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Abstract. Necessary conditions and sufficient conditions are given so that the
two-dimensional Laplace Transform is bounded between two Lebesgue spaces
with weights. Such a boundedness is characterized for a large class of weights.
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§1. Introduction

The two-dimensional Laplace Transform is defined as

(Lf) (1, 2) = / / £ (1, 92) expl— (@191 + z2y2))dyadys,

0 < 21,29 < 00.

Throughout this paper it is assumed that
l<p<g<oo, p=—bF ¢=—=

and
u(.,.) and v(.,.) are weights on ]0, oo[?

in the sense that they are measurable positive and finite almost everywhere.
And for simplicity, it is supposed that

R1 Rs , R1 Rs
/ / 1P (z1,22)dx1dxs < 00, / / u(zy, x2)dzidre < 00
0 0 0 0
o0 R2
/ 1/ P (21, x2) exp[—p'z1 Ry |dz1dry < 00,
r7tJo

R1 o) ,
/ / . VP (21, 25) exp[—p 2o Ro)da 1 day < 00,
0 2
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and o oo
/ / u(z1, 2) exp[—q(z1R1 + x2R2)|dz1dzs < 00
Rl—l 2—1

for all Ry, Ry > 0.

Our purpose is to derive necessary conditions and sufficient conditions on
weights u(.,.) and v(.,.) for which £ is bounded from the Lebesgue space
LP(]0,00[%,v(z1, z2)dz1dxs) into LI(]0, 00[?, u(z1, z2)dz1dxs). That is for some
constant C' > 0

(1.1) (/Ooo /Ooo(ﬁf)q(xl,wz)u(xl,xz)dmldwg)%
< C(/OOO /000 fp(xl,xz)v(xl,xz)dxldxz)%

for all f(.,.) > 0. For convenience this boundedness is also denoted by
L: LY — LY or by L : LP(v(z1,x2)dz1drs) — LY(u(x1,72)dr1dT2) When
precisions are needed.

The weighted inequalities for £ deserve interest since this operator is helpful
to solve some partial differential equations related to many physical problems
as in dynamics of structures, thermodynamics of solids, heat conductions,
rotating fluids,........

The one-dimensional version of (1.1) has been investigated by many authors
[An-Hg], [Hz], [Bm], [An], [Ra]. As far as the author knows, there is just one
paper due to S. Emara [Ea] (Theorem 5, p.210) which treats a particular case
of (1.1) and this problem remains open in full generality.

Our present contribution is first to provide some natural necessary condi-
tions for the boundedness £ : LY — L% (see Theorem 2.1). And the second is
to propose some sufficient conditions which are close to the preceding neces-
sary conditions (see Theorem 2.2). So this boundedness is characterized for a
large class of weights (see Propositions 2.5 and 2.6). Finally some examples,
showing the simplicity and applicability of the criteria proposed in this paper,
are given (see Corollaries 2.7 and 2.8).

The key for proving £ : L? — L (inspired from [Ra]) is its equivalence
with boundedness of four auxiliary operators denoted by H, L, L; and L»
(see Theorem 3.1). Here H is a two-dimensional version of the classical Hardy
operator whose boundedness on weighted Lebesgue spaces was studied in [Sr].
The other operators are two-dimensional versions of an integral operator inves-
tigated in [An-Hg], [Hz]. So our boundedness results for L, L; and Ly seem
new and can be seen as a first approach to some two-dimensional integral
operators (see Theorems 3.4, 3.5 and 3.6).

The main results of this paper are presented in section 2. They depend on
basic results which are stated in section 3. Proofs of the main results are given
in section 4. And those for the basic results are performed in the last section
5.



WEIGHTED INEQUALITIES FOR THE LAPLACE TRANSFORM 13

§2. The Main Results
First we state some natural necessary conditions related to £ : L — Ld.

Theorem 2.1. Suppose that £ : L? — L%. Then there is a constant A > 0
such that for all Ry, Ry >0

Ry rR» L]
/ / u(y1, Y2 dyldyz / / - xl,x2)dm1dm2> <A

o) o) :cl_l :c2_1 , q %
(2.2) (/ / [/ / vt ? (ylay2)dy1dy2] U(xlafﬂz)dz’ﬁldfﬂz>
R7YJR;T o 0
R Ry 1
< A / / - IL‘l,Iz)dIEldIz) ’

(2.3) / / / / u(y1, Y2 d?/ldyz} v' P (361,5152)6136161362) "
R Ro>
< A / / J?]_,IEQ d!L‘ldII?z)_’

(2.4) (/00_1 /:_1 u(z1, z2) exp[—q(x1 Ry + achg)]dacldac2>

Q=

/ / xl,xg)dxldxz)F <A
2-1R, Jo- 1R2
Ry 2R;! 1
(2.5) (/ / u(xl,xg)dwldx2> !
2-1R, JR;?
) 271R, , L
(/ / 7P (:El,wz)exp[—p'(lel)]dx1d$2> <A
2Rt Jo

(2.6) (/2_ /2 . u(xy, x2) dxldac2>%

/ / xl,xg) exp[—p (szz)]dxldxz) < A.
2Rt
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Conditions (2.1), (2.2) and (2.3) are involved in a characterization for the
boundedness of some two-dimensional Hardy operator on weighted Lebesgue
spaces. Sometimes (2.1) and (2.2) will be referred as Muckenhoupt condition
and Sawyer condition respectively.

Cases for which some of these conditions (2.1) to (2.6) do overlap will be
examined below.

It is not known whether all of the above six conditions do imply £ : L? —
L%. Here we are able to derive this boundedness from variant conditions close
to the first ones.

It is just the aim of our second main result.

