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The family of lines which intersect
given lines in general position in R"
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Abstract. In this paper are considered the family of straight lines {¢} in the
Euclidean space R™(n > 2), which intersect given k lines p;, (1 < ¢ < k) in
general position. We also study the topology of the corresponding family of
lines.
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§1. INTRODUCTION

It is our duty first to say that until now in the classic literature of geometry
[1,2,3,4] as well as in the periodic journals, this topic was not considered.
Before we consider the problem, we give some conventions.

a) The straight lines p;, (1 < i < k) are said to be in general position, if

(i) for each r € {2,3,--- ,min(n,k)} and for any r lines p; ,pi,, -+ ,Di.
there does not exist (r — 1)-dimensional vector subspace ) of R", such that
all lines p;,, (1 < j <r) are parallel to ), and

(ii) each two different lines do not have common points,

b) We will say that two lines intersect if they have a common point or if
they are parallel, analogously to the lines in the projective space.

c) We will not consider the degenerated cases. For example, almost always
there does not exist a straight line which intersects given s(s > 5) straight
lines in R3, although it is possible to find s, (s > 5) lines in general positions
in R3, which can be intersected with a line in R3. Thus we accept that there
does not exist a line which intersects s, (s > 5) lines in general position in R3.
Also we will assume that each line does not intersect itself. Indeed, otherwise
the Theorem 4.1 ¢) will not hold.

d) The coordinate system is always chosen such that no one of the given k
lines is orthogonal to the z,-axis. So we can use x, as a parameter for the
given lines.
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§2. FAMILY OF LINES {¢} WHICH
INTERSECT GIVEN 4 LINES IN R?

The following theorem will be proven.

Theorem 2.1. The number s of lines ¢1,qs2,- -+ ,qs which intersect 4 given
lines in general position in R is less or equal to 2, i.e. Spax < 2.
Proof. Let the given 4 lines in R3 be

(pi)  71=a; +bxs, Ty = ¢; + dizs, (ai, biyciydi € Ry 1 <i < 4).
There are two possibilities.

1. The line ¢ is not orthogonal to the z3-axis.
Now let g be given by

(9) 1 = a+ fxs, Ty =y + 0x3.

The necessary and sufficient conditions for the line ¢ to intersect the lines p;,
(1 <i<4), are given by

-1 0 bz a;
0 -1 dz Ci|
10 8 a =0, (1<i<4) (2.1)
0 -1 ¢ ~
because the system
—1-m1+0-x2+bi$3+ai$4 :0,
0'[L‘1—1-$2+dil‘3+6il‘4:0,
—1-214+0-z9+ Bzs+ axy =0,
O-xl—l-x2+6x3+’yx4:0,
has non-zero solution z1,x1,z3 and x4 = 1.
By elementary transformations, (2.1) reduces to
a; — bz - ,8 .
= <3< 4). .
G-~ di—0 0, (1<i<4) (2.2)
a; bz « bz a; ﬁ « ,8 .
_ _ = <3 <4). .
¢ d; vy d Ci 5‘+”Y 5 =0 (I<is<d) (2:3)

If the fourth equation of the system (2.3) subtracts from the first three equa-
tions (1 < ¢ < 3), we obtain three linear equations where «, 3 and + can be
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expressed as linear functions of §. By substituting of these a, 3 and v in the
fourth equation (i=4), we obtain the following equation

C10% + Cy6 + C3 = 0, (2.4)
and hence

—Cy £ [C2 — 4C, C5)'/?
204 '

01,2 = (2.5)

Thus, in non-degenerated cases:

L. if C2 —4C,C3 > 0, then there exist two real solutions d; and J,, and
hence two lines ¢; and ¢ in R3;

II. if C3 — 4C,C3 = 0, then there exists unique real solution d; = d, and
only one line ¢ in R3;

I11. if C2 — 4C1C5 < 0, then there exist two complex solutions d; and ds,
and no one line ¢ in R3.

So we proved that there are at most two real solutions in this case. More-
over, we express C1, Cy and Cjs in the following form

Cl = _BZ - BlB27

Cz = d4B3 — C4Bz + b4Bl + a4 — AzBl + Ale — Ag,
C3 =dyAs — cy Ay — by Ay + A1 Az — aygdy + bacy,

Jt i1
1 h1’ 1 h1’ Y 1 10,
) n9g N9l )
A2:]_2_ 2]1a B2: 21 __2a /8:A2+B26a
mso m2h1 m2h1 ma

ts _ Gsf2 | gsmeji s

Az =
ps  pama  pamohi  pshy’
N9l v 31 s
BBZ_Q321+Q32+31__3’ a = As + Bs6,
p3mahy p3ma p3hy D3
hi = nima — namy, i1 = vimy — vamy, J1 = fima — famaq,
m; = ¢;p3 — q3Pi, (i=1,2)

Ny = TiP3 — T'3Pi,

Vi = S$iP3 — S3Pi,

fi = tips — t3pi, (1=1,2)

pi = dg —d;, (1=1,2,3)
2

q; = C; — Cq4, (i: ) ,3)
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r; = b; — by, (1=1,2,3)
S; = a4 — a;, (1=1,2,3)
t1 = bic1 — ardy + agds — bycy,
to = bacy — aads + asdy — bacy,
t3 = bzcg — azds + agdy — bycy.

