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Abstract This paper is a continuation of the work in [RS], where we stud-
ied Demazure operators for the imprimitive complex reflection group W =
G(e,1,n) and constructed a homogeneous basis of the coinvariant algebra
S7- In this paper, we study a similar problem for the reflection subgroup

W = G(e,e,n) of W. We prove, by assuming certain conjectures, that the
operators A,, (w € W) are linearly independent over the symmetric algebra
S(V). We define a graded space Hw in terms of Demazure operators, and we
show that the coinvariant algebra Sw is naturally isomorphic to Hyw . Then we
can define a homogeneous basis of Sy parametrized by w € W.
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8§1. Introduction

Let W = G(e,1,n) be the imprimitive complex reflection group isomorphic
to Sy X (Z/eZ)", regarded as a subgroup of GL(V) with V = C". (Here S,
denotes the symmetric group of degree n). Let Si be the coinvariant algebra
of W, i.e. the quotient of the symmetric algebra S(V') by the ideal gener-
ated by the non-constant homogeneous W -invariant polynomials. In [BM1],
K. Bremke and G. Malle constructed a length function n : W =N satisfying
the property > W) = Py (t), where Pj-(t) is the Poincaré polynomial
associated with the graded algebra Sg;. In [RS], we defined a Demazure op-

erator A,, for each w € W, which is an endomorphism on S (V) reducing the
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180 KONSTANTINOS RAMPETAS

grading by n(w), and constructed a basis of S5 parametrized by w € W by
making use of {A,|w e W}.

In this paper, we consider the group W = G(e, e, n), which is a subgroup of
W of index e, isomorphic to S, x (Z/eZ)™~!. The length function £: W — N,
satisfying the property ) y /) = Py, (), was constructed by [BM2], where
Py (t) is the Poincaré polynomial associated with the coinvariant algebra Sy
of W. We recall the definition of Demazure operators. For each o € V,
let s, be the complex reflection with eigenvector a. A Demazure operator

Ay : S(V) — S(V) is defined by

Aa(f):f%a(f), for f e S(V).

We define an operator A,, for each w € W as follows. It is known by [BM2]
that there exists a system of representatives N of the left cosets W/S,, sat-
isfying the property that {(w'w') = £(w') + £(w") for w' € N, w" € S,.
We define A, for w' € N as a certain product of various A, for s, € W.
On the other hand, the operator A~ for w” € S, is already defined by the
theory of Demazure operators for finite Coxeter groups. Then we define, for
w=wuw"eW (v eN,w" €S,) the operator A,, by A, = AyAyr. In the
case of W, the crucial step for the proof of the main result is to show that the
operators {A| w € W} are linearly independent over S(V'). In our situation,
we can prove (Theorem 3.10) that the operators {A,/| w' € N'} are linearly
independent over S(V). It is also known by the general theory that the op-
erators {A,r| w"” € S, } are linearly independent over S(V'). We expect that
{Ay| w € W} are linearly independent over S(V'). In our paper, we prove this
by assuming certain conjectures, (3.12.1) and (3.12.2), concerning the prop-
erty of A, (w' € N). Our main result asserts that a similar theorem as in
the case of W holds for W, assuming the above conjectures. More precisely,
let Dy be the subspace of the dual space of S(V) generated by £A,, (w € W),
where ¢ : S(V)) — C is the evaluation at 0. Then we can show (Theorem 3.25)
that {eAy| w € W} gives a basis of Dy, and that Sy is naturally isomorphic
to the dual space of Dyy.

The conjecture (3.12.1) is related to the evaluation of Ay, (wy is the longest
element in W with respect to £) at certain polynomial, and is verified to be
true (Theorem 3.14) under the assumption that e > n. This theorem leads
to the following interesting characterization of A,,. Let J be the operator
on S(V) defined by J = > _ew(w)w, where eyy : W — {£1} is the
sign character of W. Let @) be the product of all eigenvectors of reflections
contained in W. Assume that e > n. Then A, is expressed (Proposition
3.18) as A, = dQ~'J for some non-zero constant d € C.
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82. Preliminaries

2.1. Let V be the unitary space C" with standard basis z1,%2,..., Tn.
Let W = G(e, 1,n) be the imprimitive complex reflection group contained in
GL(V). The group W is generated by {t,s2,---,s,}, where s; is a reflection
permuting z; and z;_1, and t is a complex reflection of order e, which sends
x1 to (z1 and leaves all the other x; unchanged. (Here ( is a fixed primitive
e-th root of unity).

