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Abstract. Amari showed that the geometry of a family of probability distri-
butions is characterized by a dual differential geometry determined by a couple
of affine connections and a divergence associated with a couple of dual potential
functions. In this paper, a 2-parameter class of dual differential geometries is
constructed on the manifold of the family of multivariate Gaussian distribu-
tions with nonzero means, as well as a new class of divergences. This class
of geometry includes the Riemannian geometry studied by Skovgaard and the
geometry associated with the Kullback-Leibler information. The specific dually
flat charts for the latter geometry is given in conjunction with a detailed analy-
sis of the associated connections. In order to facilitate the various calculations
of differential geometric quantities in the analysis of our geometries, we intro-
duce a new coordinate free differential calculus of a function of a symmetric
matrix argument, based on a specific bilinear form defined on the domain of
the function and its dual space. This calculus enables us to obtain a parallel
formalism of the Legendre transformation in convex analysis even for a function
of a matrix argument.
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8§1. Introduction

Efron [8] introduced the concept of statistical curvature of a one-parameter
family of distributions for investigating statistical characteristics of the family.
Dawid [8, p.1231] interpreted it in the language of differential geometry to
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introduce three kinds of affine connections for use in statistics. Amari [2]
defined a one-parameter class of affine connections, which includes the three
connections as special cases. He noted the importance of a pair of dual affine
connections (V,V*) for understanding the differential geometry of a family of
probability distributions. If a Riemannian manifold (M, g) is flat with respect
to a pair of torsion-free dual affine connections, then there exists a pair of
dual coordinate systems which is associated with dual potential functions via
a Legendre transformation [2,p.80]. The dual potential functions lead to a
divergence which forms a measure of discrepancy between two distributions.
The similar geometry was also studied, for example, by Calabi [6], Chen-Yau
[7] and Shima [15] from a view point of affine differential geometry.

Amari [2] investigated the dual differential geometry of a family { N (1, 0?)}
of the univariate Gaussian distributions and gave closed form expressions for
the dually flat coordinates and dual potential functions. Ohara-Suda-Amari
[13] studied the same geometry of a family { N(0,X)} of the multivariate Gaus-
sian distributions with zero means and obtained the dual potential functions

(1) o = %log(det %) + 5 log(2n),

(2) o = —% log(det ) — glog(%re).

We are concerned in this paper with the family {N(x, £)} of all the multi-
variate Gaussian distributions whose means are not necessary zero. Contrary
to the general expectation [2,pp.84-88], the dual differential geometry conceiv-
able on this family of Gaussian distributions is not unique, because there are
arbitrariness in modeling the interplay of u- and X-coordinates. In fact, we
construct, in Section 3, a 2-parameter class of dual differential geometries on
this family of distributions, each of which is identified by a pair of charts, a
bilinear form defined on the charts, a pair of potential functions,

1 1
(3) P = E,UTE_I/L + 3 log(det ) + g log(27),
and
1 1 -
@ = 5= DTS Llog(det ) — Dlog(2ne ™).
Y

and a corresponding divergence. In particular, we define a new set of di-
vergences which includes the Kullback-Leibler information. Both potential
functions contain additional term, u” 714, which determines a dual differen-
tial geometry specifying the interplay of y- and - coordinates. The functions
¢o and ¢g,, (0 < B, 0 <y, 0< g < 1), are convex in p and ¥ and the
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function v is concave in Y, but the function 1 is neither convex nor concave
with respect to (u,X). This 2-parameter class of geometry includes both the
Riemannian geometry studied by Skovgaard [16] and the geometry associated
with the Kullback-Leibler information quantity which we deal with in Section
4. While the divergence induced by the former geometry is a metric function,
the divergence induced by the latter geometry is a pseudo-metric function.
Every geometry in this class induces a relative geometry on the subfamily
of multivariate Gaussian distributions with zero means . All the geometries
thus induced, however, are essentially identical to the unique geometry on the
subfamily treated by Ohara-Suda-Amari [13].

