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Abstract. We study the following initial-boundary value problem for the non-
linear nonlocal Schrodinger equation

(NNS) ut + N(u) + bu + Ku=0, (t,z) e RT xRT,

u(0,z) = a(x), x>0, 7 u(0,t)=1a;(t), t>0, for j=1,..,n,

with the compatibility condition &~ a(0) = @;(0),j = 1,2...,n, where n = [Z],
[s] denotes the largest integer less than s, b > 0, the nonlinear term N(u) =
ia(t)|u|Pu, p > 1, the coefficient a(t) € C! and K is the pseudodifferential
operator on the half line RT of order & > 1. We prove that if 2%a € L!,
with 0 < 6 < % and the norm ||@||x of the initial data and the norms ||%;||v,
7 = 1,...,n of the boundary data are sufficiently small then there exists a

unique solution v € C([0,00);L?) N C(RT; W[QO‘]_1 N Cl—1) of the initial-

value problem (NNS). Here X = wiel nW[f‘]“ and Y = W) NW? and W’I‘;

is the Sobolev space with the norm ||¢||ywe = [|[(1 — 82)%/2¢(z)||Lr. We also
p

find the large time asymptotics of the solutions.
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§1. Introduction

In this paper we study the following initial-boundary value problem for the
nonlinear nonlocal Schrodinger equation

us + N(u) +bu +Ku =0, (t,z) € Rt xR™T,
u(z,0) =u(z), = >0, (1.1)
037 u(0,t) = a,(t), t>0, j=1,...,n

with the compatibility condition 8~'w(0) = ;(0), 5 = 1,...,n, where n =
[%] , [s] is the largest integer less than s, b > 0, the nonlinear term N(u) =
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ia(t)|ulPu, p > 1, the coefficient a(t) € C! and K is the pseudodifferential
operator defined by the inverse Laplace transformation as follows

1 200 [a] j—lu t
fu =g [ k) - a a2)
j=1
where 4(p,t) = [, e P"u(z, t)dz is the Laplace transform with respect to z
of the function u(x,t), K(p) is the symbol of the operator K and « is the
order of the operator K, that is the infimum of real numbers a such that
the estimate |K(p)| < C|p|® is valid for all |p| > 1 in the right half-complex
plane Rp > 0. Note that if the symbol K(p) is an integer power of p then
the operator K is a differential operator. We suppose that the symbol K(p)
of the operator K is an analytic one-valued function, defined in the right
half-complex plane Rp > 0 and the derivative K'(p) does not have zeros in
Rp > 0. Initial-boundary value problem (1.1) is of great interest from the
physical point of view, since it describes many physical phenomena, such as
the focusing of the laser beams, waves on water and others [5]. In the present
paper we are interested in the case, when the symbol of the operator K has the
following form K (p) = Ep®, where the constant F is such that the operator
K is dissipative, i. e. RRK(p) > 0 for all p on the imaginary axis Rp = 0.
The dissipation condition implies that « is not equal to an odd integer. Also
we assume that pa > 1. (We denote by p® the main branch of the complex
analytic function so that 14 = 1. We make a cut along the negative real axis
(—00,0) in the complex plane of variable p.) Note that in the particular case
a=2,b=1,a=1and p =2 problem (1.1) contains the initial-value problem
for the well-known Landau-Ginzburg equation u;+i|u|?u+u—u., = 0 (see [5]).
Existence, uniqueness and some qualitative properties of the solutions to the
Cauchy problems for some classes of nonlinear nonlocal dissipative equations
were studied in [3] - [5]. Large time asymptotic behavior of solutions to the
Cauchy problem for dissipative and conservative nonlinear nonlocal equations
was studied in [5] - [6].
To state our results in this paper we give the following notations.
Let us denote X = W2l n W[IO‘]Jrl and Y = Wl N W3, where W'g is

the Sobolev space with the norm ||¢(:E)||sz; = H (1- 8%)’”2 ¢(:JU)HL . We also
p

introduce the following function space:

Zr = {oto.0) € € (0. TEWE! 1 CEI) < gl < oo

with the norm
[a]-1

I¢llzr = l¢llLe + sup > %7 (|09 o + (006 o) -
te[0,T] 5=
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where §; = max (0, j_ZJ”) , 7 > 0 is small enough and n = [%] . By the same

letter C' we denote different positive constants.

Now we state our results. First of all we formulate the local existence
of solutions to the initial-boundary value problem (1.1). We consider the
generalized solutions of the initial-boundary problem (1.1), that is we multiply
equation (1.1) by any function ¢ € C2([0,T] x (0,00)) such that ¢(z,T) =0
and §7p(0,t) = 0, 5 = 0,1,2 and integrate by parts in the domain [0, 7] x
(0,00). Then the linear operator K has a sense since we can represent it in the
following form

o] i
1 K 07~ 1u(0,t
Ku = 83—/ eP® (p) a(p,t) — E L(’) dp
Rp=0,|p|>1 = P’

T omi p3
Py e K(p) | a(p,t) — )  ———— | dp.
271 Jp=0,Jp|<1 Pl

Whence we see that the integrals converge uniformly with respect to x > 0
since 2L e L2((—ioo, —i] U [i,i00)) and
P

a]

_ . ag_lu 0,

=1
for the solution u(z,t) € C (R+;W[2a]_1).

Theorem 1.1. Let o > 1 and be not equal to an odd integer. Suppose that
the initial data @(x) € X and the boundary data u;(t) € Y, j = 1,...,[5]
(in the case o > 2.) Then for some T' > 0 there exists a unique solution

u(z,t) € Zr of the initial-boundary value problem (1.1).

Now we give some sufficient conditions for the global existence of the solu-
tions. First we consider the case, when the asymptotics of solutions for large
time is determined by decaying properties of the boundary data.

Theorem 1.2. Let o > 2 and be not equal to an odd integer. Let the
coefficient in the nonlinearity a(t) € C! (R7T) satisfy the estimate |a(t)| <
C(1+41t)™" for all t > 0, where n € R. Let the initial data u € X and the
norm ||a|]jx < €, and the boundary data u; satisfy the following conditions

25'111 |la|ly < e and

ﬂj = z‘ljt?_btt_x_‘;Ll + €_bt¢j(t) (13)

39



40

E. KAIKINA, P. NAUMKIN AND I. SHISHMAREV

for j = 1,...,n, where |¢;(t)] < Cet=x="5 =7 and |§,(t)] = O (et™x77), 0 <
x < L, ifb > 0 and max (0, 1_;’1;/0‘) < x < L ifb = 0. We suppose
that the constants € > 0 and v > 0 are small enough. Then there exists
a unique solution u(z,t) € C ([0, 0); L2 N L°°) NnC (RJr;W[QO‘]_1 N C[O‘]_1>
of the initial-boundary value problem (1.1). Moreover this solution has the
following asymptotics for large time uniformly with respect to x > 0

u(z,t) = Py Z A;G; (xt_l/o‘) + O (e bt~x77), (1.4)
j=1

e
2mit

where G;(q) = [32, dyy*~ [y dzevi=Bv" =2 mx=a = iS5,

—100

Remark 1.1. In the case A; = 0 the asymptoic formula (1.4) gives only the
estimate of the solution: |ju||p~ < Ce™?tt=X=7,

In the following theorem we consider the case, when the boundary data
decay with time sufficiently rapidly and we show that the character of the
large time asymptotics of the solutions is defined by the initial data.

Theorem 1.3. Let a« > 1 and be not equal to an odd integer. Let the
coefficient in the nonlinearity a(t) € C! (R¥) satisfy the estimate |a(t)| <
C(1+4t)~" for all t > 0, where n € R. Suppose that n > 1 — p/a if b =0
and n € R if b > 0. Let the initial data @ € X be such that z°u € L,
with 0 < § < 1/2 and the norm ||a||x < e, where € > 0 is sufficiently small.
Let the boundary data u; € Y for j = 1,...,[§], (in the case o > 2) satisfy
condition (1.3) with x = % and the following estimates Y= sy < e
and |113(£)| = O (el¢|72) for all |¢| > 1, R¢ = 0. When « is integer we
also suppose that |ﬁ;l(£)| = O (el¢]72) for all |¢] > 1, R¢ = 0. Then there
exists the unique solution u(z,t) € C ([0, 0); L2) NnC (R*; W[;‘]_l N C[“]_1>
of the initial-boundary value problem (1.1). (In the case o > 2 we have
u(z,t) € C([O,oo);L2 N L°°) N C(RJr;W[QO‘]_1 N C[O‘]_l).) This solution has
the following asymptotics for large time uniformly with respect to = > 0

u(z, t) = e~ ]Z]:VOBJ-GJ- (e/tt) +0 (e e), (1)

where N = [a], if « is not integer and N = « — 1, if « is integer, Go(q) =
fwo e =Ev" qy and

100 1 .
Gj(q) :/ dyy“‘j/ dzeva—By*(1=2) =3
0

—100
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E = ei’r[aTH], the constants B; we define below in Section 5.

As an example of application of our theory we consider the initial-boundary
value problem for the well-known Landau-Ginzburg equation wu; +4|u|?u +u —
uze = 0. In this case we have K(p) =p?,b=1,a =1 and p = 2. Since a = 2
we need only one boundary condition, so we get the following initial-boundary
value problem

ug +ilulu+u —uze =0, (t,z) € RT xRT,
u(z,0) = u(z), x>0, (1.6)
u(0,t) = a(t), t>0.

We suppose that the initial data @(z) € W2 N W?$ and the boundary data
@ € WL N'W? satisfy the compatibility condition %(0) = @(0). Then for some
time 7" > 0 the initial-boundary value problem (1.6) has a unique solution
u(z,t) € C((0,T); W3NCH NC([0,T);L2 NL>®) . If we assume in addition
that the initial and boundary data are small enough and the boundary data
have the following asymptotics for large time @(t) = Ae "X+ O (e t~X77) |
where 0 < x < % then there exists a unique global in time solution u(z,t) €
C ([0, 0); L2 N L°°) nC (R+; Win Cl) of the initial-boundary value problem
(1.6) and this solution has the following large time asymptotics uniformly with
respect to x > 0
—t

u(z,t) = Ae o (x/\/i> L0 (e—tt—x—'y) ,

2mitX

where G(q) = fijooo ydy fol e¥a+y*(1=2) ;=X Finally if we suppose that the
boundary and initial data are small enough and the boundary data decay with
time more rapidly @(t) = Ae='t=2 + O (e‘tt_%_7> , then the character of the
asymptotic behavior of solutions is defined by the initial data

u(e,t) =o't zl:BjGj (z/Vt) + 0 (e_tt_%_“f) :

J=0

where Go(q) = [0, etV dy and G1(q) = [ dyy fol ey‘”yZ(l_Z)%. The
constants B; are defined below in Section 5.

