !
2a2|s° =<YY'>-<RY,d)d) Y >+ <A d >
1<Y’,Y>. O

= - <Y"+RY,d),Y >+ < A,d > o
Proposition 7.2. (First Variation Formula)  Let o : [a,b] — M be a
piecewise smooth curve such that a(ty) € B. Let ¢ be a variation of a in

with the variation vector field Y. Then
b
E'(0) = —/ <Y, o" >dt+ <Y,/ > 2
a

+= Z<Y —0) + Y(a; +0),A,0" >,

< ay are the breaks of c.

wherea1<---<aj:tg<---
proof. As in the proof of Proposition 2.6, we get
1, d " el
E'(0 / (t, 8)dt)|s—0 = / t,s)dt)|s—
Fltsiloco =50 3 [ 7o)l
1 8f k+1 ,
= | 3g5b=0dt+5 Z{a —0,0) —aj_(0)f(ai—1 +0,0)}
10
=/ 2af|s odt + = Za a; —0,0) — f(a; +0,0)}.
By Lemma 7.2, it holds that
b k+1
E'0) = — / <Y, " >dt+Y <Y, > ¥ Z 0){< o/(a; — 0),
@ i=1
o (a; —0) > — < d(a; +0),d (a; +0) >}

k

b
— /<Y,o/’>dt+ZAai<Y,o/>
@ 1= 1

+ <Y, o >0+ = Za )Ay, <oy >
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Furthermore, we have
a;(0)A,, < d'ya > +2A,, <Y, d >

=< a;(0)d/ (a; — 0) + 2Y (a; — 0),d/(a; — 0) >
— < a;(0)d (a; + 0) + 2Y (a; + 0),d'(a; +0) >
=< a;(0)a(a; + 0) + Y (a; + 0) + Y(a; — 0), &/ (a; — 0) >
— < a;(0)d(a; — 0) + Y(a; — 0) + Y(a; +0),d/(a; + 0) >
=<Y(a; +0) +Y(a; — 0),A, 0 >
i(0)a ( —0),0/(a; +0) >
=<Y(a; +0) +Y(a; — 0),A

since (2.1). 0

+ < ai(0)d! (a; + 0), ' (a; — 0) > — < a}

Corollary 7.3. Let o : [a,b] — M be a piecewise smooth curve such that
a(ty) €B. The first variation of energy is zero for every fized endpoint varia-
tion of a in Q if and only if « is a reflecting geodesic or a geodesic.

proof. Suppose E'(0) = 0 for every fixed endpoint variation . First we show
that each segment «|I; is geodesic. It suffices to show that o' (t) = 0 for te I7.
Let y be any tangent vector to M at «(t), and let f be a bump function on
[a,b] with suppf C [t — (,t+ (] C I;. Let V be the vector field on « obtained
by parallel translation of y, and finally let Y = fV.

Since Y (a) and Y (b) are both zero, exponential formula ¢(t,s) = expyy)
(sY(t)) produces a fixed endpoint variation of o whose variation vector field
is Y. Since E'(0) = 0, the formula in Proposition 7.2 reduces to

b t+¢
0:—/ <Y,a”>dt:/ < fv,a" > dt.
a t—C

This holds for all ¥ and ¢ > 0. Hence < y,a”(t) >= 0 for all y; hence
o =0.

As before, let y be an arbitrary tangent vector at a(a;) (i # j), and let f
be a bump function at a; with suppf C I; U ;11 (i # j). For a fixed endpoint
variation with vector field fV the first variation formula now reduces to

1
0= FE'(0) = 5 <Y(a; —0) +Y(a; +0),As,a >

=<y, Aaia' > for all y.
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Hence A, o =0 (7 # 7). This shows that (1.5) is true and 0 =< Y (¢p—0)+
Y (to+0),A4, X >. The latter means that < y, Ay X >=0forany y € To(t0)B-
Furthermore, for a fixed endpoint variation of « with #,(0) # 0,

0=<Y(ty —0) +t,(0)X (to — 0) + Y (to + 0) + t5(0) X (to + 0), Ay X >

=<Y(to—0)+ Y (to +0),Ar, X > +15(0)A¢, < X, X >
Consequently (1.7) is true.

Conversely we assume that « is a reflecting geodesic. For any fixed endpoint
variation of & whose vector field is Y, by the first variation formula,

1
E'(0) = 3 < Y(to—0) +Y(to +0), A, X >= 0. 0
Proposition 7.4. (Second Variation Formula) Let v : [a,b] — M be a

reflecting geodesic such that v(to) € B and AX := A, X is nonnull. If ¢ is a
variation of v in §2, then

b
E"(0) = / (<Y Y'> — < RY,/)Y,Y >}dt
a
+<AY > I+ < Sax(P(Y)),P(Y) > .
proof. Using (7.2), we can prove as in Theorem 3.2. a

If v is such a reflecting geodesic, then strictly analogous to the index form
I, for L is the Hessian H, for E. Explicitly, H, is the unique R-linear form
on T, such that H,(Y,Y) = E”(0), where E is the energy function of a
variation of vy in © whose variation vector field is Y. By the second variation
formula above it follows as in Corollary 4.6,

b
H(Y,W) = / (<Y, W'> — < R, )Y, W >}dt

+ < Sax(P(Y)), P(W) >,
for Y, W € T, (.
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