One might suspect that it would be rather trivial from the arguments of
Amari [2] and Fujiwara-Amari [9] to obtain the dual differential geometry on
the distributions with nonzero means. However, on top of the above mentioned
lack of uniqueness of the geometry on {N(u,X)} ( See Section 3 ), a direct
application of Amari [2,pp.80-88] and Fujiwara-Amari [9,p.318] leads to the
divergence which doesn’t conform to the Kullback-Leibler information because
of the definition of their bilinear form ). j ©;;H;; defined for two symmtric
matrices © = {0;;},H = {H;;}. In order to give a dually flat structure
which is associated with the Kullback-Leibler information , we must choose an
appropriate bilinear form and define a pair of the dual potential functions by

1 1
P = EMTE_IM + 3 log(det 3) + g log(27),
and
1 n
(5) p1,1 = —3 log(det ) — B log(2me).

In this specific case, our dual potential function ¢;; reduces to the same
potential function (2) which does not contain the component, p' %=1 .

In Section 2, we develop a new differential calculus of a function with a
symmetric matrix argument for facilitating the analysis of the dual differential
geometry. In Section 3, we construct a 2-parameter class of dual differential
geometries of the Gaussian distributions {N(p,¥)} with non zero means and
derive the associated set of new divergences between two probability distribu-
tions. In Section 4, we single out one differential geometry which is associated
with the Kullback-Leibler information and analyze it as a typical geometry in
the 2-parameter class.

We use the following notations.

R"™: Vector space of all the n dimensional column vectors

I: Identity matrix of appropriate size

XT: Transpose of the matrix X
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Tr(X): Trace of the matrix X
M (n, R): Vector space of all the n by n real matrices
&, Vector space of all the n by n real symmetric matrices
&, (6,)): Cone of all the positive ( negative ) definite matrices in &,
N(p,X): The Gaussian distribution with mean p € R"™ and covariance ¥
p(x; 1, 3): Density function of N(u, ) with respect to the Lebesgue measure

N: Set {N(p, X)} of all the multivariate Gaussian distributions

§2. A Differential Calculus of a Function with a Symmetric
Matrix Argument

In order to manipulate the differential geometric quantities in the following
sections, we need to differentiate functions with respect to a symmetric ma-
trix argument. There have been extensive literatures [1,12,13,14] on various
differential calculi of functions with a positive definite matrix argument. For
example, Rao [14] has the formula

® o

for the derivative, where X, is a symmetric and positive definite matrix and
diag(X;!) is the diagonal matrix of diagonal elements of X;'. Anderson-
Olkin [1] has the formula

log det(X,) = 2X, ! — diag(X, 1)

S

for the differential, where X, is a symmetric and positive definite matrix,
Xs ={X;j} and Xf] is the cofactor of X;; and d;; is Kronecker’s delta. These
calculi which are essentially obtained through ad hoc examination of individ-
ual matrix elements are inappropriate for us to construct a dual differential
geometric structure on the family of multivariate Gaussian distributions with
nonzero means. Their calculi, in fact, are closely associated with the inner
product >, j ©;;H;; , which is not suitable for accommodating the space of
positive definite matrices in our analysis. In order to faciliate the construction
of the dual differential geometry which is consistent with the Kullback-Leibler
information, we adopt the same bilinear form < ©, H >= Tr(©H") for both
symmetric and general matrices.

Definition 2.1. Let © and ©* be subspaces of R" x M(n,R). We define a
bilinear form <,> on ® and ©* by

(8) < X,Y >=Tr(zy’ + XY7).
where X = (z,X) €D and Y = (y,Y) € D*.
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When the matrices are symmetric, this bilinear form amounts to the sum
of a weighted sum of products of independent matrix elements and the usual
sum of the products of vector elements. For use in statistics, Rao [14] defined
two different kinds of differentiations, which include the formulas (6) and

9) BiX log(det X) = X1,

respectively for the function with symmetric matrix argument and with gen-
eral matrix argument. We would like to emphasize that there is no need to
make this distinction and we should use essentially the same differetial calculus
shown below for both cases. Taking advantage of the induced bilinear form on
the subspaces of symmetric matrices, we introduce the notion of differentials
and derivatives with respect to a symmetric matrix infinitesimal increment
without recourse to the usual elementwise differentiations.

Definition 2.2 (differentials). Let f(X) be a real valued function defined
on a smoothly imbeded submanifold O of R" x M(n, R). When, for any 6X
such that X + 06X € O, the difference

O0f = fz+ 0z, X +6X) — f(z,X)
has an asymptotic expansion of the form
(10) of =8 f +o(|l6X 1),

where 0() f is a linear function of X and ||6X| is the norm defined by the
bilinear form (8), then 0V f is called the first order differential of f with
respect to the manifold O.