We organize our paper as follows. In section 2 we consider the linear initial-
boundary value problem corresponding to nonlinear problem (1.1). We discuss
an important question on the amount of the necessary boundary data, to be
posed for the correct resolution of the initial-value problem. In Theorem 2.1
we prove the local existence of solutions to the linear problem. Section 3 is
devoted to the proof of Theorem 1.1. In sections 4 and 5 we prove Theorem
1.2 and Theorem 1.3 respectively.
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§2 Linear problem

In this section we consider the following linear initial-boundary value prob-

lem
ug +bu+ Ku = f(z,t), (t,z) >0,

u(z,0) = u(z), x>0, (2.1)
I~ tu(t,0) =1a4, t>0, j=1,2,..,n,
with the compatibility conditions 8214 (0) = @;(0), j = 1,...,n, where K is
the pseudodifferential operator defined by formula (1.2). We explain below the
choice of the integer n = [§]. Taking the Laplace transformation of equations

of system (2.1) we get the following initial-value problem in the right-half
complex plane p > 0

@ (p ) + (b + K (p)ilp,t) — K(p) S, p=705~1u(0,0) = f(p, 1),
i(p,0) = u(p), (2.2)
217 u(0,t) = u(t), t>0, j=1,..,n.
Integrating (2.2) with respect to time ¢, we obtain the following representation
for the Laplace transform of the solution

u(p,t) = e_(K(P)+b)tﬁ(p)

t o] o (2.3)
s [ OO k() S 010, + ) |
0

j=1
For the existence of the inverse Laplace transformation it is sufficient that the
following condition is valid |a(p,t)| < C(1 + |p|)?, for all Rp > 0, with some
B € R (see [7]). Note that in the domains, where R(K (p) + b) > 0 formula
(2.3) does not give any exponential growth of @ with respect to p. But in the
region R(K (p)+b) < 0 we can not deduce from (2.3) that 4(p,t) does not grow
exponentially in p. So in the domain R(K(p) +b) <0, Rp >0, [p| > C >0
we rewrite the solution (2.3) in the form

o] i
R _ R > - 0 Lu(0, 1
i(p, 1) = e~ KD (u(p)+ / (K () +) (K(p)z#

0 [a]
T, T)>d7> - ey (K(p> S prioi (0, 1) + f(p’”?dl;
j=1 2.

whence we see that to exclude the exponential growth of the Laplace transform
u(p, t) it is sufficient to satisfy the equality
0o o]
)+ [ (k) Y o w0, + fp) Jar =0 (29
0

J=1
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in domains where R(K (p)+b) < 0, Rp > 0, |[p| > C > 0. Therefore by virtue of
equation (2.5) we can find some of the boundary functions 87u(0, 7) involved
in the definition of the operator K. Indeed, suppose that there are exactly
m domains in the right half-complex plane Rp > 0, where R(K (p) + b) < 0,
lp| > C > 0. Making a change of the variable —K(p) — b = ¢ we transform
each of these domains to the right half-complex plane ¢ > 0. Since this
transformation is conformal, there exist m different inverse functions ¢;(§) =
(K +b)71(&) = p, I = 1,2,...,m, which transform right half-complex plane
RE > 0 to these m domains, where R(K (p) +b) < 0. Then condition (2.5) can
be written as a system of m equations in the half-complex plane R¢ > 0

o] (8” "u(0, t)) (5)

L.

N

f(¢u(€),€) =0, (2.6)

Iy

where | = 1,2,...,m and a(¢(€)) = [, e 9 O%(z)dx,

(8” (0, t)) (&) = [;7° em6t0i~1u(0, t)dt,

f (18 / o / e~ &T=E £ (4 1Y dadt

are the Laplace transforms with respect to space and time for the initial data
@(r), boundary values 92~1u(0,t) and the source f(z,t) respectively. We
have defined in the problem (2.1) the first n = [@] — m boundary functions
037 1u(0,t) = a;(t), j = 1,2,...,n. So we can determine the remainder m
boundary functions v;(t) = 07T~ 1u(0,t),j = 1,2,...,m, from the linear sys-
tem

i) 1 x99
T 256 —5 /(09,0 = 3214)"“(5)

where [ = 1,2,...,m. For example, if we consider the case K(p) = Ep®, with
E = e”[QTH], we have m = [O‘TH] domains in the complex half-plane Rp > 0,
lp| > b/, where R(K (p) + b) < 0. Indeed, we define p® = |p|*e***, where
¢ € (—m, w]. Therefore the condition

a+1

R(K (p) + b) = |p|* cos <¢a +7 [ ]) +b<0 yields

¢ € (g (2l —-1- [O‘T“]) -1 o Arccos o |ava (2l — [O‘TH]) + éarccos #),
where [ is a natural. Since we also assume that ¢ € (—% %) we obtain
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L€ (14 arccos phe = {552}~ 3, 1+ [#2] - & areeos e+ {252} - 3.

Whence we see that [ = 1,2, ..., [O‘TH] and we have m = [O‘TH] domains in the
complex half-plane, where |p| > b*/® and R(K(p)+b) < 0. We define m inverse
functions ¢;(¢) = ry(b + €)a, where r; = e*a* (=D [ =1, .., [241] (we made

a cut along the negative axis (—oo,—b) in the complex plane of the variable
¢ and chose the main branch of the function (b4 ¢)=). The determinant of
system (2.7) is the Wronskian

o NE) e g oo
W) =det | .. ) L) _ detW polel,

...................... m(2ntm+1) j

aNE) L () (E+b)" = — 5

where the matrix

~ R |
W=\ .......... . (2.8)
rﬁ‘l 1

It is not equal to zero since all the constants r; are different. Now we obtain
the following result.

Theorem 2.1. Let o > 1 be not equal to an odd number. Then for some
T > 0 there exists a unique solution u(x,t) € Zr of the initial-boundary value
problem (2.1) such that

ullz, < CA,

where A = ||t|lx + T"supsejo ) t7||fllLe for the case a € (1,2) and A =
lallx + 3251 Gslly +T* supsefo. 117 || fllwr for the case a > 2; here n = (4],
w=1- é — 7% >0, % > 0 is small enough. We assume that the initial data
@, boundary data u;, j = 1,2,...,n and the force f(z,t) in (2.1) are such that

the value A < oco.

Before proving Theorem 2.1 we consider the following function

+i00
F(z,t) = / eftmmO =R g

—100

for z > 0, t € R\0, where O is a complex constant such that ®(£i)#© > 0 and
0 < B <1, u>0. First of all we prove an estimate and the Holder condition
for the function F(z,t) with respect to z > 0 and ¢ € R\0.
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Lemma 2.1. We have the following estimates
[F(z,8)] < P~ |F(z,8) - F(y, )] < Cla — y|* |~

and
|F(z,t) — F(z,7)| < C|t — 7_|u(|7_|ﬁ—1—u n |t|ﬁ_1_”|)

for all z,y > 0,t,7 € R\0, where 0 < v < min(1, g), 0 < w < min(1, g)

Proof.  In the case z > 1 we can differentiate with respect to « and ¢ to
obtain

+i00 "
Fy(e,1) = / E1TO" 18 ¢
—100

and
+i00
Fy(z,t) =0 [ e87o0%en g,

whence using the estimate ‘f"e‘“"egu‘ < Cl¢|72 for |¢] > 1 and any o € R we
easily get |F'(x,t)|+ |Fy (z,t)|+ |Fi(x, t)| < C uniformly with respect to z > 1.

Now consider the case 0 < z < 1. If {,7 > 0 we change the variable of
integration ¢ = ¢/t and denote z = z/t*. Then we divide the domain of
integration in three parts as follows F(xz,t) = t571(Fy(2) + Fa(2) + Fs3(2)),
where

+1i +ioco
Fi(z) =/ 120" ¢=Pdq, Fy(z) 2/ e1=294" ¢=Pdq

—1

and F3(z) = f__loo e?=%94" =B dq. Tt is easy to see that |F;(z)] < C and

+i
|Fi(2)] =C ‘/ eq_zequq_f”“dq‘ <C forall z>0.

Therefore F)(z) satisfies the Holder condition. Let z > 2’ > 0. Integration by
parts with respect to ¢ yields

[F2(2)] <

100 eq—G(IHZZ dq
i q1+ﬁ_u‘

—_2@g* —p|to0
ed qu"i ‘

100 eq_@quz dq
; qith

+C +C
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and

|Fo(2) = Fy(2)] < |et72 00" (e7 @4 =20 — 1)g 7

100
7

+C /wo e R

200 eq—GtJ”Z dq
i q1+ﬁ_u‘

+(z —2")C

100 Out s o ‘,,( /) dq
q—=0q"2" (1 _ ,—0¢"(z=2")y T4
+C / e (1—e )q1+5 :
2
Now using estimates |2/gte=®4"%' | < O, |1 — e~ ©7"(==2")| < C'min(1, |q|*|z —

7'|) and |(z — z')q“e‘equz‘ < C we get for F, the following estimates |F»(z)| <
C and

|Fa(2) — Fa(2))| < C(z — 2') (1 +/ q’“’_l_ﬁdq> <Clz—2"",
1

since 0 < v < min(1,3/u). The integral F3(z) is considered analogously.
Thus we get |F(x,t)| < Ct3~Y, |F(z,t) — F(y,t)| < Clz — y|“[t|*~1~“* and
|F(z,t) = F(z,7)| < Clt—7|7(rP~ 1" +#5717") for all 0 < x < 1, > 0,7 > 0,
since [t7 — 77| < Clt — 7|V (t°7" +777%) for any o € R.