Let W = G(e, e, n) be the subgroup of W of index e generated by reflections
S = {s1,89,--- ,5,} of order 2, where s; = tsot~! sends z; to (T'xs and
to (x1. Note that W is the Weyl group of type D,, if e = 2, and W is the
dihedral group of order 2¢ if n = 2.

Let S(V) = ®;505°(V) be the symmetric algebra on V, where S*(V) de-
notes the i-th homogeneous part of S(V)). The group W acts naturally on
S(V) and we denote by Iy the ideal of S(V') generated by the W-invariant
homogeneous elements of S(V') of strictly positive degree. The coinvariant
algebra associated with W is defined as Sy = S(V)/Iy, which has a natural
grading Sy = G%'zosév inherited from that of S(V'). The Poincaré polynomial
Py (t) is defined by the formula

Py (t) =) dime(Siy)t'.
i>0

The group W acts on S (V), and the coinvariant algebra Si;; and the Poincaré
polynomial Py (t) associated with W are defined similarly.

2.2.  In [BM1], Bremke and Malle constructed a length function n :

W — N by making use of a certain root system, and showed that the sum
> el t"®) coincides with Py:(t). In [BM2], they defined a different type of

length function £ : W — N, (the function ¢5 in the notation of [BM2]), in
terms of an alternative root system and showed that the restriction of £ on
W satisfies the formula )y ') = Py (t). Note that the subgroup of W
generated by S’ = {sa,---, s, } is identified with S,,. The restriction of £ on
S, coincides with the usual length function of S,, with respect to S’.

They found a system of left coset representatives N of W/S, having nice
properties with respect to the length function £ on W as follows. For 0 < a <e,
1 <4 < n we define an element of W by

(2.2.1) w(a,i) =

S; - 8ot? if0<a<e/2
S+ Sottsg -8 ife/2 <a<e.
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It is known by Lemma 1.10 in [BM2] that the length of the element w(a,?)
is given as

(i—1)(2a—1) if0<a<e/2,

(2.2.2) t(w(a,7)) = {(z —1)(2e —2a) ife/2<a<e.

Put

N ={w(ay,1) - wlay,n)| 1 <a; <e, Zai =0 (mode)}

They proved the following fact.

Proposition 2.3 ([BM2, Cor.1.16, Prop. 2.6]). The set N is a system of
representatives for the left cosets W/ Sy, satisfying the following.

(i) For w' e N, w" € S, we have

Y(w'w") = t(w') + £(w").

(ii) If w' € N is given as w' = w(ay, 1) --w(an,n), then L(w') =
S l(w(ag,i)).
(Note that ¢(w(a1,1)) =0 by (2.2.2)).

2.4. Let s, be the reflection in W with eigenvector @ € V. (Here we
assume that the eigenvalue attached to « is not equal to 1). We define an
operator A, : S(V) — S(V) by the formula

A = L7500 g ey,

o

We call A, a Demazure operator on S(V). Demazure operators are defined
for complex reflection groups in general. In the case of finite Coxeter groups,
there exists a well established theory for Demazure operators by [BBG], [D].
In the case of (non-real) finite complex reflection groups, not much is known.
In [RS], we studied Demazure operators for the group W, and showed that
the structure of the coinvariant algebra S is described in terms of Demazure
operators, as in the case of Coxeter groups, by constructing a certain (non-
canonical) basis of Sy Here we take up a similar problem for the group
w.
We give some properties of Demazure operators. We have the following.

(2.4.1) A2 =0,

[0}

Ao(fh) = Ba(f)h+ fAa(h),
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for f,h € S(V). If f € S(V) is so-invariant, then A, (f) = 0. Now let S(V)W
be the subalgebra of S(V') consisting of the W-invariant elements. Then it
follows from (2.4.2) that

(2.4.3) Ao(fh) = fAL(h)  for fe SV)V.
In particular, we have A, (Iy) C Ijy and A, induces an operation on Syy.

2.5. Let S, be the subgroup of W as in 2.2. Then (S,,S5’) is a Coxeter
system, with associated length function ¢ : S, — N. Hence, by the general
theory of Demazure operators for finite Coxeter groups, we have the following
facts. Let w = sj,8i, -+ 54, (si € 5”) be a reduced expression of w € S;,. Then
we define

(2.5.1) Ap =N A

%]
where A; = A,, with o = 2; — z;—1. It is known that the operator A, is
independent of the choice of the reduced expression. (See, for example [H, IV,
Prop. 1.7]).

Let wgy be the longest element in S,,. We define a polynomial Qg by Qg =
[1;s;(zi — z;). The following facts are known.

Proposition 2.6 ([H, IV, Prop. 1.6]). A,,(Qo) = 1.

