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Smoothing effects for some derivative nonlinear
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Abstract. In this paper we study a smoothing property of solutions to the
Cauchy problem for the nonlinear Schrédinger equations of type :

(A) W + Uge = N (0, Ty Uz, Uz), teR,z eR;
u(z,0) = uo(x), x €R,

where

N(u,u, uz, uz) =K1 |u|2u + K2|u|2ugg + Kau’uy + K4|ux|2u + Ksuu?
+ K6|uz |2uz;

the functions K; = K;(|u|?) satisfy K; € C*°(]0, +00); C).

This equation has been derived from physics. For example if the nonlin-
ear term is N(u) = % then equation (A) appears in the classical pseu-
dospin magnet model [18]. The aim of this paper is to study the case : the
nonlinearity depends on u, and %, and satisfies the so called Gauge con-
dition : N (eu) = e N (u). We prove that if the initial data ug € H>!
for any [ € N, then there exists a positive time 7" > 0 and a unique solu-
tion w € C* ([T, T\{0};C>(R)) of the Cauchy problem (A). The result in
this paper improves the previous one in [11] because we do not assume any
size restriction on the data. Here H"™° = {p € L*(R);||¢llm.s < +oo} and

lpllms = (1 +2%)*/2(1 = 02)"*ll com)y H™ = Noza H™*.

AMS 1991 Mathematics Subject Classification. Primary 35Q55.
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§1. Introduction

In this paper we study a smoothing property of solutions to the Cauchy prob-
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lem for the derivative nonlinear Schrodinger equation of the following form

(L.1) {zut+um:]\/’(u,ﬂ,um,m), reR, teR,

U((II,O) ZUO(x) ) z € R,
where the nonlinearity is

N (u, @, ug, Uy) = K1|u|2u + K2|u|2um + Kyu’u, + K4|um|2u + K5H’LL3.
—|—K6|ux|2ux.

The functions K; = K;(|u[?) are such that K;(z) € C'*3([0,400);C). If
Ks(z) = ﬁ and K1 = Ko = K3 = K, = Kg = 0 then equation
(1.1) appears in the classical pseudospin magnet model [18]. To state our
main result we introduce some function spaces. The Lebesgue space is

1/p .
LR) = {p € SR : |lgl, < oo}, where |lgll, = (f lp(z)Pdz)"'" i
1 <p < ooand [|¢|le = ess.sup{|e(z)|;z € R} if p = co. For simplicity we
let |||l = |l¢ll2. Weighted Sobolev space is Hp"* = {p € S'(R) : [|¢|lm,sp =
H(l +$2)s/2 (1 — 83)’”/290” < oo}, mys € R, 1 <p < oo. For simplicity we

P

write H™* = H5"° and [ll1,s = [|@ll1,5,2- We denote also H™ = N2 H™*.
We let C(Z; B) be the space of continuous functions from a time interval Z to
a Banach space B.

Our main results of this paper are the followings.

Theorem 1.1. If the initial data ug are such that ug € H3! with | € N. Then
for some time T > 0 there exists a unique solution

weC([-T,T;H*°) N L (=T, T; 1) ne ([—T, T)\{0};C"*? (R))

of the Cauchy problem (1.1) such that

sup [t° (1 +22) 77 Dkt
te[-T,T)

‘2 <oo for 0<k<I.

’

By virtue of Theorem 1.1, equation (1.1) and the Sobolev’s embedding
inequality (see [7]) we get

Theorem 1.2. If the initial data satisfy ug € H>>. Then for some time
T > 0 there exists a unique solution v € C*> ([-T,T]\{0};C>*(R)) of the
Cauchy problem (1.1).
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Remark: Our method can be applied to the following problem

(©) 10pu + Au = N (u, Vu, 4, Vu) (z,t) € R* x R
u(z,0) = ug(x) z e R"

where A = Y0 02, Vu = (0z,u,... ,0;,u) and N satisfies the gauge con-

=1 Yx;
dition and N (X) = o(]X|?) around 0. More precisely, for ug € H21*3! with
[ € N, there exists a unique solution u of (C) satisfying,

—lal/2

sup |¢]!° || (1 4 |=]?) %u(t)

te[-T,T]

< +00,.
[5]+2,0

for any multi-index @ € N” such that |a| <1 where |a] = a1 + ... + ay.
Same results were obtained by N. Hayashi, P.I. Naumkin and the author [11]
for a nonlinearity which doesn’t depend on w;. In case of nonlinearities de-
pending on %, they had to assume that the initial data ug is sufficiently small
to obtain Theorem 1.1. In our case we do not consider any smallness condition
on the data to get these results. After this work was essentially completed, we
were informed that H. Chihara [3] studied the nonlinear Schrédinger equations
of the derivative type

(B) O —1Au = f(u,Vu,u,Vu) (z,t) €R* xR

u(z,0) = ug(x) r e R

and he obtained similar results to ours for the cubic nonlinearities satisfying
the condition for w =€, € R

f (wu, wVu, wi, wVa) = wf(u, Vu, @, V).

More precisely he showed that for uy € H™! where m is in an integer such
that m > [§] +4, then there exists a unique solution u to the Cauchy problem
(B) satisfying the growth : for any multi-index o« € N such that |a] < and
lal = a1+ + an,

|o

(14 o)~ 5 u € C([=T, T)\{0}; H0).

His method depends on a theory of pseudo-differential operator and so our
method in this paper is completely different from his. In our case, we consider
the initial data ug € H>! which is a lower order Sobolev space. Previously
smoothing effects of solutions to the nonlinear Schrodinger equation (A) with
Ky =--- = Kg = 0 was studied in [10] and similar results to that of Theorem
1.1 were obtained by using the operator J = z + 2it0,;, which commutes with
the linear Schrédinger operator £ = id; + 02. There are some results about
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the nonlinear Schrodinger equation of derivative type with the nonlinearity
(1.2) iut+um:i(|u|2u)x, z € R, t€R,
u(z,0) = up(z), z € R.

By using some translation, the derivative nonlinear Schrédinger equation (1.2)
can be translated to a system of nonlinear Schriédinger equations without
derivatives of unknown functions (see, e.g., [8]). So in [12] the same results as
in Theorem 1.1 were shown for the Cauchy problem (1.2).