The case t,7 < 0 is considered similarly. And in the cases t > 0,7 < 0 or
t < 0,7 > 0 we have |t — 7| = |t| + |7] so it is sufficient to use the estimate

|F(z,t)| < C|t|°* to obtain |F(z,t) — F(z,7)| < C(|t|5_1_” + |T|B_1_V> |t —

7|”. Lemma 2.1 is proved. O

Proof of Theorem 2.1. As we already know the solution of problem (2.1)
can be represented by the Laplace transformation in the following manner

a(p, t) — e_(K(P)-f-b)ta(p)
b ) . "L 0(1) =i (1) ; (2.9)
+/0 o (K()+b)(t )<K(p) (; Jp—j +j2::1 pjn—ﬂ> + f(p, T)) dr,

and the Laplace transforms 9; () of the boundary values v;(t) = 921~ 1u(0, t)
of the solution are defined from the system (2.7)

¥ = h Y rl] U
0 = g 2o (i 0)
") s 210
€Y —f(d)z(i),&)),



ASYMPTOTICS IN TIME FOR NNS EQUATION

where h = (detW)~! and M;; are the algebraic minors of the matrix W (see

(2.8)) and f(x,¢) is the Laplace transform with respect to the space and time
of the force f:

~N ) T
F(i(6),6) = /0 R GL /0 ¢ f(z,7)dr

We remind that we consider the symbol K(p) = Ep® with E = e"[*], so
m = [2E], ¢ (&) = (€ + b)l/e, and r; = es(@rl-wl%5 “1) are some constants,
such that R¢;(¢) > 0 on the imaginary axis £ € (—ioo,+i00). (Note that the
sum Z?, which appears in (3.3) and below in the case « € (1,2) we assume
to be identically zero.) We denote

A=laflx +T" sup 7| f[lL:
t€[0,T]

for the case « € (1,2) and

A= lallx + Z lijly +7* sup ¢7)fllw;
e telo

for the case a > 2, where =1 — é —4 >0, 4 > 0 is small enough.
First of all we estimate the boundary values v; = 92+ =1y(0,t) of the
solution.

Lemma 2.2. The following estimate
sup Zt o |vj| < CA
t€l0,7] 527
is valid.
Proof.  Integrating by parts n + m times in the Laplace transform of the

initial data and one time in the Laplace transform of the boundary data and
using the compatibility conditions @;(0) = 82~ 1u(0) for j = 1,...,n, we get

i) — e+ 0y )
k=1 ¢l
O Ta) LT e gnamg

n +o0 —fT ~I
o —k —§'r~l 7 uk + fO )dT
1;1¢l /0 dT Z k+1(€)

m 8n—1+k— 0 1
=y == n+ff( )+O(>\|§+b|— — )
k=1 qbl

47
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for [£| > 1, since O (|¢ 4+ b|™t). Whence via (2.10) we get

E

R "G00 ER(0) & N m
O =3 = M4 0 (Mg + bl
k=1 =1

+1,]->
[e3

(2.11)
for j = 1,...,m, where we denote

Ly = (€ +b) 5 F(1(6), €)

Ck,j hZ’f'lm

are some constants. In the case a > 2 1ntegrat10n by parts with respect to z
of (2.1) yields

1 ¢ e —¢1(&)z T —&T
Iy = m(f((),f)vL/o dze=%® /0 et fx(I,T)dT>.

Since sup;efo, 7 t7 || fllw: < oo it is easy to see that

70,6 = /OT e (0, 7)dT = O (%)

and therefore from (2.11) we get for |£| > 1,¢ € (—ioo,i00)

) < C ;001 Fa(0)
i(§) = k—j
L Dyerrree =

+t— ZM vl /+ dze=? (&7 /T e fo(x, T)dT (2.12)
(f—i-b l_n 1+] VELA) 0 AN

+0 (A +b7).

Making a change of variables £ = ¢’ + b and then ¢'(t — 7) = ¢ by Lemma 2.1
we have (prime we omit)

T
; _w’(g)/ e ¢ o(z, 7)dT
‘/zoo €+bln1+ 5/ 0 f( )

+00 +i00 §(t—'r)—:vrl§l/°‘
SebT/ dT/ d$|fx(=’1377)|/ i
0 0

fl_ nfa1+j
T no14g 0
sq/dm—ﬂ—a / dz|f. (2, 7)|
0 0

< CT" sup 17| follLs,
t€[0,7]

and

df‘

—100

. 1
/ﬂoo p1—=ri(sign(t—7)) = ¢*/*

_niiti q
q @

—100

(2.13)
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where p=1-21 —5, 2z =zt — r|=%, j,l = 1,..,m. From (2.10) it is easy

to see that |0;] g C>\|§|%l ! for |¢] < 1. Therefore substitution of (2.13) into

(2.12) yields

+ioo m o
v ()] = ‘/ j(ﬁ)dﬁ‘ <Clafx ) / €Et€_1__“ld§‘
k=1 §]>1,RE=0

4{Tﬂmmtwnmﬂ+x/ 0 (Jg+b7 % ) g
[€]>1,R¢=0

t€[0,T]
|

forallte (0,7],j=1,...m
We now consider the case o € (1,2). Denoting I1; = I in (2.9), we have

+o0 +i00 1, .
‘/ e I(¢ df‘ < 0/ dT/ do|f (z, 7 |‘/ N 3

sc/'mwuﬂmmWMWJ—ﬂL
0 >0

_i=1
t7 T«

<CA

By virtue of Lemma 2.1 we have |F(z,t)| < C|t|~= for t € R\0. Therefore
we get

ioo T
‘/ eI (¢ df‘ < C sup t7||f||L1/ T_A?|t—7'|_éd7' < CA.

te[0,T)

Thus we easily obtain

+i00
- = Ete—1
o1 (1) = \/ u&ﬂzmm@j&mﬁfa ﬂ

+C>\+C>\/ O(|£+b|_1_§>d£+‘/jegtﬁl(g)df‘ <O

[€]>1,RE=0

Lemma 2.2 is proved. [l

In the following lemma we obtain the Holder conditions for the boundary
values v;(t) = 9214 (0,t) of the solution.
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Lemma 2.3. We have |v;(7) —v;(t)| < CA(t — T)”t_”_% for all 0 < t/2 <
7<t<Tandj=1,..,m, where v € (0, m_TJH)

Proof.  Taking the inverse Laplace transformation of (2.12) we have in
the case o > 2

k=1

R

s -nlalx Y| [ <o

k=1 —i{a
m o T oo E(r=7") _ €= =0 (§)z g
203 it [t s / e C e

1=1"0 |€121,R6=0 (E+b)=
+C>\‘/ |¢ + b1 —’—‘a'“dg‘
§|>1

5
+C [ e — 6 (€) ¢ = ;.

—1
(2.14)
We estimate each summand in (2.14). We have |77 — ¢7| < Ct"¥(t — 1)" for
0<t/2<7<t<T,wheren € R and 0 < v < 1. Therefore taking n = kT_éj
we see that the first two summands in (2.14) are less than

m
Cla|lx(t—7 ”Ztk_al VSOMNEt—T) T
k=1

Using Lemma 2.1 withﬁzl—"_THj,Mzé,G):rl and 0 < v < %Hwe
get for the third summand in (2.14)

m T 00
J3 = Z/O dT’/O |f$(x77-l)|d$
=1

m T +o0
< 02/ dT'/ dz|fu (o, 7| F (2,7 — 1) — Fla,t — )|
=1 0 0

/ (65(7—_7—,) — e&(t_'r’))e_md)l(g)dé’
€]>1,R¢=0 (€ + b=

OT (=) sup | fall < C= 1) sup 1wy <T1 it
te[0,T7 te[0,T]

T ) e
/ <|t—7'|—%l—”+|T—T'|—%l—">d7'>gcx(t—T)".
0
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For the last two summands in (2.14) we easily obtain

o+ Js| < A/ [e€7 = <] de]
le|>1,:%¢=0 [§ + b]* T =

o [ 1eE =)o) de] < Ot — 1)

—1

since 0 <v < m_TJH

In the case a € (1,2) we have by virtue of (2.11)

T +o00
o1 (1) — 01 ()] < C’/O dT'/O |f(z, ™) |F(x,7 —7') — F(z,t — 7')|dz

+CA/ (7 —eNe+ 0| TR+ O | e — e lin(©)]dé,

|€1>1 —1

where F(z,t) = fijooo st e¢a—14¢. Using Lemmas 2.1 and 2.2 we obtain
for 7 € [t/2,1]

|v1(7) —v1(t)| < CA(t —T1)"t7"

T
+C sup t~||f||L1(t—T)V/ A =5 4+ [t = 7|5 dr
t€[0,T] 0

< Ot —T1)"t7",

where v € (0,1). Thus we get the desired estimate of Lemma 2.3. [

We now prove the following asymptotic representation

. °L 99 (0, ¢ —s—1as ey,
u(p,t) — Z # =p 571 0%u(0,t) + O (Alp| 5717t ‘SS) (2.15)

J=1

for |p| > 1, R(K(p) +b) > 0, where 9% ~1u(0,t) = iy, for k = 1,...,n and
OF=1u(0,t) = vp_pyfor k=n+1,...,[a] — 1,
0y = max((),%), s = 0,1,...,[a] =1 and n = [§]. We rewrite the
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representation (2.9) of the Laplace transform of the solution in the form

t
0

a(p,t) = e~ E@TIE () + K (p) Zp—j/ e—(K(p)+b)(t—T)aj(T)dT
j=1

s—n+1

t
+K(p) Z p‘"‘juj(t)/ o~ (KE®)+b)(t=7) 41
j=1 0

s—n+1 t
K@) Y [ O ) gy (210
1

<.
Il

m

t
TKp) Y pn / e~ K@)y, (1) 7
Jj=s—n+2 0

t
+/ e~ (E@HNE=T) £ 7Vdr.
0

Integrating by parts in the second and the third summands of the right-hand
side of (2.16) we get

u(p,t) = . -+ R(p, 1), (2.17)

where

Rip.) = e K0 ) -

J=1 J=1

n o~ s—n+1 _ _ n o~ s—n+1
b a(t) Z* v(t) | | be” Kbt i (0) 0

n+jJ
= P K(p)+b \— =

K(p) v / L (K@) +b) (=)
- e . (T)dT

t
+K(p) Y p / e~ KD (0;(r) — v, (1)) dr

m t
iK@Y pn / e~ K@)y (1)
j=s—nm+2 0
t 7
n / e~ KOH0E=7) 1y =31,
0 e
(2.18)
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The sum ZS "1 s identically zero when s = 0,1,....,n — 1. We have the

following inequality e~ ®(E@)+b)t < W for all p € (—zoo +i00) and any

v > 0. Therefore choosing v = max(0, *=2*Y) and v; = max(0, %)

from the compatibility conditions and estimate of Lemma 2.2 we get for the
first summand in (2.18)