Proposition 2.7 ([H, IV, Cor. 2.3]). For any w,w’ € W such that {(w) <
L(w'"), we have Ay Ay-1, = O uw Dy -

Note that the condition /(w) < £(w') is dropped in the statement of Corol-
lary 2.3 in [H].

§3. Demazure operators for G(e,e,n)

3.1. From now on we identify S(V') with the polynomial algebra
Clz1,... ,x,] with indeterminates z;. The group W = G(e,e,n) acts on
Clz1,... ,x,] as in 2.1.

For i = 2,3,... ,n we define inductively the element s, as follows; Let

st = sy and s, = s;_18;8,_;8;si—1. Then s} is the complex reflection of order 2,
which sends z; to (z;_1, and z;_1 to ( ~'z;. We note that if we put y; = C‘l/%i
and y;_1 = (/22;_;, then we can regard s; as a permutation of y;, y;—i1. We
define two operators Ay, As; on S(V) by the formulas

(3.1.1)
Ay (f) =

? _ 7
Ti — Ti—1 i (V2 — (M2

(f € S(V)).
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Then the following two formulas hold:

b j a+b—1—j
(3.1.2) Ag (ziz; 1) =¢ Z wloi T,
gttt ) =

TiTi1
where in both formulas the sum is taken over j such that min{a,b} < j <
max{a,b}—1, and ¢ = 1 (resp. ¢ = —1) if a > b, (resp. a < b). The first
formula is contained in [RS], and the second one is obtained from the first by
changing the variables z; — y;, ;1 — y;_1.

For i =2,--- ,n, we define operators AZ(-a), AZ(-,Q) in the following way
(3.1.3) A=A, A=A,
—_—— —_——
a—factors a—factors

3.2. Inorder to study the above operators in a more detailed way, we need
to evaluate them at various polynomials. For this we prepare some notation.
Let a, b be two positive integers such that 1 < a < b. We put

a—1

c(a,b) = (—1)[e+1/2 H(C(bfj)/Z — ¢~ (b=0)/2y,

J=1

where [a] denotes the smallest integer which does not exceed a. We have
c(a,b) = —1 if a = 1. The following two lemmas will be used in our later
discussion.

Lemma 3.3. Let a,b be integers such that 1 < a < b.

(i) Assume that a <b. Then we have

A@ (g0 ) = C(G,b)(x + a7 + f, if a is odd,
P c(a,b) (y yf O+ f if a is even,

A(.a)(:p’-’ ) = (—1) ¢ 2¢(a, )( —i—yl O+, if a is odd,
’ o (_1)(1,—14-—()/2 (a’a )( i—l) + f, zfa 18 even,

where in each case, f denotes a polynomial divisible by T;x;—1 = y;Y;—1-

(ii) Assume that a =b. Then we have
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Proof. We prove only the formula (i). The proof of (ii) is similar, and simpler.
We show the first formula in (i). The case where ¢ = 1 is straightforward
from (3.1.2). The following two formulas are obtained by using the definition
of Ay, A,S; and the fact that y; = (~Y2z; and y;_; = ¢Y2z,;_;.

Ay (a4 gty = (et /2 — ¢mbmat D2y hme by oy fy,
Ay, (yrm ot gbotly = (¢~ /2 (ot /2y (ghma | pbmay 4 g

where fi is a polynomial divisible by z;x; 1 = y;y;_1. We also notice that
since z;x;_1 = Y;yi—1 is stable by the reflections s; and s, if a polynomial
f is divisible by z;z;—1 = yiyi_1, then so are A; (f) and Ay (f). The first
formula in (i) follows from the above formulas by induction on a. Next we
show the second formula in (i). If we note that z?_; = C‘b/ng’_l, it is easy

to see that Az(,a ) (y? ) coincides with the polynomial which is obtained from
AZ(-a) (z?_|) by replacing z;, z;_1 by vi,yi—1, by replacing ¢ by ¢!, and then
by multiplying by ¢ ~b/2 Hence the second formula follows immediately from
the first one. O

Next we compute the values NG (z?) and Al(,a) (z?). By (3.1.2) we see that

[ [

ASZ(IL‘E) = _Asi(xg—l)a As( (yf) = _As;(yg—l)'

3

Therefore we have
As; (*’I;f) = Cb/2As; (yf)

= —Cb/ZAs’i (471)
= _CbAs’i (:L'?fl)'

This implies that the value A(a)(mg’) (resp. A(a)(xl?)) coincides with

7 i %

AW (z2_,) (resp. —CbAE,a) (z2_,)). Therefore as a corollary to Lemma 3.3

7
we obtain the following result.