The existence of solutions to the Cauchy problem (A) was established in [1]
and [13] in the usual Sobolev space H>". Note that the transformation used
in [1], [13], [20] is not sufficient to prove our results. In the present paper we
apply a smoothing effect of the linear Schrodinger equation similar to the one
used in [11]. But in [11], estimations on nonlinear terms including u; lead
to a smallness condition on the initial data in order to get Theorem 1.1. We
explain this problem in a few words. A standard contraction mapping method
was used in [11] to solve the Cauchy problem (1.1). In order to deal with the
derivative terms inside the nonlinarities they applied a smoothing operator S
(defined precisely below) and obtained the energy type inequality :

l

(1—T01(||U0||3,z))2 sup HJ va(t H2

k= OGOT

luolls, Ly

(1= Calfluolls )65 sup [ VIF 1740 (0)| < Colllunls,)-

OtEUT

where J = z + 2itd,, ¢ is an arbitrary parameter, C(

15 Callluollzy),
Cs(||uoll3,) are positive constants depending on [|ug |5, v = (1 —02)u and w is

a positive function, r is a continuous positive function such that the condition
lluglla ‘ _
: there exists a 6 > 0 satisfying (1 — Cg(||u0||3,l)6er( 5 )) >0, is fulfilled if

and only if [Jug||5, is small enough. Therefore the smallness condition on the
initial data in [11’] is needed. To overcome this problem, we remove nonlinear
terms involving @, by a diagonalization technique. Its main point is to conceal
the whole bad terms by a linear tranformation. This method was used by H.
Chihara [2] [3] and recently by N. Hayashi and E.I. Kaikina [9]. Smoothing
properties of solutions to the linear Schrédinger equation were studied by
many authors (see [4], [6], [19], [22]) and later the results in [6], [19], [22] were
improved in [16]. We use in this paper some pseudo-differential operator of
order 0. The history of such operators starts from Doi, who discovered in [6]

oy —1
the following operator exp (fmoo (1 +z 2) dx'%) , where D = —i0d, and
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(D) = (1-82) Y2 \hich is useful to gain a smoothing property of solutions of
linear Schrodinger equations. Chihara [1] used the following modification of
this pseudo-differential operator exp ( f lu(t,z')|?dx’ (D >) , to prove the local
existence of solutions u to the Cauchy problem for the nonlinear Schrodinger
equations in higher order Sobolev space. He made use of some well known
results concerning pseudo-differential operators, such as the £? - boundedness
theorem and the sharp Garding inequality, and that is the reason why the
higher order Sobolev space was needed. In this paper we apply a more simple
operator S(¢) = cosh(y) + i sinh(p)H, where ¢ is defined later as

[
= =Yo7 (17 e, ) T i P+ Y (TR T K ),

k=0 2<j<5

o«.l»—ﬂ

which enables us to avoid the use of the technique of the pseudo-differential
operators and so by virtue of simple explicit computations we can treat the
problem in the natural order Sobolev space 73°. Note that by a different
approach smoothing effects for the generalized KdV equation were studied in
[5], [14].

The rest of the paper is organized as follows. First we give some nota-
tions. In Section 2 we describe a smoothing property of the linear Schrodinger
equation. Then in Section 3 we prove in Lemma 3.1 the local existence of solu-
tions to the Cauchy problem (A) in the function space {u € C([-T,T]; L2(R));
lU(—t)u(t)||s,; < oo}, where U(t) is the free Schrédinger evolution group. And
as a simple consequence we obtain the result of Theorem 1.1.

Notations. We denote 9, = 3%, oyt = [T da’ and let F¢ or $ be the
Fourier transform of ¢(x), namely q&(f) = \/%? Iz e~ %% (x)dz. We denote by

F~1¢ or ¢ the inverse Fourier transform of the function $(¢), indeed ¢(z) =
\/%7 Jr €7¢(¢)d¢. In what follows we also use the following relation |8,| =

FL¢|F = —HO,. The Hilbert transformation H with respect to the variable
z is defined as follows

How) = Loy [ L g - ir1Epy
T JrT—2z €]

where Pv means the principal value of the singular integral. We widely use
the fact that the Hilbert transformation # is a bounded operator from £2(R)
to L2(R). The fractional derivative |9;|%, a € (0,1) is equal to

d
0.1 = FUE|°F = C /R (9l +2) - o)) s
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and similarly we have

dz

zlz|*’

02| H = —iFsigné|¢[*Fp = C /R ($(z+ 2) — B(x))

with some constant C' (see [21] for the constants C, p. 160 and p. 161 n 6.15).
Let J = J(t) = z + 2itd, = M(t)(2itd,)M(—t), where M = M(t) =
exp(iz?/4t). We also freely use the following identities [T, ;] = —1, [£,J] =
0, where £ = i9,+0? and [A, B] = AB— BA. To the operator J, we associate
the space 3¥(R) for k& € N defined by

35(R) = {(,0 e S'(R) | H (2ut8,) t)goH + el < +oo}.

We also define for s € R
F((1 = 02) ) (w \/_/ (1+2) (y)e =V dy.

For (X1,...,X,) € C7, X denotes X = (X},...,X,). Then with this no-
tation, for h = (hy,... ,h,) € L(R)? one has ||h|?* = - ||he||®. Different
positive constants might be denoted by the same letter C', when it does not
cause any confusion.

82. Linear smoothing effect

The aim of this section is to obtain some smoothing effects for solutions to the
Cauchy problem for the linear Schrodinger equation

(2.1) {Z“t+umm=f(w,t), zeR, teR

U(J?,O) = UU(:E) ’ z € R,

where the function f(z,t) is a force. Below in Section 3, we will consider
the nonlinearity introduced in the introduction. Lemma 2.3 and lemma 2.4
were proved by N. Hayashi and P.I. Naumkin and the author [11], they are
reproduced in this part for the sake of completeness of this paper. Lemma 2.3
describe a simple and explicit modifications of the smoothing effects obtained
by Doi [6].

In the next lemma, it is proved that the commutator [J%, (1 — 92)7!] is a
bounded operator from 3*(R) to 3*(R) where k € N.

Lemma 2.1. For any k € N one has the commutator relations

W 1 (1—82)‘] —(k+ 1)0, (1 — 87,
k

)T = Y A,
]=1
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where p;(X) is a polynomial whose order is less than or equal to j. These
commutators are continuous operators in 3*(R).