2. The line ¢ is orthogonal to the x3-axis. Then ¢ has the following form
T =a+ /Bula

Tog =7+ Bu%
r3 = 0.
There exists a line ¢ which intersects the lines p;, (1 < i < 4) (note that ¢
can not be parallel to any of the given lines) if and only if there exist numbers
a, 3,7, d,u1 and ug, (u? + u3 # 0) such that
a; +bi(5 = a—i—ﬁul,

¢ +di0 =y + Pua,

(1<i<4)
i.e.
o — ; — bz ) Uy | .
y—ci—d;6 uy =0, (1<i<4) (2.6)
a  up a; Uy bi wui| .
v oup| e ua|” di =0, (1<i<4). (2.7)

If the equations for i=2,3,4 in (2.7) subtract from the first equation (i=1), we
obtain three equations

b1 — bz U1
diy —d; us

a; — a; Uy

= <1 <4). .
noew 0, (2<i<4) (2.8)

v

This homogeneous system of 1 and us and linear with respect to 4, has unique
solution of § and w; : us, if and only if

a1—02+5(b1—b2) a1—03+5(b1—b3) al—a4+5(b1—b4) ﬂ

C1 —62+5(d1 —dz) o C1 —C3+(5(d1 —dg) o C1 —C4+(5(d1 —d4) U2
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has a solution of ¢, i.e. if

[(A1Cy — C1A3)(B1D3 — B3D1) — (A1C3 — C1A3)(B1 D2 — B2D1))?
= [(A1Cy — C1A3)(A1 D3 — D1 Az + B1C3 — B3Ch)
— (A1C5 — C1A3)(A1Dy — D1 Ay + B1Cs — BoC)]:
-[(A1 Dy — D1 Ay + B1Cy — B3C1)(B1 D3 — B3Dy)
— (A1D3 — D1 A3 + B1C3 — B3C1)(B1D2 — B2Dy)],

where

Ai = a1 — iy, B; = b1 — b1,

C; = c1 — Ciqa, D; =dy —diy1, (1<i<3).
If such 0 exists, it substitutes in the first equation (i=1) of (2.6) and the linear
connection between « and v can be found, but all such pairs determine the
same line. Thus, in this case if such line orthogonal to the z3-axis which
intersects the given lines exists, then it is unique.

Finally, note that the maximal number s, of intersecting lines together

in both cases is 2 but not 3. Indeed, the coordinate system can always be

chosen such that there does not exist a line ¢ orthogonal to the xz3-axis which
intersects the given lines p;, (1 <i<4). O

§3. FAMILY OF LINES {¢} WHICH
INTERSECT GIVEN 3 LINES IN R*

Analogously to the theorem 2.1, now we have the following

Theorem 3.1. The number s of lines ¢1,qs2,- -+ ,qs which intersect 3 given
lines in general position in R* is less or equal to 4, i.e. Spax < 4.

Proof. Let the given 3 lines in R* are
(pi)  w1=a; +biwa, T2 = ¢; +d;z4, T3 = €; + fiT4,
(aiabiaciadiaeiafi ER; (lglég)
Analogously as in theorem 2.1, here there are two possibilities.
1. The line ¢ is not orthogonal to the z4-axis.
Now, let g be given by
(9) T1 = a+ Py, T2 =7+ 0x4, T3 =1+ PTy.

The necessary and sufficient condition for the line g to intersect the lines p;,
(1 <1i < 3) is to exists x4, such that

ai+bi:1:4:a+,8$4, Ci+di$4:’)’+5$4,
e; + fira =0+ x4, (1<i<3),
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i.e.