Lemma 3.4. Let a,b as in Lemma 3.35.

(1) Assume that a <b. Then we have
abmo gy 4 f if a is odd,
y;’_a + yf__f) +f if a is even,

b
b
AW gy = § CDCPela by ) + S if ais odd,
B )a¢2c(a, b)(ﬂfi’_“ + !L“f:f) +f if a is even.
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(ii) Assume that a =b. Then we have

3.5. We fix an integer a > 0. We define, for 2 < i < n, an operator A;[a]
on S(V) by the formula

AD L A® g >,
Ai[a]:{12 " ifa=o0

The operator A;[a] reduces the grading by (i — 1)a. For each a > 0, we define
a polynomial g; o(z) of degree (i — 1)a by g¢; o(x) = (z1---z;—1)® Then the
following lemma holds.

Lemma 3.6. Assume that a > 1. Let Ajla] , giq(z) be defined as above.
Then

Ajla(gia) = {(=1)""¢ P e(a,a)}

In particular, Ajlal(giqe) #0 for 1 <a<e-—1.
(a)

Proof. First we note that the operator A}, affects only the variables z; and
z;—1 and leaves all the others unchanged. Therefore we have

(3.6.1) Aila)(gia) = (@1 mim0)* A (2 )).

But we have Agfl)(xﬁl) = (=1)*1¢"%2¢(a,a) by Lemma 3.3 (ii).
Hence the right hand side of (3.6.1) can be written as vyg;—1, with
v = (=1)%"'¢%2¢(a,a). Repeating this procedure for the operators
. ,Agl) we obtain the result. O

3.7. Let M =[0,e —1]"! (n— 1 copies of the interval [0,e — 1]). For
each A = (Ag, -+, Ay) € M, we define an operator Ay on S(V') by

Ay = Ap[An] - AglXg].

Also for A € M we define a polynomial Py(z) by Py = [[i"5¢i,- Let A =
Aoy v 5 An) o= (o, , i) € M. We define a total order A > p on M
by Ao = po, ..., A1 = pi—1 and A; > p; for some ¢ > 1. Then we have the
following proposition.
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Proposition 3.8. Let \,u € M. Then there exists a non-zero element cy € C
such that

ey if A=
A)\(Pu) =2 f M’
0 if A>p.
Proof. First we note that Aj[A;] leaves g;,, = (z1---x;—1)" invariant
for j < i. In fact, Aj[)\;] consists of various products of the operators
Agyyr - ,Asj,Asrz e ,A59 and these operators leave g; ,, invariant, since s;

and s} stabilize z;_12; = y;_1y; (in the notation of 3.1).
First assume that A = p. Then by Lemma 3.6 A;[\;](g;,;) is a non-zero
constant for each ¢. Combining with the above remark, we see that

n

AP = [T AilMl(gin),

=2

and the right hand side is a non-zero constant, which we write as c).
Next assume that A > p. Then there exists ¢ such that Ao = po,... , A\ji=1 =
i—1 and A; > p;. Then we have

Ax(Py) = cAnAn] - AiP\i](H i )

with some ¢ € C — {0} by a similar argument as in the previous case. But
then

H Gjny) H i ) AilAil(Gi i)

Jj=i+1

and A;[Ai](gi,;) = 0, since A;[\;] reduces the degree by (i — 1));, which is
bigger than the degree of g; ,,. Hence Ay(P,) = 0. O

3.9. Let Dy be the subalgebra of Endc S(V') generated by Ag (s € S) and
o (a € V), where o : S(V) — S(V') denotes the multiplication by the vector
a. Then Dy becomes a left S(V)-module. We also note that for any w € W
the endomorphism w on S(V') is contained in Dy, since s, = 1 —a*A, € Dy
for any s, € S. Since As/i = wASIQw_l for some w € S, we see that AS;
(2 < i < n) are also contained in Dy. Therefore Ay € Dy for any A € M.
As a corollary to Proposition 3.8 we have the following theorem. The proof is
immediate from Proposition 3.8.

Theorem 3.10. The set {Ax| A € M} of operators in Dy is linearly inde-
pendent over S(V').
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3.11. In the case of W = G(e,1,n), the operator A, was constructed
in [RS] for each w € 1% by making use of a particular reduced expression of
w. Here A, is an operator which reduces the grading by n(w). In our case,
the operators Ay with A € M are not directly related to the elements of W.
However, one gets a bijection between the set {A\|A € M} and the set N in
W as follows. For each 0 < a < e, we set

{2a—1 if0<a<e/2
p(a) = .
2¢—2a ife/2<a<e.
Then the map ¢ gives rise to a bijection from the set [1, €] to the set [0, e —1],
and one can define a bijection ¢ : N = M by ¢(w) = (p(a2),... ,e(ay)).
Hence the set {Ay|\ € M} is in bijection with the set N. It is easily checked,

by using (2.2.2), that if A € M corresponds to w € N, then Ay reduces the
degree by £(w).