Theorem 2.2. The boundedness L : LY — L% does hold whenever conditions
(2.1), (2.2), (2.3) are satisfied and if there are nonnegative constants A and

o0
with ¢ < 1 and a nonnegative sequence (7;); with Z 7; < oo such that
i=0

Q=

(2.7) (/001 /o_o1 u(z1, 72) exp[—Ceq(z1R1 + $2Rz)]d$1d$2>

/ / N IL‘l,Iz)dﬂfldﬂiz)_/ S A
2-1R; J2 1R2

Ry 2R;! L
(2.8) (/2_1R /Rl u(xl,xg)dwldx2>

2
1
7

0o i2 R,
(/ 7P (1, 22) exp[—C’Ep'(lel)]dxldwg) < ATy,
R J2-(4+i2) Ry

and

(2.9) (/ u(zy,xa) dwld:m)%

2-1R,
o

2° ]1R1 o0
/ / 7P (:1:1,:1:2)exp[—Cgp'(:BgRg)]dxldwz)p < ATy,

2—(4+i1) R,

for all Ry, Ry > 0 and j1, j» € {0,1,... ,00}, here C. = 471(1 —¢).

This result is inspired from the one-dimensional version one recently found
by the author [Ra], where the introduction of C. leads to an improvement of
results previously proved by S. Blom [Bm]. In the one-dimensional setting,
conditions (2.8) and (2.9) do not appear.

The nonnegative sequence (7;); involved in (2.8) and (2.9) should be viewed
as something playing a balance role in these conditions. Its introduction can
be explained by the fact that the exponential is just about one of the variables.
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Using results in [Sr], it can be shown that conditions (2.1), (2.2) and (2.3)
do not overlap in general, and the Muckenhoupt condition (2.1) alone is not
sufficient to get the Sawyer type conditions (2.2) and (2.3). Moreover these
last conditions are in general more difficult to check than (2.1). Indeed, first
there are more integrations to do in (2.2) (or (2.3)) than in (2.1). Next, it is
often easy to get an upper bound for expressions (as the left member of (2.1)),
but most of the time a lower bound or an exact value is not always available
(as for the right member of (2.2)). So the question of deriving (2.2) and (2.3)
from (2.1), but with more assumptions on the weights, arises naturally.

Consequently it is useful to introduce the condition w(.,.) € D which means
that for some constant ¢ > 0

2Rq 2R> Ry Ro>
(2.10) / / w(y1,y2)dy1dys < C/ / w(y1,y2)dy1dys
0 0 0 0

for all Ry, Ry > 0. If moreover

R pR»
(2.11) / / w(y1,y2)dy1dys < C/ / w(y1,y2)dy1dys
2-1R, J2-1R,

then it is written that w(.,.) € D. Also remind that a weight w(.,.) is said to
be of product type whenever w(z1,z2) = wi(x1)ws(z2) for some weights wy (.)
and wz(.) on |0, co].

Lemma 2.3. The Sawyer conditions (2.2) and (2.3) are implied by the Muck-
enhoupt condition (2.1) whenever one of the following is satisfied

(2.12) v(.,.) and u(.,.) are of product type,

(2.13) P (,)eDnD  and u(.,.)€DND.

To deal with the connections of conditions (2.7), (2.8) and (2.9) with the
Muckenhoupt condition (2.1), it is helpful to introduce the condition w(.,.) €
RD which means that for some constants p, ¢ > 0

thl t2R2 R1 R2
(2.14) / / w(y1,y2)dyrdys < thtg/ / w(y1,y2)dy1dys
0 0 o Jo

for all R1, Ry > 0 and 0 < 1,4, < 1.

Lemma 2.4. Condition (2.7) is implied by the Muckenhoupt condition (2.1)
whenever v'~?'(.,.) € D or u(.,.) € D.

15
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Conditions (2.8) and (2.9) are also implied by (2.1) whenever v'~?'(.,.) €
DNRD oru(.,.) € DNRD.

As for the one-dimensional case [Ra], it is also possible to derive condition
(2.7) from (2.1) whenever u(.,.) is a decreasing function for each variable. But
we do not investigate in this direction since the notion of monotone weights is
not well appropriated for the setting of two variables functions.

Now these Lemmas can be used to derive a characterization for the bound-
edness £ : L? — LY, for a large class of weights, as we have announced in the
introduction.

Proposition 2.5. The boundedness L : LY — L is equivalent to both the
Muckenhoupt condition (2.1) and the Sawyer conditions (2.2) and (2.3) when-
ever v " (.,.) € DN RD or u(.,.) € DN RD.

Proposition 2.6. Suppose that v'=?'(.,.) € DN RD or u(.,.) € DN RD.
The boundedness L : L¥ — LY is equivalent to the Muckenhoupt condition
(2.1) whenever

v(.,.) and u(.,.) are of product type,

or , _ _
v P (,)eD and  u(.,.) €D.

The boundedness criteria for £ : LY — L4 stated above are really simple and
efficient to treat concrete examples. The papers [An-Hg], [Hz] and [Bm] dealing
with the one-dimensional case just gave examples for the power weights. To go
beyond this class of weight functions, it is useful to introduce nondecreasing
and positive functions ¢(.) defined on ]0, oo such that

(2.15) ©(2t) < cp(t) forallt >0

for some fixed constant ¢ > 0. These assumptions on ¢(.) are summarized
by ¢(.) € As. For instance the growth condition (2.15) is satisfied for the
function ¢(t) = ¢° In®(1 4 t) where § €] — 00, 00[ and 3 > 0.

Corollary 2.7. Let p1(.), p2(.) € Ag. The boundedness L : LY — L2 does
hold whenever v(.,.) and u(.,.) are defined by

(2.16) v(zy, z2) = vi(x1)va(22) and u(zy, x2) = uy(z1)uz(z2)
where
vi(z1) =@y P(w1),  v2(w2) = @5 P(72)
and
A | w1
uy(71) = Ty P1 ( 1 ), uz(m2) = Ty P2 ( 2 )-

This example deals with weights of product types. But the arguments could
be modified to treat more general weights.
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Corollary 2.8. Let ¢(.) € Ay. The boundedness £ : LY — L% does hold
whenever v(.,.) and u(.,.) are defined by
(2.17)

41

v(z1,m2) = @ P (1 + 22), u(zy,m) =z =

e ¥ (7 + x5 ).

—1 q
!

ng\lﬂ

The boundedness problem for £ from L% into LI in the range g < p still
remains unsolved. And it is also an interesting question to ask about the
boundedeness for the n-dimensional Laplace operator

(Lnf)(x1,. . xp)

:/ / flyry o yyn)expl—(z1y1 + ... + Zpyn)]dys - . . dyy,
0 0

at least for some reasonable weight functions.