Proof of lemma 2.1. We start by proving this relation
(2.2) JL—=)~ =(1-82)7"T —20,(1-95)~

By definition of J and by inverse Fourier Transform, for any f € S(R) and
r €R

2ut et®y A

23 /()
m/ T T )>
it ery A
+ \/ﬁ 01 )(ny(y))dy
e’y R
o / (10,£ ) + 21t 0)) d

+ o= / ( ‘QW )f(y)dy.

Hence by inverse Fourier transform, (2.2) is infered. The first part of lemma
2.1 is proved straightly by induction and (2.2). We shall also prove the second
equality of this lemma by induction. Let us assume that the result is true for
k € N, then applying J to this relation and equation (2.2) imply

T =™

k
=J(1 =) TFg+> T - 02) T pik(0,) T g

j=1
— (1= 387 T g —2(1 - 92)20,7%
k k
G +2)(1 = 02) T 20,piu(0,) T4 g + 3 (1 - 03T LT pa(0) T g,
j=1 j=1

But [J,0,] = —1 implies Jp;x(9,) = pjr(0;)T — p};(9;). Then

T -8) g =1 -8 g —2(1-8))7%9,T"
k+1
+ Z _(] + 1)(1 - a’%)7j718mpj—1,k(a:v)jk+lijg

k k
+Z(1 _ag)fjflpj’ ( jk+1 ]g Z 1 —82 —j— 1 l (am)jkfjg’

J=1
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SO
THA-8) g = (1= R) T g+ {(1 = )72 (20, + pix(8,)} T'g
( = 3= (k + 2)0,pk 4(9,) + (1 = )l 1(9,) }g
+ Z (=G + 1)0,pj-1,6(0,) + pjk(0,) — (1 — 02)p_1 £(0,))
jk+1 ig.
Then the following polynomials are defined
® prier1(X) = —2X +p1x(X),

o pik1(X) = =7 + DXpj_1x(X) + pjn(X) — (1 — X?)p) ,(X) for & >
J =2,

o prripr1(X) = —(k+2)Xppp(X) — (1 = X?)p), ,(X).

One notices that the order of the p;;1(X) is less than or equal to j, then

(1 =027 p; k41(9,)g|| < Cllgll- So lemma 2.1 is proved. O
In the next lemma we prove that if ¢ is a sufficiently smooth function, then

the commutators [|0;|%, ¢], and [|0,|*H, ¢], are continuous operators from

L?(R) to L2(R).

Lemma 2.2. The following inequalities

19l and  |I[|0:|"H, 1Pl < Cli¢ll1 0,00 191l

are valid, provided that the right hand sides are bounded.

111021, 4]

Proof. We have

1021 6] 9ll = H [ #te+ 260+ 2) — o)

dz
/MSI (e + 2)| /0 (o + Ol

d
/ |9 (2 + Z)|%
|z|>1 | |

| ot +2)

<C

+ Clllloo

'WH < m

The commutators [|0;|“H, ¢] are estimated in the same way. Lemma 2.2 is
proved. ]
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We define the smoothing operator used in [11] S(p) = cosh(¢)+isinh(p)H,
where the real-valued function o(z, t) € £ ([O,T]; ’HE;P) Nt ([0, T]; £2(R))
and is positive. From its definition we easily see that the operator S acts
continuously from L?(R) toL?(R) with the following estimate ||S(¢)y| <

2exp (||¢]lso) |¥|l. The inverse operator S™!(yp) = m (1 + i tanh(p)H) !
also exists and is continuous
(2.3) IST ()]l < (1 — tanh([lllso)) " 191l < exp(llelloo) [14]]-

The operator S helps us to obtain a smoothing property of the Schrédinger-
type equation (2.1) by virtue of the usual energy estimates. In the next lemma
we prepare an energy estimate, involving the operator S, in which we have
an additional positive term giving us the norm of the half derivative of the
unknown function u. We also assume that ¢(z) is written as ¢(z) = 9, ! (w?),
so that w(z) = \/(0zp).

Lemma 2.3. The following inequality

d 2
SlSul*+ |wSVioelu| < 2(1m(Su, 57)
+ Cllul2e?¥ (o + ol + lw

10,00 [@lloo + [t ]loo)
is valid for the solution u of the Cauchy problem (2.1).

Proof. Multiplying equation (2.1) by the operator S(¢) we get
(2.4) (10, + ) S (p)u — [07, S(p)]u — iy, S(¢)]u = S(p) .

Via the property (iH)? = 1 we have [0,,S(¢)] = i(9:0)S(p)H. Hence the
Leibnitz rule yields

(02, 8(¢)] = —2i(3:)S(9)|0:| + (9p)*S () + i(70) S() H-
Similarly we have [8;, S(¢)] = i(8;0)S(¢)H. Therefore (2.4) yields
(2.5) (i0; + 02)Su + Mu = Ru + Sf,
where M = —2i(0,¢)S()|0z] = —2iw?S()|0;| and

R = (w'8(p) + 2iw(0,w)S(p)H — (31p)S(p) H)

Since |0y| = —0;H the remainder term R is a bounded operator. Indeed we
have

(2.6) IRull < 4flull exp (l¢llso) (loll5e + lwll1,0,00llwlloo + ltlloo) -
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Now we apply the usual energy method to (2.5) (i.e. we multiply (2.5) by
S(p)u integrate over R and take the imaginary part of the result) to get

(2.7) ||5uH2 + Im(Su, Mu) < |(Su,u)| + Im(Su,Sf)]|.

2dt

Then using the estimates of Lemma 2.3 we obtain

Im(Su, Mu)

=2 (Su,w?S|0;|u) = 2 (wSu, OwSHu — [0y, wS] Hu)

= =2 (wSV[Oalu + [ V10|, S| 1, ~wS V/[0u]u + [/ [0:]H, wS]| Hau)
2 (wSu, [0y, wS| Hu) > 2 (H S/ |0z uH

- st oulu] (|| Vsl |+ | [ VIBrTr. o e

— H [\/@, wS} uH H [m%,wS] ’HUH — |[(wSu, [0, wS] Hu)|>

2
> |wSv/0lu|| = Cllul2e2= () + [wll + llloew]1.0.00) -

We have the lemma from (2.6) - (2.8). O

In the next lemma we prepare the estimate for the nonlinearity.