3.12. In the case of W, it was shown in [RS, Prop. 2.14] that Dy is

a free S(V)-module with basis {A,| w € ,Wv} In order to obtain a similar
result for W, we try to construct operators A, for any w € W. In view of
Proposition 2.3, any element w € W can be expressed uniquely as w = w'w",
withw' € N, w" € S, with £(w) = £(w")+£(w"). We now define A, (w € W)
by Ay = AyAyr, where A € M is given by A = ¢(w'). (Note that the operator
A, corresponding to w” € Sy, is defined without ambiguity, see 2.5).

We know, by Theorem 3.10, that the set {Ay] A € M} is linearly inde-
pendent over S(V). It is also known that the set {Ayr| w"” € S,} is lin-
early independent over S(V). We expect that the set {A,| w € W} gives
rise to a basis of Dy,. In what follows, we show that this conjecture is re-
duced to some properties of Ay. Here we prepare some notation. For each
A € M we define the length ¢()\) by £(\) = ¢(w') whenever A\ corresponds
to w' € N. Hence £(w) = £()\) + £(w") if w € W corresponds to the pair
(A, w") € M x S,,. For each integer ¢ > 1, we put M, = {\ € M| £()\) = c}.
For each polynomial Py (A € M) given in 3.7, we define its average Py over
S by P, = Y ves, 0(Py). Note that A,\(IBM) is a constant if A\, u € M, for
some c. Let \g = (e —1,--- ,e — 1) € M. Then ) is the longest element in
M with £(Ag) = n(n—1)(e—1)/2. We consider the following two statements.

(3.12.1) A/\O(ﬁ,\o) is a non-zero constant.

3.12.2) For any integer ¢ > 1, the matrix (A)(P,))ruem. 18 non-singular.
y g 1))\ peMe 8

We don’t know whether these two statements hold in a full generality for
W. It is verified that (3.12.1) holds whenever e > n, which will be discussed
in Theorem 3.14. In the case where n = 3 it is checked that (3.12.2) holds
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for small e. Note that (3.12.1) is a special case of (3.12.2), since the set M,
consists of a single element \g if ¢ = £()\p).

3.13. In order to look at ]3)\ more precisely, we shall extend the parameter
set M to N*"1. For each A = (A2, -+ ,\;) € N1 we define a polynomial
F,(X) by Fp(A) = [1i, gi,- Hence if A\ € M, F, () coincides with Py. We
put Fr(A) = > ses, 0(Fn(X)).

For each 7 (1 <17 <mn), let

12 - 7 241 442 - n
@_(12-~ T S Y n—JES”
Then {01, -+ ,0,} is a complete set of representatives of the right cosets

Sn_1\Sp. For each pu = (po,--- ,pn) € N7 we define u¥ € N*—2,
(2<i<n-—1)by

PO = (2, s i1y i F B Bit2s - i)

Also we put :U‘(l) = (u?n'" 7#%) € an2 and lu‘(n) = (NZV" nunfl) € an2.
Then it is easy to see that

Fy 1 (u®) - gl if1<i<n-—1,

(3.13.1) Uz(Fn(N)) = {Fnl(lu(n)) . (];1 ce g;nil)”” if i =n,

where b; (1) = piz1+---+pn fori=1,--- ;n—1. It follows from (3.13.1) that

I (Z) . bi(ﬂ) . <5< _

0ESp-1 Fn—l(lu(n)) ' (xl T xn—l)un if i = n.

Hence we have a recursive formula,

o~ n_l o~ . ~
(3.13.2)  Falu) =3 Bt (s0)2l + By () (g 1)

i=1

Let M’ = [0,e—1]""2 be the set corresponding to the situation in G(e, e,n—1).
Then for A = (Ag,--+ ,\,) € M, the operator Ay can be written as Ay =
Ap[A]Ay with X = (Ag, -+, A1) € M. By applying Ay to the formula
(3.13.2), we obtain

n—1
(3.13.3) Ax(Fu(p)) = ;An[kn](mf (B 1 (u®)) - i)

+ Anp‘n](A)\’(ﬁnfl(N(n))) (w1 1))

By making use of the formula (3.13.3), we can compute the value Ay, (ﬁ,\o) un-
der a certain condition, which gives a partial answer to the conjecture (3.12.1).
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Theorem 3.14. Assume that e > n. Then Ay, (Py,) = ¢y, where cy, is
given as in Proposition 3.8.