—R(K(p)+b)t +oo s (4
[ —— 0)‘ + ‘/ e POt a(z)de| + Y |”ﬂ(_)1|
| 0 = Ip|?
s—n+1 1
<77 +CA - < O\|p| == 17t70%).
|p|TL+1+l/Oétl/ j:1 tL_i_l,] |p|n+j+l/]0€

(2.19)

By virtue of Lemma 2.2 we easily get for the second and third summands in
(2.18)

||+ |[Is| = O (Alp| 1777, (2.20)

Since R(K (p) + b) > 0 we obtain for forth summand in (2.18)

n t
[I4] < O Zp_j/ e RE@E=T) gr) = O (Ap|=*7177). (2.21)
j=1 0

Applying Lemma 2.3 with v = v; = max(0, == "+1 It7y < m= j+1 in domain
0 <t/2 <7 < t<T and using inequality e_w((p)t/2 < C(|K( )~V
in the domain 0 < 7 < t/2 via Lemma 2.2 making a change of variables
y = |p|*(t — 7) we get for the fifth summand in (2.18)

s—n+1 /2
L<c Y pplen / e RE@HE) (1. (7] + o (1) )dr
Jj=1 0
s—n+1

_— . t
+CA Z v |p| /t/z e~ RE@F)(E=7) (¢ _ ryvidr

s—nt £/ (2.22)
. 1—j
<ox ¥ |p|_"_7_”fat_1_”f/ T dr
j=1 0
s—n+1 400
koMY pplmri e [ ey — 0 (pl ),
j=1 0

where © = min (R (i“E) , R ((—)*£)) > 0. Via Lemma 2.2 and the inequality
e RIE@IHD(E=T) < C|p|=7i%(t — 1) 77 with i; = 2FE="H=IHT we have for I
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in (2.18)

m t
a—n—j—avj—uo —p; =i A
[Is] < CA Z | S /0 (t—7)"Yr e dr =0 <|p|s+1+’7t5s> )

Jj=s—n+2

(2.23)

In the case a > 2 integration by parts in the Laplace transform of right-hand
side of (2.1) yields

+o0
1f(p. 1) = ‘p_l (f(O,t) +/0 e_prl;(x,t)dxﬂ < CAlp|~ 177

for all |p| > 1,p € (—ioo,i00) and also Hf(p,t)HL < CXt™7. Whence we
obtain

t
|1I7| < Cklpl‘l/ e RE@HE=1) =T — O (A|p|~*~177). (2.24)
0
In the case a € (1,2) we easily obtain

t
|I;] < sup t:’||f(x,t)||L1/ T_:Ye_éR(K(pr)(t_T)dT§0A|p|_°‘.
t€[0,T] 0

Substitution of estimates (2.19) - (2.24) into representation (2.18) yields the
estimate R(p,t) = O (A|p|=*~1=7¢=%) . Therefore from (2.17) we have (2.15).
Now from Lemma 2.2 and (2.9) we obtain

[a] t
sup [(p, )] < c(ua(pmw =3 [ 1ok o, mlar
pel—ii im0 (2.25)

4 / ||f(p,T)||L°°dT> <o

We prove now that the solution u(z, t) is given by the inverse Laplace transform
of u(p, t)
1 100
u(z,t) = —/ e’ u(p, t)dp.

21 J o
Using (2.15) and (2.25) we easily see that the integral is converging. Let us
prove now that u(x,t) = 0 for 2 < 0. Since 4(p,t) is analytic function in the
right-half complex plane Rp > 0 we get

| eritan=— tin [ a0,
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where T'g is a circumference p = Re'?, ¢ € (—%, %) , R > 0. Denote I'p =
[y + Ty, where T'y = {p = Re'®, ¢ € (—% +0, 5 — %)}, and 'y = {p = Re'?,
pe (=%, -2 +3)U(5 — 3, %)}, here s > 0 is such that R(K (p) +b) > 0 for
p € T'y (such small values s exist since R(K (p) +b) > 0 on the imaginary axis
p € (—io0,i00).) By (2.3) - (2.5) we have |a(p,t| < C(1 + [p|)? for Rp > 0,
with some 3 > 0. Since |e?*| < Cexp(—sin(»R|z|)) < C(xR|z|)~*=8~7 for
. 7
z <0,pel,v>0 we have with »r = R 20+6+7)

R—oc0

lim/ ep“’ﬁ(p,t)dp‘g lim / (1+|p|)5exp(—sin(%R|x|))|dp|
ry R—oo ry

< C lim (sz])"}P=YR™7 = 0.
R—oc0

Since R(K (p) +b) > 0 for p € 'z from estimate (2.15) we obtain 4(p,t) =
# + O (Alp|~1=7) . Therefore

R— o0

lim / epx&(p,t)dp‘ < C lim (s|u(0,t)| + A22R™7) = 0.
Ty R—o0

Thus fijooo e’ i(p,t)dp = 0 for all z < 0. As we show below (see (2.28)
the function a(p,t) € L?(—ioco,i00) therefore by the Fourier transformation
theory we see that the inverse Laplace transform is given by the formula
oL [*%° ePra(p, t)dp (see [7]). Via (2.15), (2.25) and Lemma 2.2 we have

271 J—i00
, 1 [Hiee ’ ’ Ok =1u(0,t)
Ohu = o— e’ pl \alp,t) — ) —F—r—— |dp
27 —100 ( k; pk
. 1 d
:a;u(o,t)—/ ere 2P
21 Jipi>1,00=0 P

+Ct% / ePTO(Np| =17 )dp + CAt ™%,
|p|217§Rp:0

Whence we see that the derivatives d2u(z,t), 7 = 0,1, ..., [a] — 1 are continuous
with respect to £ and the boundary data are fulfilled
01 u(z,t) — 1;(t) as x — 0 for all j = 0,1,..., [%], and t > 0. Moreover

we have the estimate

[o]—1
sup > 1% 0ulr:
tel0,7] 523

ot (2.26)

<C ) sup (A+</ O(%>|dp|> )gm
j=1 t€l0.T] |p|>1,Rp=0 |p|
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and
[a] -1 _ [a] -1 ico _ d
sup Z %7 |||y~ < C Z sup <A+t5f / e—ma;u(o,t)—p
te[0,T] = j=0 t€[0,T] —ico p

w0 al) <o
|p|>1,Rp=0

(2.27)
where v > 0 is a small constant. From (2.9), Lemma 2.2 and the conditions
of the theorem, we easily obtain

1

[o] T ,
Il < ClCaslills + €Y [ od7 (0, (=74
j=0"0

(2.28)
T
+C sup )f () s / P — )P dr < ON,
t€[0,T] 0
where G(z,t) = fijooo eP*—EP®tqp Via (2.26) - (2.28) we obtain
[o]-1 _ _
lullze = llullee + sup > % ([|0fu(e, )|y + [|0ulz,t)]]y.) < OX
tel0.7] =5

We now prove uniqueness of the solution. Consider two different solutions
uy and us. Then the difference u; — uo satisfy the linear problem (2.1) with
f=0,u =0 and 4; = 0. Then by estimate (2.28) we get |u; — uz|/L2 = 0,
hence 4y = us. Theorem 2.1 is proved. [

63 Local existence and uniqueness for the nonlinear problem

Proof of Theorem 1.1.  We prove local existence of solutions by the con-
traction principle. We define u as a solution of the following linear problem

ug + N(w) +bu+Ku =0, t>0,2>0,

u(z,t)| =ulx), >0

t=0 (3.1)

oui = (z, 1)

—a(t), t>0, j=1,..,n,

z=0

with the compatibility conditions @;(0) = 9=1@(0) for 5 = 1,...,n, where

N(w) = ia(t)|w|’w is known since w(z,t) is fixed from the space Zp and
6]

satisfies the initial and boundary conditions of the problem (3.1), n = [§]
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(in the case a € (1,2) the boundary data are absent.) Note that the initial-
boundary value problem (3.1) defines a mapping v = M(w) and we will show
that M(w) is the contraction mapping from Zr to Zr.

As we know from Theorem 2.1 problem (3.1) has a unique solution which
can be represented by the Laplace transformation in the following manner

i(p, t) = e” KOG (p)
+/0 o~ (K(0)+8)(t=7) (K(p)<z “ﬂp_(f) £y ;n(ﬂ)> + N(w) (p, )) dr,
=t = (3.2)

where the Laplace transforms v;(£) of the boundary values
v;(t) = 7T~ 1y(0,t) of the solution are defined from the system (2.7) with

~ —

[ =Nuw):

o= zr[ A )
(3.3)

(£ +1) Zﬂ — ) (4u(©), 6))

where h = (detW)~" and M, are the algebraic minors of the matrix W (see

(2.8)); and N(w) is the Laplace transform of the nonlinearity with respect to
the space and time

——
e

00 T
N(w) (¢ (€),€) = /0 e~ POz dy, /0 e ¢"N(w)(z, 7)dr.

Here m = [2FL], ¢y(&) = m(E + b)Y, ry = ew2ml=7[%5]) are some constants
such that R¢;(£) > 0 on the imaginary axis £ € (—ioco, +i00). (Note that the
sum Z? which appears in (3.3) and below in the case a € (1,2) we assume to
be identically zero.) Since w € Zr we have for the nonlinear term in the case
a>2

— +w
sup t”/ |0, N(w) (2, 7)|de < C sup_|a(t)[t7]|0pw]|L2 |w]|{= wl|L2
te[o0,T] 0 te[o0,T]

< Cllwllg lwllwe wllz, -
(3.4)
and in the case v > 1

+oo
sup [ Nl < sup a0l
t€[0,T] 0 t€[0,T7] (3.5)