Lemma 2.4. We have the following estimates

2 2
Oulu|+ [[lels Vidalo
+ Ol + [02)e™M1 (1812 0,00 + 1612 0.00) (1 + 1l 0.0)

provided that the right hand sides are bounded.

(S, Spppdpv)| <

(2.9)

Proof. Since 10, = 0,9 — 1, we get the estimate
IS ($19050) = S ($0utpv) || < e | Bl ool | o 0]
Using the identity
H (#V/10:1) = V191 (6H) = = [ V10l 0| 7+ [V/10aTH, 8] = H [ V19:], 6]
we write the representation
S6v/10u] = V19,16 — [ V1], cosh()g| — i |V/18,], sinb(p) | ¢
+ isinh(p (’H(]ﬁ\/|3 \/|(9$|<]5’H> V/|0z|$S — i sinh(p [\/|8 (]5] +R,
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where the remainder operator

R =isinh(p [\/|8—’H ¢} — isinh(y [\/|a_ qs]
— [ V18], cosh(p)g] i [m, sinh(i)| $.
Via the estimates of Lemma 2.3 we have for R
(2.10) [Rwll < CeMI<|g]l10.00 (1 + llol1.0.00) (] + [Hawll).
We note that

S0 Hy = ¥S/|8:[H + cosh(p) [\/|6—’H 1,/)] + isinh(yp [\/|8— 1/1}

Therefore by Lemma 2.3 we find

1) [sViadHyw| < |68 VIBalHw|| + Celel= ]l o 0 ull.
By virtue of Lemma 2.3 we have the estimate
(2.12)
s < |« [
< oo ideh| + | [ VIo o8] ] + [ VIoeTr, o] o]
< |98 v/18alu| + Cllull exp(lleloc) gl 000 (1 + el o00)-
We have

|(Su, S¢p0,v)| < [(Su, SPdppv)| + [|Sull|Sptpav]]

(Su, SpDpo)| + Cel?1=1| ]| oo 14h1]1,0,00 | [0
Then via the estimate (2.10) and (2.11) with w = /|0z|Hyv we get

<|
<|

2.13
( |(:)9u $90.00)| = | (Su, Spv/10:1V/1alHpv) |
< | (#V/10:1Su, 8 /19: i)
+ | (#sinh(p)Su, [ VI, 8] VIDe )| + ISull | 1o |
< ([|¢viacIsu| + Cllule™ = gl0.00 (1 + Ielo00) ) | Sv/IBuT 0|
whence using (2.11) with w = v, and (2.12) with g = ¢, we find
(Su,590:90)] < (|68 Vdelu]| + Cllulle I @]10.00 (1 + ll10.0) )
< (|| Viazlo|| + Cllole = gl 00 (1 + lloe))
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Then
2

_ 2
(S, 5¢0:9pv)]| < ||6SV/1elu | + |45 V/10ulo
+ Ol + ol (110,00 + 1417 0,0) (1 + 1 p.00) -

Thus the estimate of lemma 2.4 is proved.

§3. Proof of the main theorem

Only the case t > 0 is considered since the case ¢ < 0 can be treated similarly.
Local existence of solutions is first achieved by a contraction mapping method.

Lemma 3.1. We assume that the initial data satisfy ug € H>'. Then for
some time T > 0 there exists a unique solution u of the Cauchy problem (1.1)
such that

l

sup Y |17 u(t)||,0 < 400
te0,T] .-

Proof. Applying the operator (1 — 92) to the equation (1.1), we get for
the function v = (1 — 02)u
(3.1) Lv = N1 (u, ug)vg + No(u, ug) vz + Ro(v)
' v(z,0) = (1 — 82)uy,

where N7 (u,uz) = Oy, N (u, uy) and No(u,uy) = Oz N (u, ug).

The gist of this part is the combinaison of the smoothing operator defined in
the previous section, its aim is to get rid of a half derivative in Ny (u, uz)v,. But
[11] showed that it is impossible to use it on Ny (u, u,)v; without a smallness
condition on the initial data. It is the reason why we use the diagonalization
technique which allows us to conceal this kind of bad terms by a linear trans-
form. The remainder Ry(v) does not cause any problem that is to say there
exists a constant C' > 0 such that

> [, <3 ot
k=0 ’ k=0

From the definition of N' we see that

1,0

(3.2) N1 (U, Uy, U, Uy ) = (Kou)u + (Kyu)tg + 2(Kst)ug + 2(Kgug ) Uy
(3.3) No(u, g, @, Tg) = Ksu? + (Kyu)ug + (Kgug)tg.
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Lemma 3.1 is achieved by a standard contraction mapping method. To aim
this goal, let us consider the linearized version of equation (3.1) :

(3.4) Lo = Ny (ul, ub)v, + No(ul, ul)o; + Ro(v)
' v(z,0) = (1 — 02)uq,

where the function u! = (1 — 92)v' is defined by the known function v from

the ball B defined by

B = {UT eC' ([0, 7], L(R)); tes[lépT ij TH < 2p,

< 1

l
e O[],

a2 + s, [ 90,0 <.

o telo,1] te] OT
!
32 sup (100717 Pl + 10071740 ) < )
k=
with p = |lugl|s;, i is a positive constant depending on p; v and & are also

positive constants but depending on both p and . p and p will be set later.
The Cauchy problem (3.4) defines a mapping 2 : v = v'. J can be considered
as behaving like the derivative operator 0, since we have the relation for
kEe{l,...,l}:

k k—I1
(35) jk(¢1/)w—m) — Z Z(_l)ll (i) <k l_2ll> jkf(l1+l2)¢jl21/) Jllww,

[1=0 \l2=0

where 1, ¢, w, are functions such that J"'¢, Jhe¢, J"w, have meaning
for 0 <[y < I. Hence by a classical energy method one has from the first line
of equation (3.4)

4 Jotoo] < oot

It implies

(3.6) sup ij )H < p+VTC sup HJ v (¢

tEUT tGOT

where time 7" > 0 is choosen to be small enough. In order to obtain estimates

[
of the norm Z HJ o (t) H we apply the so called “diagonalisation technique”
k=0
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to get a system of equations such that the smoothing operator defined in [11]
can be applied succesfully.