Proof. Since \g = (e — 1,---,e — 1) € M, A), can be written as Ay, =
Ap_ile — 1]JAy,, where \j = (e —1,---,e — 1) € M'. First we note the
following

(3.14.1) Let pu = (po,- -+ ,pun) € N*71. Assume that p; = 0 (mode — 1) for all
i, and that e — 1 < >, ui < e(e — 1). Then we have Ay, (Fp(p)) = 0.

We prove (3.14.1) by induction on n. We apply the formula (3.13.3) with
XA = ). Note that if y satisfies the assumption of (3.14.1), then p(® (2 <
i < mn — 1) above also satisfies the same condition. Hence (3.13.3) implies, by
induction hypothesis, that

Mg (Fu(1)) = Aule = 1Ay (Fy1 (uV)) - 222 )
T Aule = (A (Bt (1)) - (21 20 1)),

~—

)

Here we may assume that (1) = M\ or 4™ = X/ since both of A)\B(ﬁn_l(u(l)
and A/\B(ﬁn,l(,u(”))) are zero, otherwise. But if u(!) = X/, then Fy (p™)

ﬁ%’ and Ay, (]3%) is a constant. The same argument holds for the case (™ =
Ay- Therefore, in order to prove (3.14.1), we have only to show that

(3.14.2) Anle — 1)z5:™ =0,
(3.14.3) Aple — 1)(zy -+ - Tpy )i =

The left hand side of (3.14.2) can be computed by making use of the formula
in Lemma 3.4. In particular, it is divisible by c(e — 1,b1(u)). We claim that
cle — 1,b1(n)) = 0. In fact, by our assumption, by(p) = po + -+ + pupn can
be written as by () = d(e — 1) for some d such that 1 < d < e. Then there
exists 7 (1 < j < e —2) such that b;(u) —j = 0 (mode). This implies that
c(e—1,b1(p)) =0, and (3.14.2) holds. (3.14.3) can be proved in a similar way,
by replacing by (i) by iy, and by using Lemma 3.3. Hence (3.14.1) is proved.

We now prove the theorem. We compute Aj, (ﬁ)\o) by applying (3.13.3)
with A\g = p. Then )\gl) (2 <i <n—1) satisfies the condition in (3.14.1), since
(n—1)(e—1) < e(e—1) by our assumption. Hence, by applying (3.14.1), the
terms corresponding to p(? (2 < i < n — 1) vanish. It follows that

Axg(Pry) = Agle — 1= Ay, (Py,)
+ Aple — 1(m1 -+ 20m1) " Ay (Pyy)

But the first term of the sum goes to 0 by applying (3.14.2) with p = X.
Since (xy---z, 1) = Gn,e—1, the second term coincides with cy,, by
Proposition 3.8. This proves the theorem. ]
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3.15. Let wy € S, be as in 2.5, and let w; € W be the element in W
corresponding to (Ag,wp) € M x S,. Then w; is the longest element in W
with £(w;) = en(n —1)/2 = N, where N is the number of reflections in W.
Let Q9 be as in 2.5. Then ﬁ/\o Qo is a polynomial of degree N. Since ﬁ/\ is
Sp-invariant, and A, (Qo) = 1 by Proposition 2.6, we have

(3151) A)\koo(ﬁ)\oQO) = A/\O(ﬁ/\o) = C)p-
Before stating the next result, we prepare a simple lemma.

Lemma 3.16. Let € : S(V) — C denotes the evaluation at 0. Let Iy be the
ideal of S(V') defined in 2.3. Then for any w € W we have

eAy(Iy) =0

Proof. Let f be an element of Ij;>. Then f can be written as
f=> uifi,
i

with u; € S(V), fi € S(V)W, where f; is homogeneous of positive degree.
Then applying A, to f, we obtain

Au(f) = Aw(u) fi,

since f; is W-invariant. Here Ay (u;)f; is a polynomial without a constant
term. This implies that eA,(f) = 0 and the lemma follows. O

3.17. Let ey : W — {£1} be the sign character of W. Let @ be the
polynomial in C[z; --- ,z,] defined by Q = HZ>J(III;3 - x;z) Then deg@Q = N,
and up to scalar, @) coincides with the product of the eigenvectors attached to
all the reflections in W. It is easy to see that () generates a one-dimensional
representation of W affording eyy. We define an operator J : S(V) — S(V)
by

J= Z ew (w)w.

weWw

Then J is a projection on the ey -isotypic subspace of S(V). We have the
following remarkable result, although it is not used in the later discussion.
Note that it is an analogue of [H, IV, Prop. 1.6].