< C sup 7||wl|f = w]|ze (w2
t€[0,T]
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Via Theorem 2.1 we have the following estimate for the solution

[e]-1

lullze = Jullz + sup >~ % ([|9ulles + [8JullL=) < O, (3.6)
tG[OaT] j:[)

where A = [lallx + X0, lislly + T% supseor £ INw) s if @ > 2 and

A = |lallx + T#sup,epo 17 [IN(w)]Lr if a € (1,2). Here d; = max(0, %),

W= 1—%—’7 >0,y = @ > 0, v > 0 is small enough. Choosing sufficiently
small 7" > 0 we obtain

[a]—-1
lullze = llullee + sup > % ([|0fu(e, t)]| Lo + [|O]ulz, 1)]|.)
tel0,7] o

<C|llulx + > llily

j=1

Thus the mapping M transforms the closed ball in the space Z7 with a center
at the origin and a radius C(||ﬂ||x+2?:1 l|l@;||v) to itself. Analogously we can
prove the estimate ||u — ||z, < %||w—||z, . Indeed, the initial and boundary
data for the function v — u are equal to zero. So choosing small T' > 0 such
that ||u — ﬂ||£;1||u — 4|2 T* < 1/2 we have |lu — @l|z, < i||w — 0|z, from
(3.4). Therefore the mapping M is a contraction mapping and there exists the
unique solution u(z,t) of the initial-boundary value problem (1.1). Theorem
1.1 is proved. [

Remark 3.1.  If we can obtain the following a-priori estimate of the so-
lution ||u||r2 4 ||ul|lLe < oo for some time interval (0,77, then via estimate
(3.4) by the standard continuation argument we can prove existence of unique
solution u € C((0,T], Zr).

Remark 3.2 From (3.21) and (3.22) we see that if the norm of the initial
data |lullx < € and the norm of the boundary data > 7_, ||i/ly < e, then
there exists a time 7' > 1 such that the solution is also sufficiently small
SUP;e(0,7] (#° ||lu||lL= + ||lullr2) < Ce, where § = max(0, %), v > 0 is small
enough.

84 Asymptotics determined by the boundary data

This section is devoted to the proof of Theorem 1.2. Here we consider
the initial-boundary value problem (1.1) with & > 2 to be not equal to
an odd number and with small initial and boundary data ||a||x < €, and
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> j=1 ltj]ly < e Also we suppose that the boundary data have the following
asymptotics 4;(t) = Aje_b"'t_x_j;_1 +0 (ee‘btt_x_j;_l_“'> as t — oo for all
j =1,...,n, where the coefficients A; do not equal to zero simultaneously and

are small: |A;| < ¢, the value € > 0 is sufficiently small. Here b > 0 and
. max(0,1— +L .
0<x<2ifb>0and 2] <y L ifh =0, >0,

Before proving Theorem 1.2 we give some preliminary estimates in Lemmas
4.1 - 4.7. First we consider the following function

100 1
G(x) :/ e’”yy‘sdy/ e BV (1=2) B gy,
0

—100

where —1 < <0, —1 < § < a—1 and E is a constant such that R(E(+:)*) >
0. In the next lemma we prove that the function G(z) is bounded for all z > 0.

Lemma 4.1. There exist a constant C > 0 such that |G(z)| < C for allz > 0
and there exists a limit lim,_, ;o G(z).

Proof. ~ We write the following representation

1/2 ioo i 1
G(x) :/ dzzﬂ/ evr—Ey (1_Z)y‘5dy+/ eyxy‘sdy/ e~ BV (1-2) 84,
0 ' 1/2

—100 —1

1
+/ ey’”y‘sdy/ e~ B (=2 By = J, + Jy + J5.
ly|>1,Ry=0 1/2

Denoting # = min(RE(—i)*, REI*) > 0, changing y = iq we get

1/2 +o0 o
|J1| < 2/ dzzﬂ/ QPe " 2qq < C
0 0

and

1 1
|J2|§2/ q‘sdq/ Pdz < C
0 1/2

since —1 < f and —1 < 6. Also note that J; and Js are continuous with
respect to & > 0. Integrating by parts with respect to z, we get

| J5| < C‘/ e’”yy‘s‘“dy‘ + C‘/ e iy
ly|>1,Ry=0 ly|>1,Ry=0

1

+C |y|‘5_°‘_”°‘dy/ 22711 —2)™"dz < C,
ly|>1,Ry=0 1/2

59
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where H}T_a

< v < 1. Also we see that each term in the representation of J3

has a limit for z — +0. ( In the case § — a@ = —1 by virtue of the identity

d Lgi
VP / e ™ — ori 9 lim Y gy
ly|>1,Ry=0 Y e=~>+0 Je Y

we integrate by parts to get

d
VP/ exy—y — 271
ly|>1,Ry=0 Yy

< 2|z| (1 — liriloeloge> = 2|z,
€—>

whence lim,_, o VP f|y|>1,§Ry=0 exy% = 27ri.> Lemma, 4.1 is proved. [

Now we consider the function F(z,t) = f:z;o st 2 q¢ for all z > 0 and
t > 0, where pp € (0,1), © is a constant such that RO(£:)* > 0.

Lemma 4.2. We have the following estimate |F(x,t)| < Ct=%*~1x% for all
x> 0,t >0 and for any € [—%,1}.

Proof.  Making a change of the variable £ = g and denoting z = zt™# we
get

1 100
F(x,t) = ;/ e1=94" 2 gy

Integration by parts in the case 0 < z < 1 yields

100
|F| < Czt™t / eq_equzq“_ldq‘ < Czt7l <ot

—100

where § € [—%, 1] . In the case z > 1 making a change of the variable y = gz'/*
we obtain

100
|F| < Oty tn / eyz”“—@y“dy‘ < ot~lmYe <ot

—100

with any § € [—i, 1}. Lemma 4.2 is proved. [



ASYMPTOTICS IN TIME FOR NNS EQUATION 61

Lemma 4.3. Suppose that ||@[ly: < e and Y75, [|4;]lw: < € and ' (€)
=0 (@) for |€| > 1, j = 1,...,n. We assume that the following estimates
for the solution of (1.1) are valid
sup(1 +#)*e’ (1 4+ 7 Jullgs + Jull< ) < er. (4.1)
>0
Then for the solutions v; of system (2.7) we have
supt s ebty;(t) < Cle + €0 (4.2)
t>1

for j =1,...,m.

Proof.  According to (3.3) we write the solutions v;(t) of system (2.7) in
the form

h = o
v(t) = oy Z’rl[ M (1 + I + ), (4.3)
where ) .
I, = / déeft (¢ + b)_1+%l / e~ (O q () da,
—i00 0
- 1o ntj 2
B=Y [ e+ 0 Ot
kzl —100
and

200 . +o00 +o00
Is :/ déeft (€ + b)—il—l/ dT/ dzN(u) (z, 7)e= 8T~ # )z,
0 0

—100
Now we estimate each summand of (4.3). Since & € L' and Rry(£i)a > 0

making a change of the variable of integration y = £ + b in the first summand
I, we have by virtue of Lemma 4.2 with § = 0 and Lemma 3.1

—bt oo oo tmry s, M1 —bt,—ntd

I1=c¢ u(z)dx A T dyzO(ee AN ), (4.4)
0 —100

for all j,l = 1,...,m. Integrating by parts in the second summand I, in (4.3)

we get

n+Jj
«

B=Y [ decfiu@)€ + 0 o€
b1V —ic0

—1y (“ﬁ’“(f)(f*b)% R ft< Cakn(f) 45
kzzl ‘ oF —ico /—iooe (€ + )19 (6) (49

Cin(e)  Cus(@E+H" ) _ oomttp
€+ by o)) =0,
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since 15 (€) = O(e|¢|™1) and @iy, (€) = O(el¢|72) for all |¢] > 1,RE = 0, k =
1,...,m. Via (4.1) we have

+o0
/0 (L + 27 ")IN(u) (z, t)de < [a@®)llullg=" (lullf: + lullf~)

< 6ll’+16—bt(p+1)(1 + t)—x(p+1)+1/a—n’

(4.6)

where v > 0 is small enough. Therefore interchanging the order of integration
and making a change of the variable of integration y = (£ +b)(t — 7) and using
the condition x(p+ 1) — 1 4+ > 1if b = 0 by virtue of Lemma 3.1 we have
for the third summand I3 in (4.3)

+o0 ) +o0
13| < C’e_bt/ t—r —”T“df/ " IN(u)(z, 7)|dz
0 0

100 1 . “1/a n+i_ 4
/ YTy > (t=T) y—la Ly
—100

+oo —bp7 g o
< Ce’fHe_bt/ = ¢ T dr = O+t ")
0 |t—7|7a (14 7)x(pt)=1/atn

(4.7)
for j =1,...,m, if a # [@] and for j = 1,...,m — 1, if @ = [@]. In the case
a = [a] for j = m using (4.6) and Lemma 4.2 with © = r;,l = 1,...,m and
d = v in the domain |t — 7| < 1 and ¢§ = 0 in the domain |t — 7| > 1 we have
for Ig

+o0o +o0o
I; = Ce_bt/ dT/ F(z,t — 7)e’""N(u)(z, 7)dz
0 0
dr

<o [ e,
- t—ri<1 [t =773 Jo Y

dr e —bt_p+1,-1
+ — IN(u)(z,7)|dz | = O(e el ¢71).
[t—7|>1 it—7lJo

Substitution of (4.4), (4.5) and (4.7) into (4.3) yields estimate (4.2). Lemma
4.3 is proved. [

Lemma 4.4. Let the initial data 4 € L' be small: |ii||: < e. Then

H/wo epﬂr—(K(p)+b)ta(p)dp

= O(ee_bt(l + t)_é+§>
LS

for all t > 1, where s = 2, 4+00.
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Proof. Making a change of the variable iy = pta we have
100

H/ epx—(K(p)er)ta(p)dp
—100

+OO fe 1
< e b w ||| oo / e dy =0 ( b1+ t)_E)
0

100 100
H/ epac—(K(p)-}-b)t,a(p)dp < e—bt (/ 6_2Epat|17|2dp>
—i00 L2 —1300

—bt 00 3 —bt
< Ce ¢ (/ 6_26yady> ' Ce :
(1+1t)za 0 (1+1¢)za

since © = min(RE(+4)*) > 0. Lemma 4.4 is proved. [

Loe

and

(M

Lemma 4.5. Let the boundary data have the large time representation

ij(t) = Aje T 4 e—btqu( ) (4.8)
for j=1,...,n and t > 0, where |¢;(t)| < Cet™ Xx—15 =7 and
P\ (t) = O(et™ X_J__V) A, are some constants which do not equal to zero

simultaneously and |A;| < , here v,€ > 0 are small enough, x is defined at
the beginning of this section. Then we have the following estimate

100 +
H/ dpepl’K(p)p_j/ 6_(K(p)+b)(t_7)ﬂj (t)dr =0 (ee—btt—x—i)
—1400 0

LS
and the asymptotics
1 100 . t
I=— dpepr(p)p_J/ e~ K@) (7)dr
210 ) oo 0
(4.9)
Ee—bt

tXA; G (tl/ )+O( ),

i
for all t > 1 uniformly with respect to x, where
100 ) 1 o i1
Gita) = [ ey [ B0 s,
—100 0
and E is the constant from the definition of the symbol K (p) of the pseudo-
differential operator (such that RE(+i)* > 0.)