For k € {0,... ,1} we apply 0,J% to the first line of equation (3.4) and define
hi = 0 T*v and v, = J*v thus one has

10thy, + 02y, :Nl(uT,uI;)axhk + (—l)kNg(uT,uL)axH
(3.7) k-1 R — i ; ,
+ 3 Cry(ul, ul)d (hy) + T*Ro(v7) + Ry, (v, v),
§=0

where the coefficients Cy, ;(u', ul) are computed by equation (3.5) and
Ry(vf,v) is bounded in the way

< oo
j=0

We define now the derivative operators :

ap = Nl(uT,uL)BI , by, = NQ(UT,’U,L)aI , Chj = Ck,j(uT,u;)am.

HRk(’UT,U)

|1,0'

k .
RN
1,0 =0

So equation (3.7) can be rewritten in this way for 0 < k <1

k—1
1y, + (02 — ag)hi — bph — Y crjh; =7
-
. o ’ k—1
Wihy + (=02 +ap)hy, + bghy + > crjhy = —TF,
j=0

where 1, = J*Ry(v") + Ry (v, v). If we define

hy v T

hy u Tl
h= | : [, v= | : | and R=

ho Vo 70

ho 7o 7o

The previous set of (2] 4 2) equations gives the existence of a (2 4+ 2) matrix
operator G such that the equation :

(3.8) 10h+Gh = R.

Precisely G is considered as a (I 4+ 1) matrix operator whose components are
2 x 2 block matrix :
For two integers 0 <1,7 <1
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e if j < i then giyj = 0,

2 _ . b
o if j =i then G ; = (+axbl o ) iﬁw)
-t T -1
—Lt=]

It means G is

(3.9)
% —w —by 0 —cu1 0 —co
b —(9% +a; Cli—1 0 o 0

0 ( 0 —c1,0>

cio O
(9% — Qo —b()
bo -0 +ag
We define now our transformation operators : for k € {0,... ,l}and k < j <1
1 —5by.0; 1 3be0,?
_ - 2 T r_ _ 2 T
Ak = <—lbk8_2 1 ) ’ Ak (lbka_Q 1
2 T 2 T
(3.10) ,
Q J— 0 Ck’]a; ! — Q .
kjg = %652 0 ’ kg — ~fkg-

Then A and A’ are the transformation operators (to be considered as a (I +1)
matrix whose elements are 2 x 2 matrix) defined by : for 0 < j,k <1

e if £ =4 then Ak,j = A;_; and A;c,j = AE—k?
e if j <k then Ay ; =0 and A;C’j =0,

o if K < jthen Ap; = Q4 ; and A;c,j =

I—k,l—j>
Ay Qg - Qi Ay e Qg
A= : and A’ = . /
0 s 0 A

We apply the operator A to equation (3.8)
(3.11) 1 Ah + AGh = AR + 18, A]h.
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The next step is not the explicit calculation of the commutator [A, G] as it could
be expected because it leads to heavy calculations. The direct computation of
the matrix product A’A show that it can be expressed as A’A = I — W where
I is the unit matrix and W is a non threatening matrix operator (it means
that W satisfies |[Wh| < C(||h|| + ||v]|)). We show now this point. We write

NN Ky - K

AA =
K
0 AjAo

Given k € {0,... ,l}

v (1 0 (1bk0; %00, 0
we= (o 9) = (0" o)

One has
brOy 2bp 0y 2hy, = NQ(UT,U;)Gx_lNQ(UT,UL)Uk.
Then
ku6;258x_2th < HNQ ul, ul)oy (Vs (ut, um Uk H
< T
65.12) < [10; ' Vol ub)or) oo | Mol )
< Jlowl [Nl ud) | [, ul)
< C(p) ||l -

Therefore the diagonal terms of A’A are harmless. Let us pay attention to the
other terms. Standard matrix product’s rules show that for any i € {0,... ,[}
and for any j € {0,...,l — 1} satisfying j > i
i—(j+1)
Kij=AQus+ Y Qi Qg+ Q0

k=1

For any k € {1,... ,i— (5 + 1)},

Q. Q= 0 —Cii—k0; 2 0 —¢; ik 05>
ii—kSti—k,g _Ci,ifkag?Z 0 _Ci,ifka;2 0

2 o 2
—Ci,i—k Oy “Cii—k 0y
0 .

0
! 2
—Ci,i—k0y “Cii— 10y
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So the next inequality is proved in the same way as in (3.12)
i k0 (€ k0y *hi) || < Clp) llvill -

Hence Q). ,€;_ ; is harmless too. By definition

10 0 ko=

So
NQyj + QA =
, 0 b9y 2 , 0 _b9;?
(Qi,j + Qi,j) + b0 (2) Q5+ Qz’,j hog? 02 .
2 2
As Q” = —;; and the estimations Hb@ (€705 %hi) H < C(p) ||vi|| and
Hc,] 2(b;0,%hy;) H C(p) |[vill can be obtained as (3.12), Aj€;; + € ;A%
is harmless too. If one defines W by
Wi K1 -+ K
W ) ) :
Kip
0 W
where
—1b:072b;02 0
J— 47)%x Y%z o
Wi < 0 —%bjf?mzbjaﬂ) ’

then above estimations imply that A’A = I + W where W satisfy [|[Wh] <
C(p) ||v||- This identity is substituted into (3.11),

(3.13) 10;Ah + AGA' Ah = AR + AGWh + 4[0;, A]h.

One by one, it is aimed at proving that all the terms in this equation are
harmless and we want to transform it in an equation where the Schrodinger
operator is obvious and where bad terms like J*h, are explictly excluded.
The next term to estimate is [0;, A]. We start by estimating its diagonal terms.
For k € {0, ... ,l} one has

04 () 0y hy, = (—1)F O (N (ul, uf)) 0y g
Then

00005 21| < [N st )| - 105



98

By definition of A5

|t b < Clo) (ot | + |

P-N. PIPOLO

as v is in the ball B, one gets

Then

loaut,ub))| < mC(p).

10:(bk) 05 b || < £C(p) |-

)’

Now we turn our attention to the remaining elements of [0;, A]. Once more

by definition of C; j(uf,u}), one has for 0 < j < k

JorCutal b < NS [orrul| + [orrad
s=0

< C(p)k

as ck,j(’);Zhj = Ci,j(uf,u;)(’);lhk, as above one gets

These inequalities lead to ||[0;, A]h|| < C(p)k | k| . The operators B,

are introduced :

and

>

and

B=2I -2A

92 0
0 —02

o (*

0

0

104 (ck, ;)07 %hsi|| < Clp)r ||hyll -

0
—H?