Proposition 3.18. Assume that e > n. Then there ezists a non-zero constant
d such that Ay, = dQ~'J.
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Proof. 1t is known that Sy is a regular W-module, and SV]\[Z affords the sign
representation of W. Hence we have

SN(V) = (Iw)N + CQ,

where (Iy/)N = Iy N SN (V). Now Py,Qo € SN(V), and (3.15.1) implies,
in view of Lemma 3.16, that ﬁ)\OQO ¢ Iy. Hence there exists a non-zero
constant ¢ € C such that Q = c’]SAOQU (mod Iyy). In particular, we have
Ay, (Q) = ¢ with ¢ = dc),, by Theorem 3.14. Since A,, and Q 'J are
S(V)"-endomorphisms of S(V), both of them are determined by the restric-
tion to SN (V). Hence, by comparing the value at Q, we see that A, = dQ~1.J
with d = ¢/|W|. This proves the proposition. O

3.19. We now return to the condition (3.12.2). We deduce several prop-
erties of the operators A, by assuming this condition. Note that for any
A, i € M, the polynomial AyA,, (ﬁ#QU) is a constant.

We denote by A. the matrix (A)\AwO(ﬁqu)))\,ueMC, under a suitable order,

for a given integer ¢ > 0. Then since AyA,y,(P,Qo) = Ax(FP,) by a similar
argument as in (3.15.1), we see that

(3.19.1) Assume that (3.12.2) holds for W. Then the matrix A, is non-
singular.

We have the following lemma..

Lemma 3.20. Assume that (3.12.2) holds for W. Then the operators
{A\Ap| X e M, we Sy} are linearly independent over S(V').

Proof. We consider the dependence relation

(3.20.1) > a(A w)ArA, =0

Aw

on S(V), where a(A,w) € S(V). By induction on the length ¢(w) of w € Sy,
we may assume that a(\,w’) = 0 for any w’' € S, such that /(w') < ¢(w)
and for A € M. Multiplying A,,-1,,, to the equation (3.20.1) from the right,
and by making use of Proposition 2.7 together with induction hypothesis, we
obtain

(3.20.2) > a(\w)AxA,, = 0.
AEM

We show that a(A,w) = 0 by induction on the length of M. Assume that
a(p',w) = 0 for any pu' € M such that £(u') < c. We evaluate the equation
(3.20.2) at P,Qqo for p € M,.. Note that AyAy,,(P,Qo) = 0 if £(N) > c.
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Hence the non-zero contribution only comes from the terms corresponding to
A € M.. We consider such equations for all i, € M,. Then it is regarded as a
linear equation with variables a(X,w) (A € M,), and with coefficient matrix
Ac. Since the matrix A, is non-singular by (3.19.1), we see that a(\,w) = 0
for any A € M,. This proves the lemma. O

We can now prove the following proposition, which is analogous to propo-
sition 2.14 in [RS].

Proposition 3.21. Assume that (3.12.2) holds. Then the algebra Dy is a
free S(V')-module with basis {A,| w € W}.

Proof. Let K be the quotient field of S(V). The operator A, on S(V') can be
extended to an operator on K. We consider the subalgebra D{,(V of Endc K
defined by DE, = K ®g(vy Dw. Since dimg DE < |W|, Lemma 3.20 implies
that

(3.21.1) The set {A,| w € W} gives a basis of DE. as a K-vector space.

By a similar argument as in the proof of Lemma 2.14 in [RS], the proof of
the proposition is reduced to showing the following lemma.

Lemma 3.22. Let A be a d-product of Ag (s € S). Then A can be written
as

A= Z awAy,

weWw

where a(w) are elements in S(V') satisfying the following conditions.

=0 if £ d
(3.22.1) o if tw) <d,
ay € SHW=AV) if f(w) > d.
We prove Lemma 3.22. Here we recall that any A,/ (w' € W) can be
written as A, = A A, with A € M, w € S,,. Hence by (3.21.1) A can be
expressed as

(3.22.2) A= a\w)A Ay,

AEM
wWESy

with a(A,w) € K. We write a(\, w) = a, if w' € W corresponds to (A, w).
We shall prove that a(\, w) satisfies the condition (3.22.1) by induction on the
length £(\) of M, and on the length ¢(w) of S,. We fix w € S,, and assume
that (3.22.1) is verified for any a(\,w’) such that A’ € M and that v’ € S,
with £(w') < £(w). Also we assume that it is verified for any a(y',w) such
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that £(u') < ¢ for an integer ¢ > 0. We show that a(), w) satisfies (3.22.1) for
any A € M,. By multiplying A,-1,,, on both sides of (3.22.2) from the right,
we have