Proof.  Substitution of (4.8) into I yields

EA.e bt 100 oot
I 376/ dpep’”p“_J/ —Ep%(t-m) r—x—13 dT+R(:Jc t), (4.10)
271 0

—100
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where . :
R(z,t) = ee_bt/ epmpo‘_jdp/ e EPT=T) g (7)dr
—100 0
Since |¢;(t)] < Cet ™~ "a =7 and x < 1 making a change of the variable of

1/a

integration p(t — 1)/ =y we get for j =2,...,n

|R(z,t)| < Cee™" t dr +ooe_eyayo‘_jdy
S o TR (E— )T o

= O(ee_btt_X_V),
where © = min(RE(7)*, RE(—:)®) > 0. In the case j = 1 making a change of

variables 7 = tz and pt'/® =y we have

R(z,t) = e_bt/2 ¢1(tz)dz/ eViy—le= By (1=2)qy
0 100

i 1
—i—e_bt/ eyqyo‘_ldy/ e~ BV (1=2) ¢ (t2)dz

1
+e_bt/ eyqy“_ldy/ e BV (=2) g (t2)dz
ly|>1 3

where ¢ = Tt By analogy with the proof of Lemma 4.1 we get for v > 0 is
small

R0l <o ( [Cnelir+ [aeln -2
Hou0)] s 0/ + [ e - z>-"dz).

Then using the conditions of the lemma for ¢;(¢) and ¢/ (¢) we obtain in
the case j = 1, R(zx,t) = O(ee‘btt_X_V). Therefore making a change of the
variables 7 = tz and pt'/® = y in the first summand of (4.10) we get (4.9).
Since y <  making a change of the variable of integration iy = p(t — 7)s and
using (4.8) we get

t

0

L2

+i00 >
< Cet / iy (r >|df(/ )
0 —100

1

t +o0o 2

< Cee_bt/ dr - (/ e—@yayZa—%'dy) ’
o TXHE(t— 7)lm&+1/2a \ g

< Cee™ bt
(L1 tyx-1/2a
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From Lemmas 4.1 - 4.2 and asymptotics (4.9) we easily obtain

100 t
/ dpe™ K (p)p~? / e~ K@) (1)dr
0

—100

< Cee (1 41)7X
Lo

Therefore Lemma 4.5 is proved. [

Lemma 4.6.  Let estimate (4.2) be valid. Then the following estimates

t
H / &% K (p)p=" dp / (K@) ()47

=0 (e_bt(e + 6€+1)t—x—7+$>

are true for all j = 1,...,m, where s = 2 or oo, v > 0 is small.

LS

Proof.  Via the estimate of Lemma 3.2 we have ¢'& v ()] < e+ €T for
t € [0,1],7 = 1,...,m. Therefore by virtue of (4.2) making a change of the
variables tz = 7 and y = pti we obtain

200 t
H / e K (p)p=" dp / e~ (K@) ()47
—100 0

—bt 7’L+J 1

LOO

i /e j ' Ey®(1 bt
/ e/ ya_"_de/ e~ BV (A=2)4btzy, (12)dz
—100 0

+o0 1 '
< Clet e )e™ (t_é/ y“‘"‘jdy/ Oy (1-2) =1
0 1/t

n l/t dZ
i=1
0 Z «

+teo
_ O(e_bt(e + €p+1)t—x—7)
with © = min(R(?)*E, R(—i)*E) > 0, where v > 0 is small enough. Similarly
making a change of the variables p(t — 7)a =y we get

200 t
/ epr(p)p_n_jdp/ e—(K(p)+b)(t—T)Uj(T)dT
0

—100

< Ce

) =O0(e (e + gt~ = log(2 +1))

L2

t
= CHK(p)p‘"‘jdp/O e (K@+E=T)y (1) dr

L2

400 bT dr
< —bt -0y, 2a—2n—2j |UJ( )| ,
=ce (/0 ey ) /|t |2

< Ce e+ €0t /1 ar +/t ar
€ € - - - -
- 0o 75 (t — 7_)1+1/2a——”+ﬂ — (t — T)1+ﬁ——”aﬂ

< Ce_bt(€+€€+1) Ce_bt(e—l—ep+1)
1+t)7a = (L+txt1 s
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for all j = 1,...,m. Lemma 4.6 is proved. [

Lemma 4.7.  Let estimates (4.1) be valid. Then we have

H / =7 T Y )

LS

for all t > 1, where s = 2 or oo, v > 0 is small.
Proof.  Via (4.1) we have
— +oo +oo
||, = su / e ra)lulPuds| <Ja®)] [ upids
Lee p:Rp=01J0 0

< la(® [l ullZe < et (1 4 ¢)=8

where 5 = x(p+1)—1/a+n > 1 if b = 0 by virtue of the condition of Theorem
1.2. Therefore making a change of the variables p(t — 7)& = iy we obtain

H / pxdp —<K<p>+b><t—r>1\7(u\)(p77)d7

Lo
_prdT

+o00
p+1,—bt —Oy® 5 _ (Pl —bt,—L
< Cé) /0(1+7_) (t—T)l/a/O e Y dy=0(e]" et )

for t > 1, where © = min(RE®, RE(—:)%) > 0. Similarly

H / epxdp KO (p 1)
L2
o [ bTHN( L )
0 (t—7)%a 0

t —bpt
§C€€+16_bt/ e PTdr i
o (1+7)8(t—7)2a

< CeTle ™ (1 4 4) 712 < Gty (1 4 1) X FEa T,

Lemma 4.7 is proved. [
Proof of Theorem 1.2.  Let us prove the following estimate
1+ 1) (Jlulls + (14875 ull: ) < e (4.11)

for all t > 0. By the contrary we suppose that the estimate (4.11) is violated
for some time. By Theorem 1.1 the norms ||u||g2 and ||u||L=~ are continuous.
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Therefore there exist a maximal time T° > 0 such that the nonstrict estimate
(4.11) is valid on [0,T"]. We have by formula (3.2)

1 [ree .
w(z,t) = 2_m/ dpeP® (u(p)e—(K(p)+b)t

—100

n t
+Z@ / K@= (1) dr

— p’ 0
n t (4.12)
+ZK(p)p_n_j/ 6_(K(p)+b)(t—7')1)j(7')d7
Jj=1 0

t —_—
+/ e~ K@+ =TI N(4,) (p,T)dT).
0

Whence by Lemmas 4.3 - 4.7 we get e (14¢)X (||u||Loo + (1482 ||u||Lz> <

€; for all ¢t € [0,T] if € > 0 is sufficiently small. The contradiction obtained
proves estimate (4.11). Then from (4.12) by virtue of Remark 3.1 we see that

the solution u(z, ) € C ([0,00); L2 N L=) N C (R+; wll-1n C[al—l) and by

virtue of Lemmas 4.1-4.7 it has asymptotics (1.4) for ¢ > 1 uniformly with
respect to > 0. Theorem 1.2 is proved. U

§5 Asymptotics determined by the nonlinearity and initial data

This section is devoted to the proof of Theorem 1.3. We consider the case,
when « > 1 is not equal to an odd integer number. Before proving Theorem
1.3 we prepare some estimates in Lemmas 5.1 - 5.5. We suppose that we
already have the following estimates for the solution

sup (14 0)% ((L+ )7 fullpe + £ (L +0) T ulp~ ) <er,  (5.1)
t€[0,T7]

where €; > 0 is some small constant, T' > 0. Below everywhere the sum of the
form Z?Zl we suppose to be identically zero (It appears for the case « € (1,2)
so n = 0 and the boundary data are absent). Also any condition in which j
varies from 1 to n = 0 we assume to be absent.

Lemma 5.1.  Let the initial data @ € L™ and 2°a € L', § € [0, 1] and the
boundary data @; € Y, j = 1,...,n and satisfy condition (1.3) with x = 1 as
follows @i;(t) = Aje"t=% + e, (t), where |¢;(t)] < Cet=5~7 and ¢/ (t) =
0] (et_%_“’> . Suppose that the estimate (5.1) is valid and £ +n > 1, if b = 0.

Then we have the following estimate ||z°u||r> < Ce™" for all t > 1.