T

)

0
—ag

)

?

B

)

A

,A
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last one is
0_ bl 0 Cll—1 0 0170
—bl 0 —CLi—-1 0 —C1,0 0
B = 0 61,0
_m 0
0 0t
—by 0

So G is decomposed in G = A — A — B. Then

AGW = (I— %B)(A —A-BW

1 - - -
= ([ — EB)(AW — BW — AW)
- ~ - 1~ 1.~ 1 -
= (AW — BW — AW) — SBAW + SBBW + S BAW.
In this equation, the most difficult term to estimate is AW. We consider only

its diagonal terms because estimating the other ones is done in the same way.
One has for any k£ € {0,...,[}

0200 b0y b =((=1) N2l ul)) 05 005 b + (= 1) bibd; >y
+2((= 1) 9, N (ul, ud) b > .

The most annoying term to estimate is
bkaa,;th = Nz(uT ) (NQ('U,T ux)a lhk>
= Nay(ut, ul) (0, Na(ut, ul))v, + Na(ul, ul )Mo (ut, ul) by

Thus
161605 2 b || < C (1) vell + C(p)? || Pl
< (C(u) +C(p)*) vkl -
As
(BN (ul, ud))0rd, 2 = (O Na(ul, ul))No (uf, ul)d, i,
one gets

| @uNaut, ul))Be0, b | < Co) 1l

Next term to estimate is (02N5(uf, um))a 10,0, 2hy. The highest derivative
term in 02N5(uf, ux) is uhyp and if 92(N3) can be considered as a polynomial
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with ulm as a variable, its degree is one. It means that 3§(N2(UT,UI;)) =
u};m f (uT, uL, ujm) where f is a continuous function. Hence by Cauchy-Schwarz
and Sobolev’s inequalities

|OO

@Mt w0, B, h | < Ol b | - 102 Nl o)
< C?||Natul ul)
< CE*C)? o -

N

[0l

From these estimates one infers :
1026405 2b1,05 *hie|| < (Clp) + C(w)) |1 -

It implies HAWhH < (C(p) +C(w)) ||hl|. But the inequalities HBAWh

C(u) || and HBBWhH < C(u) |n|| and HBAWhH < C() ||| are obtained

similarly, it means [[AGWh| < C(u) ||h|. We focus our mind now on A’GA in
order to find a suitable decomposition of this matrix operator. By definition,

\ <

AGA' = (I — %B)(A _B- A+ %B)

1 ~ 1~ -1~ -1 -
.14 =(I—Z= - _R_Z _ A_ =
(3.14) (I = 3B)(A+35AB—B— BB~ A— - AB)

:(A—A)Jr(%AB—B—%BA)JrRa.

where R, is a matrix operator such that |R,h|| < C(p) ||h|l. One can check
that

%AB = %5’ +R, and BA=-B,
where Ry, satisfies |Rph|| < C(u) ||h|| too. Hence (3.14) is simplified :
AGN = (A—A) + Ry + Ry
So equation (3.13) can be written in the following way (R, = R, + Rp):
(3.15) 1WyAh + (A — A)Ah = AR — AGWh + R.Ah +1[9;, A] h.

The diagonalization technique is efficient now : the operator B is not in (3.15)
explicitly any more. It is important to get rid of it because this operator implies
nonlinear terms including d,h;. Classical energy method is not enough to
get a satisfying estimation like [|Ah|| < C(p) + vVTC(u) |||, even though one
applies the smoothing method described in [11], one has to assume a smallness
condition on the initial data in order to make it work. Only the operator Ais
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remaining in equation 3.15 and it does not include bothering terms like 0,hy,.
To deal with this equation and in order to obtain an inequality like the one
described above, we now make use of the smoothing operator defined in [11].
The function ¢ is defined by

1 l
) =5 20 (178016 0 + Pl + 3 17Kl

5
k 2<5<5

+ |JkK6ux(x,t)|2>.

¢ is in the space £ ([0,T];C*(R)) NC* ([0,T); L*(R)) and § is a positive
parameter set later.
w is denoted by

(Za 174! () + | TH b )P + 3 17K, )P
2<j<5

T Kl (2, t>|21)

. C
¢ and w satisty [$l0 < C2, gill < 9L, ol < C2 and [fuf 00 <

)

5
The smoothing operator Sy(¢) = cosh(¢) + 2sinh(¢p)H  is introduced now,
it satisfies all the proprieties described in section 2 (that is to say lemma 2.3

amd lemma 2.4) and similarly S(¢) is denoted by

So()gai+1
S(p)g = : where g € L*(R)?*2.

So($)g0

p is the projection operator defined by : for any x € R?+2

T
T2l—2
px)=|"". s0 p(x) € R,

Zo

Thus equation (3.15) is rewritten in the following way :

(3.16) {Zatmv) + 02(w) = p(AR) + p(Rah) + p(Aw)

w = Ah,
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where Rgh is such that ||Rgh| < (C(p)s + C(n)) ||h||. Therefore applying
Lemma 2.3 to the first line of equation (3.16), this energy type inequality is
obtained :

L5 pw) + s VidTpw)||” < 2im(spw), Sp(AR))
(3.17) 1 2|Im(Sp(w), Sp(Rgh))| + 2|Im(Sp(w), Sp(A))]
+ el (lwlld, + @] + wll0.00 lwlloe + 1l ) (w2

By Sobolev’s inequality

tm(Sp(w), Sp(AR))| < | Sp(w)|| . ||Sp(AR)|
< Pl [Ip(w)| [[p(AR)|
(3.18) < C(p)el?ls . |p(w )|| I

< CwO(5 )||h|| +5 ||p( I

In the same way and by definition of R,

(3.19) [Im(Sp(w), Sp(Rah))| < C(5 P)k In? + 5 ||p( )2,
and
Cel¥l (o, + ]S, + 1wl 00ellwll e + 4]0 ) o ()]