Definition 2.3 (partial derivatives). We define partial derivatives 0Oyf
and Ox f of f with respect to the manifold O by

0 f =< (0xf, 0x f), (62,6X) >,
where 0, f € R" and dx f € M(n, R).

Note that our derivatives depend heavily on the choice of bilinear form given
in (8). We can derive Rao’s derivatives such as (6) by replacing Tr(XY7) with
ZiSj X;;Y;; in our definition.

Definition 2.4 (symmetric partial derivative). When infinitesimal in-
crement 60X is a symmetric matrix, dx f is taken to be a symmetric matrix.
In this case, the derivative is denoted by 0% f, i.e.,

[(0x f) + (@x )],

N —

oxf =
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Proposition 2.1. If f is a function of a symmetric matriz X, then

(11) Oxf=0xf.
In this case, the differential of the function f s given by
(12) Wf =< 5% f,0X >.
Proposition 2.2. Let x be a vector and let X be a non-singular matriz. Then
we have
(i) 6 (det X) = (det X)Tr(X~16X),
(i7) 6 log(det X) = Tr(X~16X),
(i1i) oW (z"X'z) = Tr(X "oz + X 'zé2”) — Tr(X'zz" X~16X),
(iv)  0W[Tr(AX)] = Tr[A(6X)].

Proof.  We give the proofs of each case.
(7) §(det X) = det(X + 6X) — det X = (det X) det(I, + X 16X) — det X
= (det X)Tr(X~'6X) 4+ O(||6X]?).
(i7) dlog(det X) = log[det(I,, + X ~16X)]
=log[l + Tr(X 16X) + O(||6X|*)]
=Tr(X'9X) 4+ O(|6X|?).
(4%1) ST X 1z) = (z 4+ 02)(X + 6X) Yz +0z)T —2TX 12
= Tr(X tdea” + X todz?) — Tr(X tzzT X 1dX) + O(|6X|?).

(iv) This follows from the linearity of Trace map.

Corollary 2.3. Let X be a non-singular matriz. Then we have

(4) Ox (det X) = (det X)(X~1)7T,

(i) Ox [log(det X)] = (X )T,

(4i)  Ox(x" X 'z) = (X HTz2T (X H7T,
(iv) OxTr(AX) = AT.

Proposition 2.4. Let X be a non-singular symmetric matriz. Then we have

(7) 9% (det X) = (det X)X 1,

(i7) 95 [log(det X)) = X 1,

(1) 05 (2T X 1) = - X LlaaTX 1,

(iv) 0xTr(AX) = A. ( A:a fizred symmetric matriz ).
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Higher order differentials are defined recursively.

Definition 2.5. The k-th order differential 6%) f of f is defined by

k—1
~ 1 1 ~
0f(X) =) 500 f = 0@ f +o(l0X ).
247 !
for k=23, ...

We note that the relation 6) f = §(1)(5(-=1 £) holds for certain functions
treated in Section 4. Due to the new formalism of differentials and deriva-
tives defined in this section, we can avoid tedious elementwise computation
of tensors in handling various differential geometric quantities in our analysis
through our coordinate free arguments. Compare the treatment shown in the
following sections with the arguments seen in Anderson-Olkin [1], Mitchell
[12], Ohara-Suda-Amari [13], Rao [14], Skovgaard [16] for example.

§3. Two Parameter Class of Dual Differential Geometry

We are concerned with the family 91 of multivariate Gaussian distributions
whose density function is given by

(13)

p(z; p, )
el e )

1 1 1
= exp{—gacTE_lx + 'y — 3 log(det ) — E/J,TE_I/L - glog(%r)},

where z,u € R™ and ¥ is a symmetric positive definite matrix.

Following Bandorff-Nielsen [4], Bandorff-Nielsen and Bleesild [5] and Amari
[2], we define a potential function 1) defined on the manifold 9 by the cumulant
transformation of (13). The function 1 is represented in terms of a chart
E=(u2) as

1 1
(14) ) = §TT(271,U/J,T) + 3 log(det X) 4+ glog(%r).