§3. Basic Results

To deal with (1.1), it is convenient to introduce four auxiliary operators as

(Hf)(71,z2) :/0 1/0 Zf(yl,yz)dyldyz

W) oron) = [ [ Fnu) expl=(or e + 55 ) dye
0 0
(Llf)($17$2):/0 1/0 2f(ylayz)eXP[—(yflel)]dyldyz

(Laf)ar,az) = [ N / " ) expl—(v3 )] dyr dy.

The operator H is known as a two-dimensional Hardy-operator. And the
other operators can be seen as two-dimensional versions of an integral operator
introduced and studied by Andersen and Heinig [An-Hg].

To make easy comparisons of the various conditions which we will introduce
below, it could be useful to note that

(Lf)('v ) < (Llf)('v '); (LZf)('v ) < (Hf)(v) for all f(a ) > 0.

Our main results stated in §2 are based on the following result.

Theorem 3.1. The boundedness L : L? (v(x1,22)dx1dxs)) = LY(u(x1, x2)dr1drs)
is equivalent to the following four boundednesses

H: L?(v(z1,z2)dr1drs) — LY (w(x1, x2)dr1dxs)
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L: LY (w7 (21, 22)dz1des) — LP (07 (21, 32)dzdxs)

L]_ : Lp(’l)l(IL‘l,Iz)dJ?]_dJ?z) — Lq(ul(x1,$2)dx1d$2)

and Ly : LP(vo (21, x2)dr1drs) — LY (us(x1, x2)dr1drs)

where

(3.1) w(zy, w2) = 212wy u(zy 3 )

(3.2) v1(21,22) = 237 20(zy Y 22),  wilzn,@2) = 25 2wz, 75 )
and

(3.3) vg (1, 22) = 257 20 (21, 25 1Y), ug (21, 20) = x72u(z]t, T2).

Consequently our real task is reduced to find conditions guaranteeing these
boundednesses. We first begin by the case of the Hardy operator H.

Theorem 3.2. The weighted Hardy inequality H : LP(v(x1,x2)dx1dzs)) —
LY (w(zy,x2)dx1dzs) does hold if and only if there is a constant A > 0 such
that for all Ry, Ry > 0

(3.4)

o0 o0 % R1 R2 , p’
(/ / w(x1a$2)d$1dflf2> (/ / v P (ﬁlaxz)dfﬁldfﬁz> <A
Ry JR» 0 0

R1 R2 T o , q
(3.5) (/ / [/ / vt ? (ylayZ)dyldy2] w(xl,ﬁﬁz)dfﬁld$2>
0 0 o Jo
Ri (R, ) m
< A(/ / pl7P (wl,xz)dxldx2>
0 0

1

[oe) [e%9) [e%9) [e%9) p’ , y
(3'6) (/ / [/ / w(yl,yg)dyldyz] Ul_p (:El,fl,‘g)dxld(l:2>
R1 Rz Tl 2
< A(/ / ’LU(I]_,Iz)dIL'ldIL'2> ! .
R; JRy

This result is due E. Sawyer [Sr]. Moreover he showed that the Mucken-
houpt condition (3.4) alone is not sufficient to get H : L? — L%. Observe that
condition (3.5) (or (3.6)) is in general more difficult to check than (3.4). So

Q=

and
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the question of deriving H: L? — L% from (3.4), but with more assumptions
on the weights, arises naturally. For the one-dimensional case, both conditions
(3.4), (3.5) and (3.6) are equivalent. For instance the Sawyer condition (3.5)
is implied by the Muckenhoupt condition (3.4) because of the identity

(3.7) (/Omvl_p,(z)dz)q - q/j [/Oyul—p’ (2)de] T () dy.

And similarly (3.6) can be derived from (3.4) and

(38) ([ w)" =v [7] / w@]” wly)dy

One of the reasons why condition (3.4) is not sufficient to get H : L) — L%
can be explained by the fact that the similar two-dimensional versions of (3.7)
and (3.8) are not true for all weights.

Lemma 3.3. The Sawyer conditions (3.5) and (3.6) are implied by the Muck-
enhoupt condition (3.4) whenever

v(.,.) and w(.,.) are of product type

or
' P(,)eDbnD  and o703 w(zyle;t) € DND.

Now our aim is to study 7" : LY — LI when T is either of L, L; and
L,. Although a characterization result for this boundedness remains an open
problem, here we are able to derive sufficient conditions which are not too far
from some suitable necessary conditions.

Theorem 3.4. Suppose that L : LY — L%. Then there is a constant A > 0
such that for all Ry, Ry >0

1
/ / ylay2 dyldyz) X
2-1R; J2-1R,
1

“1R, Rg
/ / P (w1, 79) exp[—p'(z] 'Ry + xz_le)]dxldac2> P< A

Conversely L : Lb — LI whenever for some A > 0 and for )0 <e <1

1
/ / yl,y2 dyldyz) X
2-1R; J2-1R,
1

R rR»
(/ / 0P (31, 22) exp[—Cep(x] "Ry + 75 Rz)]dﬂﬂldﬂ?z) <A
o Jo

(3.10)
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for all Ry, Ry > 0 where C. = 471(1 —¢).

This is a two-dimensional version of a result proved in [Ra]. Observe that
(3.10) is stronger than (3.9) in the sense that (3.10) = (3.9). But as it will
be seen below, for many usual weights, condition (3.10) is not too far from
(3.9).

Now we consider the boundedness problem for the operator Lj.

Theorem 3.5. Suppose that Ly : L? — L1. Then there is a constant A > 0
such that for all Ry, Ry >0

1
/ / yl,y2 dyldyz) X
2-1R; J2-1R,
1

-1R, R2 ”
/ / P (21, 22) exp[—p'(xl_lRl)]dxldxz) P< A

Conversely Ly : L? — L2 whenever for some A > 0 and for )0 <e <1
1
/ / u(y1, Y2 dyld?JZ) X
2-1R; J2-1R»
1

R1 2- J2R2
/ / - (IL']_,IQ)eXp[—CEpI(IL'l_lR]_)]dIL']_dIz)p < Arj,
2

(J2+4)R2

(3.11)

(3.12)

o0
for all Ry, Ry >0 and js € {0,1,... ,00}. Here C. =47 (1 —¢) and ¥ 75 <
0.