(3.20)
< On ) Il

Since
!
(Sp(w = (Sow, SoNi (uf, ul)d, wy),
k=0

this main term is estimated by lemma 2.4 (for complete details see [11]) :

l
~ 2
(321)  |(Sp(w), Sp(A))| <283 ||Sov/18wi|| + Cl) o) 7.
k=0
Substitution of (3.18), (3.19), (3.20) and (3.21) into (3.17) yields

L Sptw) I + (1 —20) w8V, Tptow)||

(3.22)
< (c)+ 0t + Cc)) (Inw)I? + IF).
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If 0 is set to be § = %, then the energy inequality (3.22) becomes

d
(323 ZlSpW)I” < (CWw)+C(w) +C ) (Ilp(w)I” + 1))
By definition w = Ah or h = w—i—%Bh orh=5"1 (SW + %SBh). One notices

that ||h|| = 2||p(h)||. But by definition of A one has ||w| < C(p) ||h|]. Then
the previous inequality implies

d

pr 1Sp(w)[1? < Clp, vy K)(IVII° + [1]1%),
hence by equation (3.6)

d 2 2 2
(3.24) 7 18p(wW)II” < Clp, v, ) (p°T + 1) |17,

then by integrating (3.24) with respect to time ¢ (S is a continuous operator
in C(0, 7]); £2(R)) so that limy_,0 Sp(w) () = Sp(w)(0))

1Sp(w)()]* < 1Sp(W)(O)[|* + C(p, v, 6) (P*T* +T) sup_|[Ia(7)||*.
T7€[0,T7]

Or h = 57! (Sw + 35Bh), then

[
S Iel® < [|S71Sp(w)||* + C || S Sp(Bh) ||
(3.25) s

< 1S~H1l (I1Spw)I2 + Clp)e ol 1vi))

one obtains

[
Sl < Colp) (I1SpW)II* + Co) Iv1?)
k=0

But

ISp(w)(0)]| < €*1ll= |w(0))?
< C(p) [[w(0)]]
< C(p)C(p) [w(O)]-

From the previous equation, (3.6), (3.24), (3.25), there exists C(p) such that

l
sup Y [[hk(8)]* < Co (Cl(p)+C(p,u,v,n)(T2+C(p)T) sup Hh(t)H2>-
tel0,T] .= t€[0,T]
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If it is decided that u? = 4CyC; and T is such that C(p, u, v, k)(T? +C(p)T) <
%, the desired estimations are obtained :

326 3 [0 <+ Clommand 3 [T < o
k=0 k=0

where lim C(p, p, v, k,T) = 0.
T—0

We want to show now that we can define v such that

l
_ _ 1
S 1007 1T P, + 1000 11T sl g < 59+ Clo i v, T,
k=0

Now from equation (3.4) and lemma 2.1, u satisfies the equation
LT*u = (1-— 3;)_1N1(UT,UL)(..7]€U):1:
+ (1= 0) " Wa(ul, ul) (TFo)e + (1 = 03) 7 T* R(v")

k
(B21) D=8 piu(d,) (Ml ) (TH o), + TR
j=1

k
+ (1 = 027 py (D) Na(ul, ul ) (TFT0),.
j=1

Since 9,05 | T*u|? = 2R (0, T*u - (Ju);), the following inequality is obtained
by mutliplying the previous equation by J*u and taking its imaginary part
and then integration [*_ ---dz'.

(3.28)
10005 | T*ul | o < 20 TFu(T u)sll o +

2 ijuH : {H(1 — )N (uf, ul) (TF),

-t ) (TR |}
+ 22 Il { 0= 227 pps@anial o |

" H&f =) (Nl T | |

+ 2Zk2 |7l - [ = 827 @) T RO | + [ - a7 TF RO

Since (1 — 92)77~'p; 1 (8,) are bounded operators in £2(R) and

l
Z“ij(UT)“ < C(p) and HJJUH < C(p) HjjUH; there exists a positive
k=1
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constant C3(p) depending on p such that
k . -
23" | @ =8 pis(@) T REY| + |- 027 TR | < Calo).
i=1

As

Ni(uf ub) = 0, (Wi, ud) 750) = 0, (Wi (uf u)),

and 9, (N (uf, ul;)) can be considered as a polynomial such that
8.t 0p(Ni(uf,ul)) =0 and araw(/\fl(uf,u;g)) =0, one has

| =a o, (Wil ub) gt

k
< bl || 740

and

H(l — %) 1o, ((Nl(uf,ul))jkv>

<]

The other terms in the right handside of (3.28) can be estimated in the same
way. We have also ||U$Tw||oo < C(p). So that there exist two positive constants
Cuk(p) and Csp(p) depending respectively on p and p such that

2

)

900,17 Pl < Cuilp) + Casla2) + 2|7 0|

then (3.26) and the previous inequality imply
18:0; 11T *ul?ll e < Cap(p) + Csk (1) +2p + Clp, v, T)
where

Hm C(p, p,v, T) = 0.

Since (J"*u), satisfies

L(T*u)z = 85(1 — 35) "' Wi(u!, ul) (TF0),
+0,(1 = 35) " Wa(ul, ul) (T"0)s +8,(1 — )7 T R(v)

k
+3°0,(1 - 82) 7 @) Nl u) (T ), + TEIRW)
j=1
k
0,(1 = 02) 9 p; (0, Na s uf)) (TF 7).

+
=1

J
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As above one finds the inequality

’|8t8:;1|(~7k“)m|2“oo < 2||(~7k“)m“oo||(jk“)m“oo

- { PO [CEARACARAAIR AN }
j=1,2

r23” (.
j=1

+2||(7 ).

{ o= oo g |
+ H(l - 35)*j*1pj,k(3$)/\f2(“t“L)mu }

o

j=1
n H(1 _ ag)*lij(vf)H.

I ALt

Thus there exist two positive constants Cs i (p) and C7 5 (1) depending respec-
tively on p and p such that

2

1007 (TPl < Colo) + Cra) +2 |70+ (7o)

Therefore

l
> (100717 uPll o + 1007 1(T )l ) <

.