67
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Proof. By formula (3.2) for the solution we get

laulhs = €103t 0)]. < ce( o8 (e 1) |

n
—i—Z/O eb7|&j(7)| H@g (e_K(p)(t_T)pa_3> Lo dr

j=1

mo ' (5.2)
+3° / oy ()] |05 (e~ KW e=pend) || ar

j=1"0

t
+/ eb'r
0

where 83¢ = L7Y(p° L), by L we denote the Laplace transformation. We
have the Sobolev embedding inequality (see, e.g., [1])

4
§ [ —K®)(E=T)N(o) H dr) = Ce-tt _
0, (e N(u) (p, 7')) Lo T> Ce j; Jj,

100l < ¢llr=> 0,0l Ea- (5.3)

Consider the function G(z,t) = fioo

—100

eP*=Ep®tdy Note that the Laplace trans-

form G(p,t) = 2mie~EP"*. Then making a change of the variable of integration
y = pt'/® we easily obtain

IG(z, 8|l = |G(p,t) || < Ot~ %= (5.4)
and
N N _ N 26—1
12°G (2, 1) ||z = C03G (p,t)l|l: < ClIG(p, 1)1z 10,G (p, 1) IIF) < Ct72a
(5.5)

for ¢ > 0. Changing the order of integration in the first summand in (5.2) we

get
100 o +00
$5/ dpepx_Ep t/ e PYu(y)dy
0

—100

Jy =

L2

o [ a6l -y

L2

Since || [ ¢(x — y)d(y)dyles < [$lleelléles by virtue of (5.4) and (5.5) we
have

Jlﬁ‘ +

/oo y’u(y)G(z —y,t)dy /oo |z — y|’u(y)G(z — y, t)dy
0 L2 0

< llz’a(z) e G (@, ) e + la(z) e [l#° Gz, bl < C

L2

(5.6)
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for all £ > 1. Similarly we can estimate J;. Indeed, by virtue of (5.1) we have

-1
12°N(u) |l < Clat)][lewllz |ulles [lu]lf=

< Cem Pt (1 + t)—%%—nﬂnxéu“l‘z

and |[N(u)||: < Cla(t)||u]l?,|Jullfe < Ce b P+D=7(14¢)=&—1+7. Therefore
using (5.4) and (5.5) we get

t
< [ (Nl Gt = Dl + N@ [5G 0, = )lee) dr
0

t
<C +/ e~ b7t || 50y | g (E — 7) T T (1 + T)_Zg;a M dr
0

(5.7)
since £ +1n > 1, if b= 0. Using the condition "¢ |i;(¢)| < C of the lemma,
making a change of the variable of integration y = p(t — 7)'/* via (5.3) we
obtain

n t
h<Cy / 7|t (r) e B" (=i 120 (ue-Ep““-ﬂpa-f-wﬁ%
j=1"0
it = 7)o B et )

n t . e
<oy [rte-n iR e <o
j=1"0
(5.8)
1) <

for all £ > 1. By Lemma 3.3 and Lemma 4.3 we have e?*t’s (1+t)"> v (t)]
C. Then in the same way we obtain the following estimate for J3

s t j 1 j+n  1-2
Js ch/ e (4w (-7 R dr < C (5.9)
j=170

for all ¢ > 1. Substitution of (5.6) - (5.9) into (5.2) yields
1opa(p, t)llLe < Ce™*

t
+€—bt/ e—br(p+1)7—7(1 _,_T)—%%—nﬂ(t —T)_ﬁﬂazﬂ(pm)“l,zdr
0

Therefore via the Gronwall inequality we have
||8311(p, L2 = |z°u(z,t)||2 < Ce ™ since £ +n>1if b=0. Lemma 5.1
is proved. [
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Lemma 5.2. Let the initial data 4 € X, 2@ € L', and boundary data
ij €Y, j=1,..,n besmall |lullx + [lzull: + > 7, lé;lly < e. Moreover
Iet the following estimate for the Laplace transform of the boundary data

O(|§|2) be valid for |¢| > 1, 7 = 1,...,n. When a > 1 is integer we also

suppose that u u = O(|§|2) for |£] > 1, j =1,...,n. Let estimate (5.1) be valid
and £ 4+n>1,ifb=0.
Then the following asymptotics

v;(t) = Bje_btt_% +0 (e‘bt(e + ef“)t_%_”) (5.10)

takes place for the solutions v;(t) of system (2.7) (see (3.3)), where

B; =hl’ (1 _n +‘7> ZMj,lrl[a] (&(0) +/ / ebTN(u)(x,T)dde> ,
@ o Jo
=1

for j =1,....,m, h = (det W)~1, M;; are the algebraic minors of matrix 14
(see 2.8), v > 0 is some small constant. When « > 1 is integer we denote
B,, = 0. T' is the Euler Gamma-function.

Proof.  According to (3.3) changing the variable of integration ¢’ = £ 4+ b
(prime we omit), we write the solutions v;(t) of the system (2.7) in the form

vi(t) = he™ N M (I + I + 1), (5.11)
=1
where h = (det W)~', M, are the algebraic minors of matrix W (see 2.8),
1 100 n+] +oo 1
I = — I e~ TE T (x)dx,
21 J oo 0

= o Z/ T (€ — g

and
1 700

n+j +oo +oo L
I = — d§6£t§_1+7/ edeT/ dzN(u)(z, T)e sTTE" e,
0

21 J oo 0

Now we estimate each summand in representation (5.11). We rewrite the first
integral in (5.11) as follows

a3 0 7100 i R 7 y
11:1;(_%2_)/ eSte" i —ldg + R = d(0)t~ "1 (1—”?) +R (5.12)
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forj=1,..,m,ifa#[a] and j =1,...,m — 1, if a = [a], where

n+Jj

R= C( ‘/ e ((rig®) — u(0))¢ = HdE| +
€1 <1/t3R€=0

eSt(fa(rE =) — G(0))E = ~1de (5.13)

/12|5|21/t,m£=0

_l’_

/ £ (i(g) + a(0)) H L
[€]>1,RE=0

Since zii(z) € L* we have [i(r¢5) — G(0)| < Cel¢|/®. Then for the first
summand in (5.13) we get

‘ / S ((re®) — a(0))€ " g
|£|§1/t7%£:0 (514)
l/t n+j+1 n+j
<Ce | Mg =0 )
0

and since |17’| < € integrating by parts we have for the second summand in

S

/1 €&t (fi(ri€ ™) — 1i(0))€ = ~2de / e&tdl(rléi)é%_gdéa) (5.15)
' i/t
=0 (et_%_“» ’

where vy = a_a[a]. Since ||@]|: < € and e~ R < C(¢y(¢)z) =t we obtain the
estimate

A
~ ntj _q

/ | () — a0))e " de (a(ri€=) — a(0)e"="~

+

‘ia(qsl(f))\ < ‘/ e~ RO g1 (€)ru(r)dar| < Celé| .

dg
Therefore integrating by parts we get for the third summand in (5.13)

d
< Z
—t

+

100
ntj g

e (a(rg" ) +a(0)E ™=

/i - eftf%i—ld%a(mfé)df‘)
= (et_%“’) .

(5.16)
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Substituting (5.14)-(5.16) into (5.13) we obtain for the first summand in (5.11)

I, = 4(0)0 <1 - ";”) =5 Ot ") (5.17)
forall j = 1,..,m, if a # [@] and 7 = 1,....m — 1, if @ = [a]. In the case

a = [a] for j = m using Lemma 4.2 with § = ya < 1 we get
+oo
_ Ct—H/ 297 i(2)|dz = O(et=2=7). (5.18)
0

By estimate (4.5) from Lemma 4.3 we have
Iy = O(ee™bt71). (5.19)

In the case a = [a], using the condition 4" (&) = O(e|¢]72) for |¢] > 1 we
integrate in (4.5) one more time by parts with respect to £ to obtain I, =
O(et™2). Now let us estimate the third integral I3 in the representation (5.11).
Changing the order of integration we obtain

. ) +o00 +oo
Is=-T (1 - +]> gt / dTebT/ N(u)(z,7)dz + R (5.20)
0 0

o

for y =1,...,m, if & is not integer and j = 1,...,m — 1, if « is integer, where
+o0o
/ drev / daN(, 7) ((F(0,¢ — 7) — Fy(0,£))
+ (Fi(z,t — 1) = F(0,t = 7))),

here we denote Fy(x,t) = [ eft=ri&é%e¢*H~14¢ From (5.1) and Theorem
1.1 we have

+oo
/ (14 270 |N(u)(z, 7)|de < £Tle Mot D=7(1 4 )= —17 (5.21)
0

1

where 0 < § < 1, and by the Holder inequality with p = A%a, q= =5 We get
+00 »
/ |7 N(u)(z, t)|dz < ef+1e_bt(0+1)t_7(1 +t) T2y, (5.22)
0
ThenusingLemma31withﬁ—l—%,,u—— w=1-—yaandv=7v>0

is small (we can chose 2y <1 —n— 2 since £ +n > 1 if b = 0) we have

+oo n+j ntj +oo
R< C’/ dreb™ 17 <|T|_T_7 + |t — T|_T_7> / IN(u)(z, 7)|dz
0 0

n+j

+o00 +o00
+c/ drebT|t — T|—”—“—7/ 27N(u) (2, 7)|dz = O(f 1" =),
0 0
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In the case a = [a] interchanging the order of integration and using Lemma 4.2
with § = —ya in the domain |t — 7| < 1 and § = 7y« in the domain |t — 7| > 1
by virtue of (5.21) and (5.22) we have

+oo +o0o 100 5
13 = Ce_bt / edeT/ N(u)(gj,q-)dx/ eg(t_'r)_rlﬁaardg
0 0 —

100

+o0o
< Ce b / dre |t — 711 / &= N(u) (z, 7)|dz
- 0

+o0o
+oe—bt/|t |>ldTebT|t—T|—1—7/0 |7 N(w) (z, 7)|dx :o(efﬂt—l—V).