Our proof does not allow to get the boundedness L; : LY — L just from
the condition

/ / ylayZ dyldy2> X
2-1R, J2-1R,
R1 Rs L]
/ / xl,xz)exp[—p'(xflRl)]dxldxz)p < A.

The difficulty is that the exponential is just about the first variable ;. And
the sequence (7;); is introduced to make a sort of balance. It means that in
(3.12) a more hypothesis for one of the weights is needed, compared to the
case for condition (3.10). The gap between Theorems 3.4 and 3.5 can be also
understood by the fact that the operator L; is bigger than L and consequently
its boundedness requires more conditions.

The situation for Ly : L? — L is similar to the one for L; : LP — L%. For
convenience in the sequel, we give the full statement.
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Theorem 3.6. Suppose that Ly : L? — L1. Then there is a constant A > 0
such that for all Ry, Ry >0

/ / ylayZ dyldy2) X
2-1R; J2-1R,
(3.13)

1R, Rz , —
/ / (21, 22) exp[—p'(xgle)]dxldxz) P< A

Conversely Ly : LY — L% whenever for some A > 0 and for 0 <e <1

1
/ / ylayZ dyldy2) X
2-1R; J2-1R,

2791 R, R» ,
/ / 0 P (21, 22) exp[—Cep' (25 Rz)]dﬂﬂld!ﬂz)

2-U1+H R,

2=

(3.14)
< Amj,

for all R1, Ry > 0 and j; € {0,1,... ,00}. Here C. and (7;), are as in Theorem
3.5.

84. Proofs of Main Results

Proof of Theorem 2.1

Suppose that £ : L? — L%. Then, by Theorem 3.1, the Hardy inequality
H : L? — L% does hold with w(.,.) defined as in (3.1). And by Theorem
3.2, this last boundedness implies (3.4), (3.5) and (3.6) which are nothing else
than conditions (2.1), (2.2) and (2.3) respectively.

Also by Theorem 3.1, it arises that L : Lglqu — Lillfp,. Then, using the
first part of Theorem 3.4, it is necessary that

Q=

Ry Ro
([ ] wmenlaur+ y51R2>1dy1dy2)
0 0

(/2 /2 - $1,x2)dx1dx2)# < A.

With the definition of w(.,.), this last condition is the same as (2.4).
Again by Theorem 3.1, it can be assumed that Ly : L? — LI with u(.,.)
and v1(.,.) defined as in (3.2). Then, by the first part of Theorem 3.5,

1
/ / 1(y1, 2 dy1dy2)
2-1R, J2- 1R2
1

TR 2Ry
(/ / vy P (21,22) exp[—p'(z] Rl)]dzldzz) <A
0 0
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which is the same as (2.5) after using the definition of u4(.,.) and v4(.,.).

Condition (2.6) can be obtained similarly as above by using the boundedness
Ly : LB, — LY , the first part of Theorem 3.6 and the definition of uy(.,.) and
va(.,.) as in (3.3).
Proof of Theorem 2.2

To derive the boundedness £ : L¥ — LY, the task is reduced to check the
four boundednesses as defined in Theorem 3.1.

In view of Theorem 3.2 and the definition of w(.,.) in (3.1), the Hardy
inequality H : L? — L% does hold under conditions (2.1), (2.2) and (2.3).

The boundedness L : LY, — Lr ;_p, will be deduced from the second

wl—a
part of Theorem 3.4 whenever

Q=

R, ,R»
(/ / w(y1,ys2) exp[—Ceq(yy 'Ry + yz_le)]dyldy2>
o Jo

(/2 /2 - :B1,$2)d:1:1d$2)ﬁ <A

for all Ry, Ry > 0. This last condition is the same as (2.7) because of the
definition of w(.,.).

Similarly to get Ly : LY — L¢ , with u(.,.) and v;(.,.) defined as in (3.2),
by the second part of Theorem 3.5 it is sufficient that

1
/ / 1(y1,y2 dyld?/z)
2-1R, Jo- 11{2
1

R1 2- J2R2
/ / - (zl,zz) exp[—C’Ep'(zl_lRl)]dzldzg) " < Ar,

(d2+4) R2

for all Ry, Ry > 0. This condition is the same as (2.8) by the definition of
ui(.,.) and vy (.,.).

The boundedness Ly : LY — LI can be proved as Ly : LY — LI by
using the second part of Theorem 3.6 and the definition of usy(.,.) and vaf(.,.)
as in (3.3).

Proof of Lemma 2.3

Note that conditions (2.1), (2.2) and (2.3) are respectively the same as (3.4),
(3.5) and (3.6) with the weight w(.,.) defined as in (3.1). So the problem is
reduced to get (3.4) = (3.5) and (3.4) = (3.6). These implications arise
immediately from Lemma 3.3.

Proof of Lemma 2.4

One of the keys is to observe that if w(.,.) € D then for some constants ¢

o>0

2k1R, ,2F2R, Ri /R
/ / w(y1,y2)dy1dys < C2(k1+k2)g/ / w(y1,y2)dy1dys
0 0 0 0
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for all Ry, Ry > 0 and k1,ke € {0,1,... ,00}. This inequality is just obtained
by iterating condition (2.10).

To get (2.7) from the Muckenhoupt condition (2.1) it is assumed that
u(.,.) € D. And for shortness the constant C.q is just denoted as C. The
conclusion appears as follows

/ / u(y1, y1) exp[—C(y1 R1 + y2R2)]dy: dys
Rl—l 2—1

2

</ / N 21,22)d21d22> ’
2-1R; J2 1R2

2(k1+1)R1—1 2(k2+1)R2—
u(y1,y2) exp[—C(y1R1 + y2R2)]dy1dy-

(/ / 21,22)d21d22> ’
2-1Ry J2— 1R2

0o 00 2(1'€1+1)R1 1 2(k2+1)R2—

< Z Z exp[—C(2M +2k2)]/ / u(y1,y2)dy1dys

ky p—1 ko p—1
k1 =0 k=0 2" Ry 272 R,

(/ / 21,22)d21d22> ’
2-1R; J2 1R2

&S R, !
<c Z 2k exp[—C2M1] Z 27%2 exp[—C2"] / / u(y1,y2)dy1dyz

k1=0 k2=0

k1 Rl_l ko R2—1

9

</ / N 21,22)d21d22> ’
2-1R; J2 1R2

9

Ry Ry 7
<c (/ / u(y1, Y2 dyldy2> (/ / - 21,22)d21d22>

S Cqu.