(3.22.3) AD -1y = D a(Aw)AxAyy + Y a(N, ')Ay Ay,
AEM N w!

where in the second sum, )\ runs over all the elements in M, and w' in S,
such that £(w') < ¢(w). Here w" € S, is given by w" = w'w™lwy with
L(w") = L(w') — L(w) + £(wy). We evaluate the equation (3.22.3) at ﬁqu,
with p € M., which is a polynomial of degree ¢ + ¢(wp). Then the non-zero
contribution in the first sum comes from the terms corresponding to A € My,
where

My ={reM| L) <}

First assume that ¢ + ¢(w) < d. Then for any A € M, we have £(\) +
/(w) < d. Hence by induction hypothesis, we have a(A,w) = 0 for A €
M; such that £(\) < ¢. On the other hand, again by induction hypothesis,
a(N, w') Ay Ay (P,Qo) is a homogeneous polynomial of degree c++£(w)—d < 0.
This means that there are no contributions from the terms in the second sum,
and we have

ANy 1y (PaQo) = Y a(d,w)AxAuy (P Qo).
AEM,

Since d + £(w twy) > £(u) + £(wp), we have AAw—le(ﬁqu) = 0. This
implies that a(\,w) = 0 for any A € M., since the matrix A. is non-singular
by (3.19.1). Next assume that ¢ + ¢(w) > d. Take A € M such that £()) < c.
Then by induction hypothesis, (A, w) is a homogeneous polynomial of degree
2(X)+£(w)—d for such J, if it is positive, and a(A, w) = 0 if (X)) +4(w) —d < 0.
Hence a(\, w)A )\Awo(ﬁqu) is a homogeneous polynomial of degree ¢+ £(w) —
d, if it is non-zero. On the other hand, by a similar argument as before we see
that the term in the second sum a(X, w') Ay A, (P,Qo) is also a homogeneous
polynomial of degree c+£(w) —d, if it is non-zero. Moreover, AA,, -1, (ﬁMQO)
is a homogeneous polynomial of the same degree. Since the matrix A, is a non-
singular C-matrix, we see that a(\, w) is a homogeneous polynomial of degree
¢+ ¢(w) —d for any A € M,. This shows that a(\,w) satisfies the condition
in (3.22.1). The lemma is now proved and the proposition follows. O

The following lemma can be proved in a similar way as Lemma 2.16 in [RS],
in view of [RS, Remark 2.10].

Lemma 3.23. Let P be a homogeneous polynomial of degree N. Let I be a
graded ideal of S(V') containing Iy, but not containing P. Then I = Iy .
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3.24 Let S(V)* be the graded vector space defined by S(V)* =
®i>05"(V)*, where S°(V))* denotes the dual space of S/(V') over C. We have a
natural pairing <, >: S(V) x S(V)* - C, < u, f >= f(u). Let ¢ : S(V) - C
denote the evaluation at 0. Then for each A € Dy we can regard A as
an element in S(V)*. Let Dy be the subspace of S(V)* generated by eA
with A € Dyy. Let Hy be the dual space of Dyy. Then we have a natural
map ¢ : S(V) — Hy, which sends u € S(V) to the restriction to Dy of the
map < u,- >: S(V) — C. We can now state the main theorem, which is an
analogue of [RS. Th. 2.18].

Theorem 3.25. Assume that the conjectures (3.12.1) and (3.12.2) hold for
W. Then there exists a unique graded C-algebra structure on Hyy such that c
induces an isomorphism Sy = Hy. The set {eAy|lw € W} gives a basis of
the C-vector space Dyy. In particular, if we denote by {X,|w € W} the dual
basis of {eAy|w € W}, the map ¢ can be described, for u € S(V), as

c(u) = Z Ay (u) Xy .

weW

Proof. Tt follows from proposition 3.21 that {eA,,|w € W} gives rise to a basis
of Dy . Since dim Sy = |W]|, in order to prove the theorem it is enough to
prove that Kerc = Iyy. Since Dy has a structure of a right S(V')-module, we
see that Ker c is a graded ideal of (V). It also follows from Lemma 3.16 that
Iy C Kere. Now (3.12.1) asserts that AxjAy,(Py,Qo) # 0 (see (3.15.1)).
Hence Py,Q is a polynomial with deg P\,Qo = N, which is not contained in
I. Then one can apply Lemma 3.23 with P = P,y and we conclude that
I = Iyy. This proves the theorem. U
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