Contrary to the general belief ( [2,pp.80-88], [9,p.318] ) that the @ = £+1 con-
nections in the information geometry lead to the Kullback-Leibler information,
we construct in this section various dual differential geometries whose o = £1
connections don’t necessarily lead to the Kullback-Leibler information. Since
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log(det ) is a concave function of ¥ and Tr(X~'uu’) is a convex function of
p and X, the function ¢ (u, ) is neither convex nor concave. There could be
many possible charts on 91, with respect to which the function ¢ becomes a
convex function. For each choice of such chart, we can construct a dual chart
and the associated dual potential function which are related by the Legendre
transformation ( See Amari [2] ).

In this section, by choosing a special class of charts

(15) g,
NN, %) = Op = (05,,05,) = (B3 11, (25)7) € Dy, = R" x &

for the potential function 1, we construct a 2-parameter class of dual differ-
ential geometries which includes both the dualistic geometry ((3,v) = (1,1))
associated with Kullback-Leibler information and the Riemaniann geometry
((8,7) = (0, 3)) proposed by Skovgaard [16] as special cases, where the frac-
tional power of a symmetric positive definite matrix is defined by the Dunford-
Taylor integral ( See Kato [10] ) as

o “5(A—©) tdx

S

~2my/—1 Jr
1 0 —7msyv/— TSV — —s —

:m/ (e-™VT _ emsVTI) (L)) 5 (AT — ©)~LdA

sin(ms)

= / A 4+0)7 N, (0<s<1),
0

™

where the integration path I' runs from —oco to —oo in the resolvent set of
O, making a turn around the origin in the positive direction. The values of
A% should be chosen in such a way that A™% > 0 at the point where I' meets
the positive real axis. The second equality of the equation (16) is obtained by
reducing the path I' to the union of the upper and lower edges of the negative
real axis.

We represent the potential function 1 with respect to each charts indexed
_B+1

1
-= ]
by (8,7). From the relations ¥ = %G)ﬁ; and p = 2*%®ﬁ 727 05, we have
the representation,

(17) Vg, = 1/)(3(?);,7(@5,7))

_B8 1
0,0 < )+ )

Proposition 3.1. Let 0 < 8, 0 < v and let g < 1. The potential function

\ilgﬁ is a convex function with respect to (05.,0p3.).
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For proving Proposition 3.1, we employ the following Lemma due to
Lieb [11].

Lemma 3.2 (Lieb). The function from &} x M(n,R) to the non-negative
reals R U {0} is defined by

(18) SFx M(n,R) > (X,Y) — Tr[X PYTX %] € RT U {0}

is jointly convex in (X,Y) whenever 0 <p, 0<qandp+q<1.

Proof of Proposition 3.1.  1If we put X = Og., € G}, YT = 0s~ O] €

M(n,R), where O is an n by (n — 1) zero matrix, and p = g, g = 0in
_B

Lemma 3.2, then we find that the function Tr(@/ggﬁgﬁﬁ%’v) is a convex func-

tion in (03,,03,). The function —% log(det ©4,,) is obviously convex in
©g,. Hence, we obtain the result.
]

Let D, = {03y, Hay) € B X &, | 09\ Wy = 15,7, 08, sy = Hy s}

Since the dual potential functions \I/g ~ and <I>g ~ are convex on Dg , and D7 By
respectively, we can define the Legendre transformation between the spaces
Dg, and @2 , as follows.

£/877 : Qﬂv'y 2 G)ﬁfy = (QﬁfY’ G)ﬁfy) = (nﬁfY’Hﬁ,'y) = Hﬂ:'y € 92,7

By using this Legendre transformation, we derive the dual map 3’1% for each
Y
member of the 2-paramater chart.

Lemma 3.3. Choosing an Jg__ map,
By
(19) jém : NM—Dg, =R"x &)
_B+1 _ ~
N(p,X) — (5777 1, (25)77) = (05,4,08,) = Op,9,

we have the dual map jﬁﬂ o

(20) iy, @ N— D5, CR"x &),
N, %) — (g, Hpy) = Hp 1y,
where
Bs=1
Moy =52 W,
1 —(B+1) gin (8™
Hy, =l 2 )
7,)/ ,-Y 7r

o0
x/ ATIEE)T 4 AT S e (28) 7 AL A
0

f0r0<ﬁ,0<'yand§<1.
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Proof.  In order to derive the dual chart, we calculate the differential of
potential function.