The implication (2.1) = (2.7) remains also true whenever v'~?'(.,.) € D
since in this case, for the above chain of inequalities, we have to use

R, pR;
/ / y1, yz)dy1dy2

- 2~ (k1+l) R, 2= (k2+1) R, -
oA 2)"/ / v P (Y1, y2)dy1dy2
0 0

for all Ry, Ry > 0 and ky,ks € {0, 1,... ,OO}.
Remind that for each w(.,.) € RD then for some constants ¢, p > 0

27I1R, p2792R, o Ry rR»
/ / w(y1,y2)dy1dys < CQ—OlﬂZ)p/ / w(y1,y2)dy1dys
0 0 0 0
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for all Ry, Ro > 0 and j1,72 € {0,1,... ,00}.

To derive (2.8) from the Muckenhoupt condition (2.1) it is assumed that
u(.,.) € DN RD. For simplicity the constant C.p’ is just denoted by C. Now
the implication is obtained as follows

(/ / yl,y2 dyldy2>
2-1R,

2-J2 R, y
(/ / P (21, 22) exp[—C’lel]dzldz2>
(4+372) R2

Ri [2R; B,
< cs Z </ / w(y1, Y2 dyldy2>

k =0
k14 -1
2( 1 1)R1

2-J2 R, )
X (/ / 0P (21, 20) exp[—C’lel]dzldzz>
2k1 RT! 2-(4+i2) R,

Ry 2R;
< s Z exp[—C2F] (/ / u(y1, Yo dyldy2>

k1=0

afs,

o(k1+1) p=1

I 2=17J2 R> ,
X (/ / pl7P (Z]_,Zz)dZ]_dZ2>
2k1 RTY 2-(4+72) R,

2= (ki+D R, 2R2 ! L
<cy Z ok1o 5 exp 2’“](/ U(yl,y2)dy1dy2>
P 0 0

o(k1+1) p=1

h 272 R,
X (/ / N (Zl,Zz)dZ]_d22>
2k1 R‘ 2 (4+72)R2

& 2~ (kitl)p, 272R 1 P_q'
< cp277?P0 Z gkio 2 exp[—C2F1] </ u(yl,yg)dyldy2>
0

k1=0 0
« ( /
0

2=17J2 R> ,
/ pl7P (zl,zz)dzldzz>
0
[o @]

< g AP 2720 Z ohiol exp[—C2M] = CeAp’Tj’;
k1 =0

2(k1+1)R1—1

- 1 i
where 7;, = 277274, and such that Z 7, < 00. The implication (2.1) =
J2=0
(2.8) remains also true whenever v1=7'(.,.) € D N RD.
The proof of (2.1) = (2.9) follows by similar arguments.
Proof of Proposition 2.5
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This result is just an immediate consequence of Theorems 2.1, 2.2 and
Lemma 2.4. Indeed, by this last one and the hypothesis on u(.,.) or T (.,.),
conditions (2.7), (2.8) and (2.9) are implied by (2.1).

Proof of Proposition 2.6

This result is an immediate consequence of Proposition 2.5 and Lemma 2.3.
Indeed, by this last one and the hypothesis on u(.,.) or v>=#'(.,.), the Sawyer
conditions (2.2) and (2.3) are implied by (2.1). And the conclusion follows by
Proposition 2.5.

Proof of Corollary 2.7

The idea is to apply Proposition 2.6. So the real task remains to prove
v'7?'(.,.) € DN RD and the Muckenhoupt condition (2.1), since v'=?'(.,.)
and u(.,.) are of product type.

By the definition of v1(.) and since ¢;(.) € Ag then

2R; , 2R, R,
/ o1 7P (t)dt = / o1 (t)dt =2 / ©1(25)ds
0 0 0
R1 Rl ’
§cl/ gol(s)ds:cl/ 01 7P (t)dt.
0 0

And using the fact that ¢1(.) is an increasing function then

2_j1R1 , 2_j1R1 . Rl .
/ o7 (1)dt = / o (H)dt = 277 / 01(277 5)ds
0 0 0
§2_31/ <p1(s)d3:2_“/ v P (t)dt.
0 0

Similar inequalities are also true for the weight v (.). Consequently v*~'(.,.) €
D N RD since v(z1,x2) = v1(r1)va(z2).
On the other hand

L
’

/ t_(p_q'+1)<pl_7(t)dt> (ngol(Rl))p
S (,DI_F(Rl)/ t_(l’_q'_'_l)dt) (Rl(pl(Rl))p,

1
7

<cz (Rl " ¥ (R1)> : (RI‘PI(RI)) "=

25
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An analogous chain of inequalities is also true for the weights va(.) and us(.).
Consequently the Muckenhoupt condition (2.1) is satisfied since the weights
are of product type.
Proof of Corollary 2.8

Again on the basis of Proposition 2.6, the task remains to prove: vi=?’ (,.) €
DNDNRD, u(.,.) € D and the Muckenhoupt condition (2.1).