(a; — ) + z4(b; — B) =0, (ci =) +za(d; — 0) =0,
(61'—7])4-(1)4(]01'—(,0):0, (ISZS?))
Changing the coordinate system, it may be obtained that (a;,b;) # (o, 3) for

each i, (1 < ¢ < 3). Thus, the line ¢ intersects the given three lines p1,p> and
ps, if and only if

a; — bz—,B_ a; — bi—

iy Ao 70 ey fi—so‘:‘)’ (1<i<3)
i.e.
a; b |« b; | ﬁ a ﬁ _ -
¢ d; d; c 0 ‘ + v ) ‘ =0, (1 <i< 3) (31)
a; b; a b ai B a @ .
— — + =0, 1<4<3). 3.9
e fi n fi €; (p‘ n @ ( =" = ) ( )

Thus, we obtain 6 equations with unknowns «, 3,v,d,n and ¢. If from (3.1)
the firsts equation (i=1) subtracts from the other two equations, then v and
0 can be expressed as linear functions of « and 8, and further they can be
substituted in the first equation in (3.1). Hence, the first equation becomes a
quadratic equation of @ and (. Similarly, from (3.2) we can obtain another
quadratic equation of o and (. This system of two quadratic equations of «
and ( is equivalent to one equation of fourth degree, and hence has at most 4
solutions, i.e. there are at most four lines ¢;, (1 <14 < 4) which intersect the
given 3 lines in R*.
2. The line ¢ is orthogonal to the x4-axis. Then ¢ has the following form

(9) 1 = a+ Pui, T2 = 7y + Bug, x3 = 0 + Pus, T4 =1).

Similarly, as in the proof of the theorem 2.1, here it verifies that there exists
at most one line ¢ intersecting the given three lines. Moreover, analogously as
in that proof, the total number of intersecting lines in both cases is at most
4. O

4. THE TOPOLOGY OF p-PARAMETRIC
FAMILIES OF INTERSECTING LINES

Now we will prove that the cases of theorems 2.1 and 3.1 are unique when
there exists a discrete set of intersecting lines {¢}. Let be given k lines p;, (1 <
i < k) in general position in R"™. Each of them is given by n — 1 equations

1 = a1; + b1; Ty,
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T = G2; + b2y,

Tpn—1= Q(n-1)i T b(n-1)iTn-

Analogously as in the proofs of the theorems 2.1 and 3.1, the case when ¢ is
orthogonal to the z,-axis can be neglected and it does not influence to the
final conclusion. Hence we suppose that ¢ is given by the following n — 1
equations

r1 = ai + BTy,

T = ao + Boxp,
Tp—1 = Qp-1+ Bn—la:n-
The intersection of ¢ and p; reduces to solve the following system
a1y — a1 + (b — Bi)xn, =0,

agz; — ag + (bei — B2)z, =0,

G(n—1)i — Op-1 + (b(n—l)z - ﬁn—l)xn =0,

which reduces to n — 2 equations by elimination of x,. Thus, the total
number of equations becomes k(n — 2), and there are 2(n — 1) unknowns:
Qay, - ,0n_1,01,+ ,0n_1. The number of free parameters is

p=2(n—1)—k(n—2).

It means, that for given k£ and n if p > 0, then the set of lines {g} which
intersect given k lines in general position in R™ is a p-parametric family of
lines.

We note that we have discrete set of lines if p = 0, i.e.

2(n — 1) 2

k=——>-=2 .
n—2 +n—2

Thus n —2 =1 or n — 2 = 2, and hence unique two cases are just those from
the theorems 2.1 and 3.1. Note that

(i) k =1 implies p = n,

(ii) k = 2 implies p = 2,

(iii) k =3 implies p =4 —n and p > 0 only for n = 3 and then p =1,
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(iv) k > 3 implies that p < 0 (assuming that n > 2).

Our further aim is to consider the topology of p-parametric families of lines
for p > 0. First note that the set of all lines in R™ can be endowed with a
topology as follows. The set of all pairs (¢,Q) where ¢ is a line and @ € ¢, is
equivalent to R” x RP™~!, because for arbitrary point @) in R and the direc-
tion of ¢ can arbitrary be chosen in the space RP™~!. Thus, the set of all such
pairs can be endowed with the topology of R® x RP™~!. In this topological
space we define a relation of equivalence p as follows. The pairs (p;, Q1) and
(p2, Q2) are in relation p if the lines p; and ps coincide. Thus, the set of all
lines in R™ is endowed with the topology of the factor space R™ x RP™~1/p.
This topological space is a differentiable manifold with dimension 2(n — 1).
Indeed in the previous discussion we considered one coordinate neighborhood
where each line is parameterized by z,, as parameter. Similarly we have n such
coordinate neighborhoods if each line is parameterized by z;, (1 <14 <n) and
these n coordinate neighborhoods cover the whole topological space of lines in
R™, and the elements of the corresponding matrices are analytical functions,
and hence it is an analytical differentiable manifold. Thus, each set of the
lines in R™ has the induced topology from the topology of R™ x RP"~1/p.
Now we will consider the topologies in the p-parametric families of lines in (i),
(ii) and (iii).

Theorem 4.1. (a) If k = 2, then the n-parametric family of lines {q} in-
tersecting given 2 lines in general position in R", is homeomorphic to a 2-
dimensional tore with one point thrown on.