5\ijﬁ77 = @5,7(0577 + 50/877’ 6/677 + 5®ﬁ77) - \~Ijﬂ77(9ﬁ777 G)ﬁfy)

From the equation (17) we have

5@»3,7

. (B

sin( = o0

_ 2(ﬁ+1>Tr[—M/ /\’g(e)ﬁ,v + A1) 1005, (0p, + AT) " 'dN0s 0]
0

™

1 N
—6¢, _[log(det ©4,,)] + O([10054 ).

8
T T T

By the formula log det(X + 6X) = logdet(X) + Tr(X~10X) + O(||0X|]?), we
have

- _B
005, = Tr[2’ﬁ®ﬁ ;0[,,750[27

. Br
sin(=F) [
+1{- 1 /0 A 1(Og, + AI)flgﬁﬁgﬁﬁT(@Bﬁ + ) tdA

™

1 -
= 57931905, + 01865, 1.

Therefore, we obtain

(21)
Hﬁfy = (nﬁfY’ HB:'Y)
_B 1 sin(4x)
_ (o-8 _ T o1 _ 9—(B+1) 9l
= (270,105, | 27@@7 2 .

oo 8
X / A (O + M) 105,057 (O, + M) dN) € R" x &,,.
0

O
In order to construct the dual potential function defined on the space Dg
with respect to ¥, we prepare the following two Lemmas.

~ ~ _B
Lemma 3.4. Let © = (0,0) € R" x & and h(0) = Tr(© +00T) with
0<n, Ogﬂandggl, Then we have

_B
9ph = 20770 € R",
1

& h =
" T onrv/—1

[ AT (AT —0)196T(\ T — ©)~ldr € &,,.
r
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Proof. We consider the differential of the function A and we find its
derivative by the definition 2.3.

Sh = h(6 + 56, ®+5@) — 1(6,0)

=Tr| (A —© — 60) Ld\(6 + 60)(0 + 66)T]

Py Al
—Tr[ 27r\/_
Since [(AI —0)—60] L = (AI-0) 1+ (M- 0) 150N\ -0) L +0(]|60]?),

we have

el >\I 0) LdreeT)

6h = Tr| -5 (AT — ©) LO(A — ©) LdrgeT]

PETEN

+ Tr| -5 T (A — ©)71dA (050" + 606T)] + O(||60|%).

e RN

Hence, we obtain the result.
O

Lemma 3.5. Let (0,0) € R" x G} and let X =07, (0 <~), and

27T\/_/ (A — X)00T (AT — X) " td\ with 0 < 8 and g <1
Then we have the pairing between X and Y as
(22) <X,)Y >= —éTr(@ﬁooT).
Y

Proof.  In this case, since the bilinear form < X, Y > is Tr(XY), we
calculate the trace of matrix XY.

Tr(XY)=Tr[X -5 (M — X)7L90T (AT — X)7d)

et

oT M — X)) LX (O = X) '0d)
2wr/ )X - X)

=07

27“/_ -5 (A = X)TP X (M — X)7'd)N)e

27r\/_

Here, by employing the Cauchy’s 1ntegral formula, we have

(—é +1)0° =

¥ 27r\/

Hence, we obtain the result.

=07

AT AT = X) 20 — 676°%.

A"“ A — X)~2d).
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Corollary 3.6. Let O, = (05,4,05,,) and Hg ., = (15, Hp,,) be defined in
Lemma 3.3. Then we have

- - B B n
< Opy, Hpp >=(1— E)TT(Z Lup”y — —.

From Lemma 3.4 and Lemma 3.5, we have the dual potential function Cf'gﬁ
corresponding to the potential function ¥g .