The fact that v'='(.,.) € D follows from ¢(.) € A, since

2R; 2R, 2R1  ,2R»
/ / tlatZ)dtldtZ - / / tl + tz)dtldtg
Ri pR> R; pR»
= 4/ / ©(2(s1 + s2))ds1dsy < 01/ / (81 + s2)ds1dss
0 0
Ry R»>
= / / tl, tz)dtldtz

Moreover it is true that v!=?'(.,.) € D since

Ry Ro
/ / tl,tg)dtldtz < R1R2(,0(R1 + Rz) < 02R1R2(,0[ (Rl + Rz)]

< 63/ / 81 + 82))d81d82 = 03/ / tl,tg)dtldtg
2-1Ry J2-— 1R2 2-1Ry J2- 1R2

The condition v!—?' (.,.) € RD is satisfied because for 0 < a1,as <1

a1R1 ang a1R1 ang
/ / P (b1, to)dt dty = / / @(t1 + to)dtydts

Ri R»
= alag/ / w(a181 + a82)ds1dss
0 0

Ri [R»
< a1G2/ / (81 + s2)ds1dss

Ry Ro
= Qa10a2 / / tl, tg)dtldtg

Necessarily u(.,.) € Dy because

Rl R2 o0 o0 _ i,-{—]. _ i,+]. _q
/ / ’U,(tl, tz)dtldtg = / / tl (p )t2 (p )(,0 ;' (tl + tz)dtldtz
0 0 RV JR;!

a4
P’

V[2(Bit + Ry IRy RS

2RI PRy (ayq) (241
05/ 1 / tl(” )tz(” ' o (b1 + o) dtrdts
Rl_ .

<c

IN
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= 05/ / tl,tg dtldtz
2-1Ry J2-1R,y

And finally the Muckenhoupt condition (2.1) does hold since

L

R, ,R» .
(/ / u(y1, Y2 dyldy2> (/ / - $1,$2)d$1d$2>
_ (/ / (1), ( +1)(10_ﬁ(t1 +t2)dt1dt2> "

R1 R>
Ry Ry
(/ / o(r1 + z2) dxldx2>

-4 —(F+1 L +1
< ((p p’ (R1 + Rg)/ / tl ( ) 2 ( )dtldt2>
R1 R>
<

L
/

RiRyp(Ry + Rz)) v

co (Rl YR,V T (Ry + Rz)) <R1R2<,0(R1 n Rz)) .

§5. Proofs of Basic Results

Proof of Theorem 3.1
First observe that

(Lf)(z1,22) = (L1f)(z1,22) + (L2f) (21, 22) + (L3 f) (21, 22) + (Laf)(21, 22)

where

(L1f)(z1,22) / / f(y1,y2) exp[—(z1y1 + z2y2)|dy1dy:

(L2f)(z1,72) /1/ f(y1,y2) exp[—(z1y1 + z2y2)|dy1dy>

(L3f)(z1,72) 2/0 1 /_1 f(y1,y2) exp[— (2191 + z2y2)]dy1 dy»

and

(Laf)(w1,22) / / f(y1,y2) exp[—(z1y1 + 2y2)]dy:1 dyo.

So the boundedness £ : LE — LI is equivalent both to £; : L — LI for
ie{l,..., 4}
The boundedness £ : LY — L{
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Since —2 < —(z1y1 + Z2y2) < 0 for 0 < y; < :Jcl_l and 0 < ys < :Jc2_1, then

(L1f)(w1,72) / / Flyr,y2)dyrdys = (Hf) (7, 23 1).
Consequently the boundedness £; : LY — LY is equivalent to

(5.1) H: LP(v(z1,z2)dzr1dze) = LY (w(z1, x2)dT1dTs)

2 1

with w(z1,20) = 27225 2u(z]t, 25 1), Remind that by A(z1,25) ~ B(z1,z5)
we mean that for some fixed constants ¢y, co > 0 then ¢y A(z1, z2) < B(x1,22) <
CQA(iEl,(IIQ) for all z1, 2o > 0.
The boundedness L, : LE — LI

Observe that

/°° /°° [/(X: /(X: f(y1,y2) exp[—(z1y1 +:1:2y2)]dy1dy2} qu(xl,wg)dxldzz

/ / / / f(y1,y2) exp[—(a7 "y + 25 yg)]dyldyg] X

e %e ?u(eTt 2y ) dzydey

= /oo /OO(L*f)q(xl,xz)w(xl,xg)dxldxg
0 0

where (L*f) (21, 22) = / F (s y2) expl— (o7 1 + 5 "2 dyr dyo.

Consequently L4 : LF — L is the same as L* : Lb — LI and, by a duality
argument, this last boundedness is equivalent to

(5.2) L: LY (w'™ (21, z2)dxydzs) — LY (017 (31, 20)dzy das).

The boundedness Ly : LY — LI
Since

(Laf)(z1,72) /1/ f(y1,y2) exp[—z1y1]dy1dyo,

then
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0o 0o . o0 To q

2/ / / / f(yl,yz)eXP[—fEflyl]dyldyz] w(z1, T2)drdr)
0 0
> 1 1 4

=/ / / / Fyr "t y2)yr® expl—z1 MYy ]dyldyz} X
0 0

w(zy, xo)dridry

oo q
=/ / / / it ye)yr 2 exp[— wlyflldyldyz} X
0 0

o ?w(z]t, zo)dzydey

= / / (ng)q(ﬂ?la$2)U1($1,$2)d$1d$2-
0 0
with

g(a1,x2) = f(a7" w2)oy”
and  wg (21, 20) = 27 2w(z]t, 12) = o5 %u(zy, 25 ).
On the other hand for
—1

vi(21,22) = x%p_%(:ﬂl ,T2)

then
/ / (y1,Y2)v1(y1, y2)dy1dy2
2/0 /0 PPyt y2)o(yr s y2)ys 2dyrdys
(5.4) :/000 /000 fP(z1, z2)v(21, T2)dr1dL>.

With (5.3) and (5.4), it appears that the boundedness Lo : L — LY is equiv-
alent to

(55) L1 : Lp(’Ul ($1,$2)d(1)1d(1)2) — Lq(ul (:El,(L‘Q)d(L‘lde‘g).
The boundedness L3 : LY — LI

Adapting line by line the above arguments for £y : LP — L, it is also true
that the boundedness L3 : LY — L is equivalent to

(56) L2 : Lp(’l)z(ZL‘l,Ig)dJ?]_dJ?g) — Lq(u2($1,$2)dl‘1d$2)
where

Uz (1, 22) = 27 2u(xTh, ) and vy, 2) = 258 v(2y, 25 ).