Bl
(=)

(Cap(p) + Cs (1) + Cop(p) + Cr (i) +2p+ 214 Clp, p, v, T).
0

=
Il

!
Now v is set : v = 22(6’4,19(,0) + Cs (1) + Co i (p) + Cr (1)) +4(p + ). In
k=0
order to show that our Cauchy mapping (A) is such that 24(8) C 9B the only
remaining taks is to show that

1
S C'(p,,u, v, K’)Ta

S ot + o] < &
k=0

for a suitable k. Now for any k € {0,... ,l}, according to (3.27) and (3.28),
Jku satisfies the equation

10 TP = -2 T u + (1 — 82) 71 P(vf,v),
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where P(v',v) is such that

HP(’UT,U)

k
< C(u) Y Ikl
5=0

Then

|0 ul| < Ivil+ C ) Im1-
From (3.26), one has

HBJ'“UH <p+pClp) +Clp, p, v, K).
Since 9, (J"%u) satisfies the equation
Zatax(jku) = _8gjku + am(l - 3%)71]3(@%,”),

as above, from (3.26), one has

010,(T*u) | < 11+ C () 111

Hence there exist two positive constants Cg 1 (p) and Cg j () such that

|00, (T*w)|| + [0n7"]| < Calo) + Colrn) + Clpy v, ).

l
If we set kK = QZ(Cg,k(p) + Cy 1 (11)). Then we have
k=0

[
1
> oo u)| + o u)| < 5+ Clopvw, ).
k=0
Finally we have obtained the inequalities :
4 l 9
k 2
> HJ vH < p° +Clp, p,v, 5, T)
k=0
!
> Jit.
k=0

i (HatjkuH + H@t@m(jku)H) < %F& + C(p,p, v, 6, T)

2
< p?

l
1
> (11007117 P g + 10,05 1(T* el ) < 57+ Clpup v, T),

\ k=0
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where limp_,0 C(p, u,v, 5, T) = 0. Then one infers that there exists a time
T > 0 such that the mapping 2 transforms the ball B into itself.
The next step is to show that 2 is a contraction mapping. Let v and & satisfy
vt € B and ot € B, we define v = Av' and & = Ast, g = & — v. By definition
g satisfies the equation
(3.29)

Lg = Ny(al, i) gs + No(at, al)gs + (Nl(m,ﬁl) - N1(UT,U:JL)) Vg

(NQ(UT um) Ny (uf, um)) vz + Ro(57) — Ro(vh).
9(z,0) =0.

We apply the operator J* for k € {0,...,l} to this equation and we want to
obtain estimates on all the terms which does not include g, or g, like

H(V(UT,U};) — (i, @}))vy HUTUTH

This is the most difficult term to estimate in equation (3.29). One can check
that the operator J satisfy the relations :

T (pYw) = T ()Y + pyp — dip T (w)
I (K(jw]*)p) = K(lw*) Ty + K'(|w]*) @Tw — wTw)p,

where K € C*(]0,+00);C). It means that J behaves like the usual deriva-
tive 9, for nonlinearity of the type K(|w|?)¢u. We want to calculate

J*(K (Jw?|¢). The usual calculus rule says (for a proof see for example [15]) :
for g € C’(R,R) and f € C7'(R;C), y €N

1
s_ Z —Jtg...0)%g.

71+...+’Ys ’YI ’y
i1

(3.30)

a1 f(g

ii M<

In our situation, ¢ = |w|?> and f = K. Thanks of (3.29), we can apply
this relation to obtain J*(K (Jw?|¢), because it tells us that one can use the
Leibnitz formula with dg = WJw — wJw. Thus for any v € N

g= Y (-)™

Y1+y2=7Y

j’yle’h

1 ly2!

We define Z? by
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It implies for m € N

Somd
I™ (K (lw)p) =" ﬁjm‘"z/)
n=0 !
n !
X SKO() > o 2 w) . 20 (w).
s=1 ’Yl+...~|>»f{8:n ’}’1 . ’YS'
YiZ

Then by definition of A7 and N> it is possible to make an explicit calculation
of J¥N. For example

k k—ki1 ko

7 (i Pbyube ) = 32 30>

k1=0 ko=0 s=0

Ik — | —s)In!~4! |
ATt e kil(k — (k1 + k2))! (k2 — s)Int gl oyl
YiZ

Xjk k1+k2 jklu jk2 Sqp - Z’Yl( ) ,,Z’Ys(uT)_

Then there exists a positive constant C(u) such that

Hﬂ(mwmm Db, ) - 7* (sl Prududo) | <
k
(1) Y 1T%3l + C () 1 Ko (|at?) — Ko (ju )|
s=0
1K (Jut]?) — Ko (u?)[| < sup  [KG(2)] - [luf? = uf ) o

z€[0,max(lut |12 [lut]|2,)]
Asuf € B and ul € %8, one gets by denoting gt = ot — ot
Mo (fut?) = Ko(u" D)o < Clo) o

It implies

HJ( s(lut Pyub)ubv, — (Ko(ju' Pu u$UI>H<C )(1+C(p ZHJS 1.

One can obtain samely

(mm+amamfijw
5=0

7% (Kt Py b, = (ol Py %%Ns
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The following inequalities are obtained in the same way :

Z 7% (Nt ) — A5 ) o WY 17l
s=0

and
|7# Ral6") = Ra(w))| < Zumu

Considering the function g similarly to the function h, one obtains from (3.29)
as above by using the diagonalization technique

S st + 0 - o) |wsivBats| <
=0

l
(C)+Cw) Y (1751 + 1751l

k=0

Therefore integrating the above inequality with respect to time ¢ and choosing
a suitable ¢, on a sufficiently small interval T' > 0, we get the desired estimate

sup ZIIJ’“QH <C(p Ttsflp ZHJ’“gII <1 3,5 ZHJ’“QII

tE[O, } k=0

Thus the transformation A is a contraction mapping. Therefore there exists

a unique solution u € C ([O,T];H2’0) of the Cauchy problem (A) such that

JT*u € L® (0, T; ?—[3’0) for any 0 < k < [. This completes the proof of Lemma

3.1. ]
Proof of Theorem 1.1  Using the identity

= M(2itd,)'M

-1 I—k

Zk' —k)! Do (=P () | (2it0,) u + (2it,) u
k=0

l
5[2

where Ps(X) is a polynomial of degree s with time independent positive coef-
ficients, we get the estimate

26| (2} 0

\su< gt e E e ) o

(H )Tk + el
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Hence the result of Theorem 1.1 follows. O
The author would like to thank the referee for his comments and Pr. Nakao
Hayashi for his advices.
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