Proposition 3.7. Let @5,7 = @M(j}% (I:Igﬁ)), where

Y

1

1 _
by = 5(1 B)Tr(Zflu,uT) ~3 log(det ) — glog(27r67 1).

v
Then the potential function &)577 coinsides with < (:)5,7, 1:1577 > —\Tlﬂm 1.€.,
@ﬂv'y =< ®ﬁ777H/677 > _\11/677
Proof. We only have to substitute the result of Corollary 3.6 into the
relations
@ﬂv'y =< ®ﬁ777H/677 > _\11/677

O
We note that the relation between two potential functions Cf'gﬁ and ¢g  is

Now we can construct a general divergence for each dual geometry in the

class. Let ©y = 3(;367(N(u2, %)) and H, = jﬁg 7(N(ul, ¥1)). If we define a
divergence by ’ ,

(23)  Divgy(N(p2, S2), N(u1,51)) = Up4(02) + &5, (H1)— < Oy, Hy >,
then we have

Proposition 3.8. The divergence Divg, between the two distributions
N(p1,%1) and N(p2,X2) is given by

Divg (N (2, E2), N(p1,21))

1 _ 1 det X9 1 ﬁ _ n
= —Tr (25 tpopd) + =1 —(1=TrE el - —
5 (35 u2u2)+2 0g<det21>+2( 7) (57 pipy) 2
R X 1 _
—Tr(3,* %, * M2M1)+%TT(E¥227)
_B+1 ]
_o9-B+) T2
Hy 2 (27r —1

+1

x /A‘gw—(221)‘7]‘1(222)‘%[—(221)‘”]‘%)21_ aE
r
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which satisfies the inequality,
Div,@,’y(N(lj'Qv 22)? N(Mla 21)) > Oa
where the equality holds if and only if (p1,%31) = (2, X2).

_ Proof.  Substituting the pairing < ©,, H; >, the dual potential functions
U3, and @3, into the definition (23) of divergence, we obtains the result.
]

We will identify each geometry of the 2-parameter class by

O, ((Ta,,,+D8a)s (i, Dhiy)s <o), W @y, Divg)-

The 2-parameter class of geometry includes a couple of important geometries.
One is the Riemannian geometry studied by Skovgaard [16]. It is given by

putting (3,7) = (0, 3), ie.,

T (N(u1,S1)) = (3, %, (251)3),

[V

N

~ ~ 1 _1 1
O1, Hy >=pi{ B7 ° 5, 2y — Tr[(251) 2 (28,) 2],

<
1 71 1 n

b =g B+ 5 log(det £4) + 3 log(2),
. ~ 1 T n
(i.e., \Ilo,% = §T'F(00,%90’%) — log(det @0,%) +5 log(m)),

1 _ 1 n
Go,1 = i By 2 — 5 log(det Tp) — 7 log(2me?),

2
.= 1 T n 2
(i.e., b1 = §Tr(770,%1707%) - log[det(—HO,%)] +5 log(me?)).

N

)

) 1 _ 1
Divy 1 = g1 ' + 5 log(det 31)
1 _ 1
+ 5#522 L — 5 log(det »)
1 1
— WS 7S, 2y + Tr{(281) 72 (25)2] — n.

There isn’t an interplay of the variables 007 1 and 90, i

Skovgaard [16] considered the same geometry from a point of view of the Levi-
Civita connection associated with the Fisher information. The other geometry
is the dual geometry which leads to the Kullback-Leibler information. We will
discuss this topic in the next section.
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84. Geometry Associated with Kullback-Leibler Information

In this section we single out one ((3,7) = (1,1)) of the dual differential ge-
ometries discussed in the previous section, that leads to the Kullback-Leibler
information, and analyze the associated dual connections ( Theorem 4.9. ).
For convenience of notation, we write ©;; and D7 ; as © and ©* in this
section. Let M be a Riemannian manifold with metric g. Two affine connec-
tions represented by covariant derivatives V and V* on M are said to be dual
or conjugate [2,9] with respect to g if, for any vector fields X,Y and Z on M,

(24) Xg(Y,Z) =9(VxY,Z) +g(Y, VX Z),

where ¢(Y,Z) denotes the inner product of ¥ and Z with respect to the
metric g. If the torsion and the Riemannian curvatures of M with respect to
the connections V and V* vanish, (M, V,V*) is said to be dually flat.

While we have shown, in Lemma 3.3, general form of the dual charts, we can
now specify the dually flat charts for the dual differential geometry associated
with the Kullback-Leibler information. We define the canonical map Jg and
the moment map J as follows:

(25) Jo ¢ M— R"xG&,
1 -
N, %) — (57", 5571 = (0,0) =6,
and

(26) Jg + N< R"x 6,
N(p, ) — (=S + pu")) = (n, H) = H.
The map Jg is a bijection and the map J is an into-injection. Note that the

sign of our map Jg is different from that of Bandorff-Nielsen [4] and Amari [2].
We have also the following relations.