29
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Now Theorem 3.1 follows from (5.1), (5.2), (5.5) and (5.6).
Proof of Lemma 3.3
Since

R-1 1
1 R2
/ / w(wy, x2)drdee = / / w(yr ' ys Dy % s Y dyidys
R JR» 0

/ / / / w(y1, Y2 dyldyz} 0 P (21, ) dy das

R JR»
/ / / / w(y1,y2) dyldyz} 272520 P (a7t 1y Y day dao
/ / / / vyz Y1 yz dyldy2] X

T (z7t, 25 Dy 2xy 2deyds,
the problem is just reduced to prove the implication (3.4) = (3.5), where the
hypothesis is about the pair (w(.,.);vl_p'(.,.)>. The implication (3.4) =

221p(—1 2

(3.6) is rather for the pair of weights (ml T3 % ] ,:L“2_1);$1_2:1:2_ 1 _1) ‘

’LU(II_ » Lo
Now to derive the implication (3.4) = (3.5), the main point is to find a
constant ¢; > 0 such that

Rl Rg q
(5.7) / / $1,x2)dac1dac2>
Rl R2 q_l ,
< cl/ / / / 2’1,22)d21d22} pl7P (y1, y2)dy1dys

for all Ry, Ry > 0. Indeed if this last inequality is true, then the Sawyer
condition (3.5) follows the Muckenhoupt one (3.4) since

/Rl /:2 /R / y1,y2)dy1dy2] w(z1, x2)dzi1dzs
= 01/ / / / / / 21,22)d21d22:|q

x piP (y1,y2)dy1dys  w(xy,x2)dx1dTs

R; rR» 0o oo
= cl/ / / / w(xl,xz)dxl(hg)
0 0 Y1 Y2

Y1 Y2 g—1 -~
/ / - 21,22)d21d22> v P (y1, y2)dy1dys
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Ri R 41 ,
< c1Aq/ / / / zl,zz)dzldzz) v P (y1, yo ) dy1dys

Rl R2 q q
< clAq / / yl,yg)dyldy2> since = — 1> 0.
p

Now to end with Lemma 3.3, we have to prove the main point (5.7). For
a weight v(.,.) of a product type, i.e. v(x1,23) = v1(x1)v2(x2) this inequality
appears by using identities (3.7) for the weights v1(.) and vy(.). For more
general weights v(.,.), inequality (5.7) follows from the assumption v*=#'(.,.) €
DN D. Indeed

Ry rR» , q
(/ / pl7P (xl,xg)dwldx2>

[o olENe o]

Ro> q
=y Z Z 92— qa(kﬁ—kz / / - ml,xg)d$1d$2>

k1=0k2=0

27k1R, r27R2R, , q
<c3 E E (/ / pl7P (:Bl,wg)dxldx2>
0
2_(k2+1)R2

2_(k1+1)R1 - q
<ca Z Z (/0 /0 v P (zl,zz)dzldzz>

2 k1R, 27k2 R, ,
X / / P (11, o) dw dzo
2 2

-1

—(k1+1) R, —(k2+1) R,
[eS) [eS) 2~ k1R, 27 k2 R,
DD I
F1=0 ka0 (k1+D R, J2-(k2+1) R,

1 ,
/ / - 31732)d21d32]q 0P (21, 22)dzr dxs

T —1 ,
—04/ / / / - zl,zg)dzldz2>q o' (21, x5)dz 1 d,.

Proof of Theorem 3.4
The Necessary Part

To derive condition (3.9) from the boundedness L : L? — L%, by a duality
argument, it can be assumed that for some constant C > 0

/ / / / (Y1, y2)ulyr, yo) exp[—(z7 y1 + a5 yz)]dyldyg]

L L
I

!~ (ZEl,J?g)dlEld]?g) » <C’ fq (21, 22)u (zl,zg)dzldz2>
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for all f(.,.) > 0. Take Ry, Ry > 0 and f(.,.) a nonnegative function whose
the support is |27 Ry, R1[x]27 1Ry, Ry[. Since for 0 < z; < 27'R; and 0 <
Lo < 2_1R2

/ / Fyiy2)u(yr, y2) exp[— (217 y1 + 23 'y2)|dy1dye

T1
/ / Fy1,y2)ulyr, y2) expl— (27 'y + 23 'y2)|dyrdy
2-1R; J2-1R,

/ / Fly1, y2)u (yla?JZ)dyld?JZ) exp[—(Riz1" + Ry ')]
2-1R; J2-1 Ry

then the above inequality yields

p’ 2_1R1 2_1R2 ,
/ / fy1,y2)u (ylayz)d?ﬁdyz) (/ / v P (31, 1)
2-1R, Jo- 0 0

exp[—p/ (Riz7* + szgl)]dxldmz)

< Cp / / Zl,Zz) (21,22)d21d22>
2-1R; J27 1R,

Taking f(.,.) = 1 on its support |27 'Ry, R;[x]27! Ry, R»[ then condition (3.9)
appears immediately.
The Sufficient Part

The main point to get L : L? — L is to break the operator as follows

2
q’

[ee] o0
/ / (Lf)! (71, z2)u(T1, T2)dT1dTo
o Jo
o~ (J1+Fk1) o~ (j2+k2)

= Z Z [Z Z Aji Aj (/2—(2+11+k1) /2—(2+]'2+k2) (@, 22)

k1=—00 kz=—o00 -j1 =0 j2=0
q

1
P
U($17$2)d$1d$2) X ®k17k27j1;j2:|

for all functions f(.,.) > 0. Here
\j = exp[—e27], with 0<e<l1

and

1

2—k1 2 k2
q
G)kl;k2ajlyj2 :eklyk27jl;j2 (pa q,v,u) = (/ / u(ylayZ)dyldy2>

2—(14+k1) J2—(1+k2)
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o—(j1+k1) o—(j2+k2)

’
X (/ / v P (21, 22)
2—(j1+2+k1) Jo—(Ga+2+k2)
1
=r

x exp[—47H(1 —e)p'(27F 2 + 2_k222_1)]dz1dzz> "

The proof of (5.8) is postponed below.