(b) If k = 3 and n = 3, then the 1-parametric family of lines {q} intersecting
given 3 lines in general position in R?, is homeomorphic to S*.

(c) If k = 1, then the n-parametric family of lines {q} intersecting given
line p in R", is analytical manifold.

Proof. (a) Let be k = 2 and p; and p2 do not intersect. For each pair (A, B)
A € p1 and B € ps except A and B simultaneously are infinite points of the
projective lines p; and ps, there exist unique line g such that p; Ng = {A} and
po N g = {B}. Since each projective line is homeomorphic to S*, we obtain
that in this case the 2-parametric family of intersecting lines is homeomorphic
to 2-dimensional tore with one point thrown on.

(b) Let p1, p2 and p3 be 3 lines in general position in R3. We will prove that
from each point of the projective line p; there exists unique line ¢ intersecting
the lines po and p3. Let > be a plane through p, which is parallel to ps.
Then p; is not parallel to > because the lines are in general position, and let
p1 N Y. ={M}. For each point P € p;, (P # M and P may be the infinity
point) there exists unique plane IT passing through P and p,. Since pi,po
and p3 are in general position and P # M,II intersects the line p3 and let
IINps = {Q}. Then PQ is the required line. We note that P(Q intersects
p2, and note also that the line ¢ continuously depends on the points of p;.
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If P tends to M, then ¢ tends to the line passing through P and parallel to
ps3. This line intersects all three lines. Hence we obtain that the 1-parametric
family of lines ¢ intersecting pi, p» and ps is homeomorphic to RP!, i.e. S*.

(c) Let k =1 and p be a line in R™. Without loss of generality we assume
that p be the x;-axis. If the line ¢ is not orthogonal to the x;-axis, then it can
be written as

() Il—ﬂi(l)_J?z—Ig_ _(L‘i_l—(II?_l_Ii
v Iz it 1
Ty — TPy o Tn — 20
liv1 In

and hence we obtain a coordinate neighborhood with 2(n — 1) coordinates:

0 0 0 0 .
XL, Ty, Tipqstty Ty, iz, g1, 1. Then p and g intersect,

i.e. they have one common point or they are parallel if and only if

af @y e @y 0 ady e ap]
rank = 2.
L Y A N R
Hence two cases are possible:
1°. If i > 1, then it means that 2§ =--- =2z | =2  =--- =12% =0 and
there are n independent coordinates: 9,01, -+ ,l;_1,li11, ,lpn-
20, If 1 = 1, then it means that
20 20 .
Ay = l“ l” =0, (I<u<wv<n) ie. rank <2,
u v

and 13 #0V -Vl £0VIip #0V--- VI, #0, i.e. tank > 2. These two
conditions are equivalent to

20 20 ... 0
k|2 3 ml =1
ran [ b e L

This neighborhood is n-dimensional manifold which is covered by two charts

i) (29,--,22) #(0,0,---,0), (l2,- 1) = a(zd, -+ ,2%) and hence
z9,--- , 2% « are coordinates,

ii) (I, ,1l,) # (0,0,---,0), (23,---,2%) = B(l2,-- ,I,) and hence
lo,---,l,, 0 are coordinates.

Since any line ¢ which intersects p is not orthogonal at least to one of
the axes z1, -+ ,x,, we obtain that the set of lines {¢q} intersecting the given
line p in R™ is a manifold. Moreover it is analytical because the elements of
the Jacobi matrix between two of these n + 1 coordinate neighborhoods, has
analytical elements, which are rational algebraic functions. O

At the end we can conclude that under the assumptions in the section 1,
we obtain that the set of lines {¢} intersecting given lines in general position
is empty set or it is an analytical manifold. Note that if the set of such lines
{¢} is finite, then we obtain a manifold with dimension 0.



10 K. G. TRENCEVSKI AND I. B. RISTESKI

References

1. F. Ayres, Projective Geometry, Mc Grow-Hill Book Co., New York, St. Louis, San
Francisco, Toronto, Sydney, 1968.

2. N. B. Efimov, E. R. Rozendorn, Linear Algebra and Multidimensional Geometry, Nauka,
Moscow (in Russian), 1970.

3. S. Hu, General Topology, Holden Day Inc., San Francisco, London, Amsterdam, 1965.

4. J. Ulcar, Analytic Geometry with Vector Algebra, second edition, Numerus, Skopje (in
Macedonian), 1995.

Kostadin G. Trencevski* and Ice B. Risteski
*Institute of Mathematics, St. Cyril and Methodius University,
P.O.Box 162, 91000 Skopje, Macedonia

E-mail: kostatre@iunona.pmf.ukim.edu.mk