(5.23)
From (5.11), (5.17) - (5.20) and (5.23) we get (5.10). Lemma 5.2 is proved. [

Lemma 5.3. Let ||(1 + 2°)@l|p: <€, where 0 < § < 1. Then the estimate

=0 (et_ﬁ)

is valid for t > 1 and the following asymptotics as t — oo uniformly with
respect to x > 0

H/ epw—K(p)ta(p)dp

L

/ KO i(p)dp = Golat™ )0} F + 0 (=477,

—100

is true, where Gy(q) = f_:;oo ev1=Ey" gy

Proof. Making a change of the variable of integration y = ipt'/® and using
the conditions of the lemma we get

100 7100 o
H [ ety < ( [ e t|a|2|dp|)
—i00 L2 —100

< Cet™7a (/000 e_zeyady>% =0 (et_ﬁ>

for ¢t > 1, where © = min(RE(i)*, RE(—4)*) > 0. We write the representation

M

/ P K@) (p)dp = &(0)/ ePr K@)t g,

—100 —1

*/ eP* =KD (i(p) — (0))dp + / P* KOt (p)dp = Ty + o + Js.
) [p|>1,Rp=0

—1
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Changing the variable of integration y = pt'/® in the first integral J; we get

J1

W(0)Go(wt ™)t 7% + 0 (@™ 7).
Since |u(p) — u(0)] = |f0°°(ep$ — Da(z)dz| < |p|™® fooo 7 uldx < €|p|’,

making a change of the variable of integration y = pt'/® we easily obtain for
the second integral

i
T <C [ O prelap = 0 (74 7),
-
where © = min(FE(i)%, E(—i)%) > 0. Finally since ||i||p~ < € we have

p<ce® [ e s = 0 (a7E ).
[p|>1,Rp=0

Lemma 5.3 is proved. [

Lemma 5.4.  Let the functions v;(t), j = 1,...,m have asymptotics (5.14)
as t — oo. Then the estimate

100 t bt
o —K(p)(t—7) " v;(7)
[ [ s

g =0 ((6 + efH)t_ﬁ)

is valid for t > 1 and the following asymptotics

100 t bt
_ _ e’ v, (1)
epxdp/ e K@= g (p)—L 2 dr
/—ioo 0 ( ) pn+J

= BBjt ™ G,(a/t%) + O ((e+ &™) 477)

is true as t — oo uniformly with respect to x > 0, where

+i00 ] 1 o i
G;(q) :/ dyeyqy“_"_de/ e~ Byt (1=2) =2 1,

—100 0

for j =1,...,m in the case « is not integer and j = 1,...,m — 1 if « is integer.
In the case « is integer we denote

100

+o00
Gonlq) = Gol0) / v (7)dr, Go(q) = / WP gy,

—100
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and vy, Iis the boundary value of the last derivative of the solution defined by
(5.11).

Proof. By virtue of (5.10) and Lemma 3.2 we have

n+4+1

vj =0 (e_bt(e + 6’1)+1)t_%(1 + t)_T)

for 5 = 1,...,m. Then making a change of the variable of integration y =
p(t — 7)Y we get

700 t br,, .
H/ ep“"dp/ e_K(p)(t_T)K(p)ie Ui(.T)dT
—100 0 p"TI

L2

1 1 j —
sc(e+ef;+1)(/ PR R TR
0
t . .
+/ (t —T)_ﬁ_1+n7ﬂ7_%d7> =0 ((e—i—eiﬁl)t_%) :
1

Making changes of the variables of integration 7 = tz and y = pt'/® we get

) t
& 100 epxpa—n—jdp/ e—K(p)(t—T)+bTUj(7_)d7_
e , (5.24)
n—14j [ . o
= Et—a"'l eymt o ya—n—jdy/ e—Ey (1—z)ebtz,uj(tz)dz
—100 0

for j =1,2....m, if @ # [a] and for j = 1,...,m — 1, if @ = [a]. Substitution of
(5.10) into (5.24) yields

+i00 1 ] 1 o .y
I:EBjt—%/ eVt “y“—"—ﬂdy/ e~ BV (=2, "0y + R, (5.25)
0

—100

where
. +ioco 1 p+1
R:Ctniﬂ/ eymtéya—n—jdy/ e~ By (1-2) 6+7€+1 dz
—ioo 0 (tz) "ot

+1
Similarly to the proof of Lemma 4.1 we easily see that R = O (i> . In

téJrv
the case a = [a] we have
100 t o
I=E dpepx/ e EP =TTy, (7)dr.
0

—100
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By virtue of Theorem 1.1 and (5.12) the following estimate

m—1

lom (t)] < Ce+ 2Tt~ (1 41)~1+

m—1
o 7

is true. Then interchanging the order of integration and making the change
of the variable of integration y = pt*/® we get

I=FEt= (F(q,O) /0+OO O (T)dT + R) ,

where
t/2 (S
R= [ & on()(Fla.2) - Pla.0)dr = F(@.0) [ o (n)ds
0 t/2
t
—|—/ ebTvm(T)F(q,z)dT
t/2
and F(q,z) = fiiooo =By (1=2)qy ¢ = zt~a, z = 7t~ L. We have |F(g,2)] <

(1—i)§ and |F,(q,2)| = |E fijooo eV1=Ey* (1=2)yaqy| < # Therefore we

—z)'Ta
obtain R =0 ((e + €])t~7) . Lemma 5.4 is proved. O

Lemma 5.5.  Let estimate (5.1) be true. Then the estimate

100 t — 1
‘ / ewdp/ e KPE=T)ITN() (p, 7)dr|| =0 (e’l’+1t_ﬁ) .
0 2

—100
is valid for t > 1 and the following asymptotics

200 t o
/ epIdp/ e_K(p)(t_T)ebTN(u) (p, T)dT
0

—100

L

°. (5.26)
= t_iGo((L‘t_é) / "™ N(u) (0, 7)dT + O (eft_i_7)
0

——

is true as t — oo unmiformly with respect to x > 0, where N(u)(0,?) =
fooo N(u)dz, and Gy(q) = f_;;; ev1— By dy.

Proof. By virtue of (5.1) we have “@“Lm < CetlebtotD=7(1 4
t)~& ="t Therefore since L 4+n>1,ifb=0 we get

100 t o
H/ ewdp/ e_K(p)(t_T)ebTN(u) (p, T)dT
—100 0

L2

t o 100 o %
S/ ebTHN(u)HLoo </ 6—2@|P| (t—‘r)|dp|> dr
0 —1300

t —A,/d
T77dr 1
< C€€+1/ 7 s T :O(E?Ht ZC‘)a
o (14+7)a*"7(t—7)2a
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where © = min(RE:*, RE(—i)®) > 0. We write the representation

200 t o
/ emdp/ e_K(p)(t_T)ebTN(u) (p, T)dT
0

—100

:/ epx_K(”)tdp/ ebT@(O,T)dT+R,
—i 0

(5.27)

where

R= ep“”dp/ (e~ KPE=7) _ o= K@)y, bTN( )(0, 7)dr

——

[_M@/ e~ K@= b7 (N(w) (p, 7) — N(u) (0, 7))dr
—i—/_i ep’”dpﬂ e_K(p)(t_T)ebTI\T(u\)(p, T)dT

2

+/ epmdp/ —K(p)(t—7) b’TN( > J
|p|>1,Rp=0 0 Z

Making a change of the variable of integration y = pt'/® in the first summand
of representation (5.27) we get

/ e’”"_K(z’)tdp/2 ebT@(O,T)dT
i 0 (5.28)

= t7% Go(z/tF) / ™N(w) (0, 7)dr + O (e‘f“t—i—v) .
0

We have |e= PP (t=7) — o= Ep"t| < Ce=OIPI"(t=7)|p|a7 7 for all p € [—i, 1], since
© = min(RE®, RE(—i)®) > 0. Therefore making a change of the variable of
integration y = p(t — 7)Y/ we get via (5.1)

h<0/ Wm>mmm/ &0l =) p 07 7| gy
=i (5.29)
e~ brrdr

t
2
SC’e‘f“/ —— - —O(p“t___“’)
o (L4+7)atm=7(t—7)at?

By estimate of Lemma 5.1 ||z°ul|p2 < C for 0 < § < 1 we get

—

IN(w) (p, 7) — N(u) (0,7)] =

/0 (e — 1)N(w) (2, 7)da
< \/m/oo VEIN@) (z, 7| dx

< Ot plllullg= ullee IVl < Cef/Ip|(L + )75 7
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for all p € [—i,i]. Making a change of the variable of integration y = p(t—7)'/®

we obtain

L e—bT(p—l)T—A/dT p+1

J2 < C€p+1/§ 2p—1 1,1 / e %" dy = -
2 0 (1+T)g—a+’7_7(t—T)E+H 0 vy taty
(5.30)

Via (5.1) we get [N(u)[L~ < €2 a(r)|ullf=d |ul2. < CefTlebm(e+1(1 4
1/a

7)~&~", whence making a change of the variable of integration y = p(t—7)
we have

] < / 1N (p, 7) e 7 dr / &= Olpl* (1) | g
t

(5.31)
—pr +oo o
< Ce’f“/ > dr . / e %" dy =0 ( p+1t___7>
t (L+r)at(t—1)a Jo
For the last integral Jy we easily obtain
t O(t—1)  ——— b Olpl®
il < [ T R . aeetrar [ OOz
0 Ip|>1,Rp=0
. _euon_, N (5.32)
< / ¢ dT/ eV 24y =0 (ef“t_i“’) )
o (L+7)atm(t—7)= 0
From estimates (5.28) - (5.32) the result of Lemma 5.5 follows. O
Proof of Theorem 1.3.  Let us prove the following estimate
1+ (L+6)7% Jullee + (1 + )l ) < e (5.33)

for all ¢ > 0. By the contrary we suppose that estimate (5.33) is violated
for some time. By Theorem 1.1 the left hand side of (5.33) is continuous.
Therefore there exists a maximal time 7" > 1 such that the nonstrict esti-
mate (5.33) is valid on [0,T]. Thus the supposition (5.1) is valid on the time
interval [0, 7] and we can apply Lemmas 5.3 - 5.5 to representation (3.2) of
the solution. Hence we get estimate (5.33) for all[0, T']. The contradiction ob-
tained proves estimate (5.33) for all ¢ > 0. Moreover by virtue of Remark
3.1, Lemmas 5.3 - 5.5 and Lemma 4.5 with x = é we see that the solution

u(z,t) € C([0,00); L?)NC (RJF;W[;‘]_1 N C[“]_l) has asymptotics (1.5) with
the coeflicient

Bo = — (a(O) + /0 T e /0 N (2, 7)de + R),

211
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where R = f0+oo U (7)dT, if  is integer and R = 0 if « is not integer (v,
is the boundary value of the derivative of the solution of order n + m and is
defined by (5.11)) the coefficients B; = A for j=1,..,n and

27

. m [a] 400 400
n+j hr; "M, (. -
B; =T (1 - > E # <U(0) _/0 dre’ /0 N(u) (xﬂ')dx>

=1

for j =n+1,..,n 4+ m, where h = (det W)~1, M;; are the algebraic minors
of matrix W (see 2.8). Integrals Bj converge for any b > 0 in view of esti-
mate (5.33) (see estimate (5.21) of Lemma 5.2 for details). Theorem 1.3 is
proved. [
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