It can be noted that » _ \; = ¢ < oo. By condition (3.10), with Ry =27
=0
and Ry = 2752, it is clear that

G)kl k2,751,752 <A

Using these last facts and the cutout (5.8), the boundedness L : L — LZ
arises as follows

/00 /OO(Lf)q(xl,xg)u(acl,xz)dxldxz
o Jo

< Afx
) 00 oo 0o
> X [Z D ik X
ki=—oco ky=—00 j1:0j2:0
o—(i1+Fk1) o—(j2+k2) 1749
P
(/ / fp($1a$2)v($la$2)d$ld$2)
2—(2+j1+k1) Jo—(2+ia+k2)
S chlx
) 00 oo 0o
> X [Z PORVRTA
ki=—oc0 ka=—00 j1:0j2:0

o—(j1+F1) o—(j2+Fk2)
/ / [P (21, 22)v (w1, 12)dx1d2)
2—(2+i1+k1) Jo—(2+i2+k2)

by using the Holder inequality for the inside term and Z Al = ¢

p

=0
S chlx
o0 o0
<§ :>‘j1 E :)‘jzx
Jj1=0 J2=0
) ) o—(i1+Fk1) o—(j2+k2) %
Z Z / / fp($la$2)v($lax2)d$ld$2>
—(2+j1+k —(2+jo+k
k1= — 00 ks = — o0 2—(2+3j1+k1) Jo—(2+ia+k2)
since 4 >1

p
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< A%y x <Z )\.71 Z >‘J2/ / f :El,(IIQ ($1,(L‘2)d$1d(1)2>

71=0 Jj2=0

= A%c3 x </ / fp(I]_,IL'z)’U(IL'l,IL'z)dI]_dIL'2> ’
o Jo

Now to prove inequality (5.8), let us introduce
C=Cle,p) =4 (L —e)pf

So this inequality appears as follows

/°° /oo(Lf)q(ﬂ”lvxz)U(wl,zz)d:pld:p2

27 F1 2 k2 271y, 27 2 g,
ks ;ook _Z_ / (k1+1) /2 (k2+1) |:Z Z / (G1+D g, /2—(j2+1)x2 f(yl’yz)
q
x exp[—(zlyfl " mzyglndyldyz] u(r, w2)day dos
2—k1 2— 111,1 2—]’21;2
k—z—ook—z— / (k1+1)/2 (ko+1) |:Z: Z/g (G1+1D) gy /2(j2+1)$2 f(y1,y2)

q
x exp[— (27" + 2j2)]dy1dy2] u(wy, T2)dr1dry

o—(i1+Fk1) o—(j2+k2)

[e e} [e e} o0 [e e}
< (/ / f(y1, 92 dyldy2>
klgoo kzgoo |:j12_0 JZO 2-(1H+2+4k1) Jo—(d2+2+ko) ( ’ )
27 F1 27 k2 1

q
/ / I1,£E2)d$1d$2>
2—(k1+1) Jo—(k2+1)

exp[— (27" + 2j2)]] '

0
DS
k1=—ook2=—oo
o—(J1+Fk1) o—(j2+k2) 1
P
[E § / / fp(yl,yz)v(yl,yz)dyldyz)
j1=0 j2=0 (J1+2+k1) Jo—(j2+2+k3)
o—(j1+k1) o—(j2+k2) 1
I
x(/ / 1P (zl,zz)dzldzz>
2—(J1+2+k1) Jo—(i2+2+k3)
2~k 2~ k2 1 q
7 . .
/ / (L‘l,(L‘g)dZEld:EQ) X exp[—(271 + 272 )]]
(k1+1) (ka+1)
oo oo

< X

k1=—00 k2=—00
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0o 00 o—(j1+F1) o—(j2+Fk2) 1
S\ D P
[E D :>‘31)‘32(/ _ / _ f (yl,yz)v(yl,yz)dyldyz)
j1=0 jia =0 2—(j1+2+k1) Jo—(d2+2+k2)
o—(J1+k1) o= (j2+k2) L
7

X (/ / v (21, 20) exp[—C (271 271 + 2_k2z2_1)]dzldzz> !
2—(j1+2+ky1) Jo—(ia+2+ka)

2—k1 2 k2 17q
q
X (/ / u(xl,xg)dacldac2> ]
2—(k1+1) Jo—(ka+1)

o0 o0

=2 2

k1=—00 k2=—00

oo oo o~ (J1+Fk1) o~ (j2+k2) 1
[Z Z >‘j1 >‘j2 (/ ] / ) fp(ylay2)v(ylay2)dyldy2> !
J1=0 j2=0 2—(J1+2+k1) Jo—(i2+2+k3)

q
X Oky ks 1 ,j2:| :

Proof of Theorem 3.5
The Necessary Part
The proof is similar to the Necessary Part of Theorem 3.4, since the term

exp[—p'(Riz7 " + Roxy )] is just replaced by exp[—p'(Riz7h)].
The Sufficient Part
As in the proof of Theorem 3.4, the main point to get L; : LY — L is the

inequality

(5.9)
[ [ @asrtes maputen eapiesie,

00 00 oo oo o~ (F1+k1) o~ (j2+k2)
.o p
< § E |:§ : E :>‘le]2(/ (2+'+k)/ (2+'+k~)f (]7171'2)
ket — 00 ks = —00 L1 =0 7520 2 Jit+k1) J2 Ja+ko

1 q
s~
U($lax2)d$1d$2> X G)kl;k2aj1:j2:|

for all functions f(.,.) > 0. Here
\j = exp[—e27] with 0<e<l,
the sequence 7, is defined as in condition (3.12)

and

2-F1
ekl,kzdl,jz :G)kl;k2ajl:j2 (pa q,0, u) = (/ /
2

2—(1+ky)

2 k2

I~

U(y1,y2)dy1dy2> !

—(14+k2)
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o—(j1+Fk1) o—(j2+Fk2)

— _ ’
><Tj21>< (/ / v P (21, 22)
2—(j1+2+ky1) Jo—(da+2+ka)

1
7

x exp[—4~ (1 — 6)p'(2_k1z1_1)]d$1d:1:2> "

The proof of (5.9) can be easily seen by adapting the one of (5.8).

Note also that ZAJ- = ¢y < oo and ZTJ‘ = ¢; < oo. And by condition
§=0 §=0
(3.12), with R; = 2% and Ry, = 27%2, then

G)kl k2,751,752 <A

Using these last facts and the cutout (5.9), the boundedness Ly : L — LZ
can be shown as it is done for L : L? — LZ. The details are left to the readers.
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