1 1
(27) n=59 1o =n, E=§@1=—H—7777T,
1 - _
(28) 0= —§(H+7777T) Looo=—H+m") 'y

If we employ the canonical map, then we have

Proposition 4.1. Let ¢(0) = 1/;(361(6)). The potential function 1 can be
written by

(29) B(6) = iTr(@‘lt%T) _ % log(det ©) + - log(r)

which is strictly convez in © = (6, 0).
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Proof.  Let © = O + §0, where Oy € &}, O # 0y € &, and let
0 = 0y + 660y, where 6y, 0 # 00y € R". Since
-1 1
doth=7Tr [607100" + ©~15(00™)] — 50llog(det ©)]

1
_ iTT [—67160007100" + 071 (30,0 + 0561)] — 5Tr(©7150),

we have

27
05 W

=Tr [07'60007'60,07100" — 07160007 (600" + 0567 ) + ©~'50,56; |
— %Tr(eflcseoe)*la@())
= {(6000, 0 — 30p)" O (0090, 10 — 56y) + Tr(0~ 160,07 '600) }
Hence, we obtain 5((:)2)1/; > 0 when d0g # 0 and 46y # 0.
O

Let ® = Jg(M). The function P is defined on D. Consulting Amari’s book
[2], we define the dual potential function ¢ by
(30) ¢="Trn" +OHY) -4+ C
such that
$+ip— <O, H>=0 at 37'(6)=0."(H).
The constant term C of the equation (30) doesn’t appear in [2,9], but this

term plays an important role in constructing the divergence. Under the above
condition, we have

Proposition 4.2. The dual potential function

~ 1
B(H) = — log[det(—H — " )] — 5 log(2me)
1 1
=3 log det(I + H 'nn™) — 3 log det(—H) — glog(%re)
1 1
=-3 log(1 4T H 'y) — 3 logdet(—H) — glog(%re)

is defined on ®* = { H=(nH) eR"x&, |1+9TH >0 }

Proof.  Substituting the formula (28) into the equation (30), we have
- B 1 B
b=n"[=(H +mn")"'n] + Tr{—5 (H + ")~ H]
1 _ _
= Trl=2(H + ") {=(H +nn") " n}{—n" (H +m")~"}]

1 1
t3 log det[—E(H +an") 71 - glog(w) +C.
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We must determine the constant term C of the equation (30), which satisfies

n o n n n n
D D2y P og(n) = =2
5~ 5108 5 og(m) +C + 5 og(m) 5

Hence, we have the constant C' = § log(2).
O
We note that the space ©* is not a cone, but we can consider the domain
D* as a cone when the mean p of {N(u,X)} is zero.
If we define the divergence Div as

(31) Div=y+¢p—<7J (C:)) (H) >,
then the divergence Div satisfies

(i) Div(35'(6),35'(H)) 20, forall © €D, HeD*,
1 1

6
(i) Div(35'(6),3;'(H)) =0 ifand only it 37'(6) =37 (H).

Propositlon 4 3. The potential function q~5(17, H) defined on
D= { n,H)ER"x &, | 1+nTH 'n>0 } is a convex function in H =
(n, H).

Proof.  Let H = Hy + 0Hy and n = ng + dnp, where (dm9,Hy) € (R \
0) x (6, \ O) and (n, H) € R" x &,, such that —H —nn’ > O.
Since 5g)¢ = —%T’)" {(—H — 1717T)_15ﬁ(—H — 7777T)},
we have
0@ p(H)
=Tr[(—H —m")" (6Ho — dnon’” — ndng )
x (=H —m") " (6Ho — dnon” —ndng )] +Tr [(=H —nn™ )~ nodng | -
Hence, we have the result.
O

It is interesting to consider the domain ®* with the metric g* = g) (H) as
a Riemannian space. We note the following proposition.

Proposition 4.4. The Legendre transformation and its inverse are given by
the following equations.

(32) dh=n, i =H.

(33) Oy =0, i = O.



DUAL DIFFERENTIAL GEOMETRY 129

Proof.  From Proposition 2.4, we obtain the equation (32).
Since

86 =$(n+on,H +H) - §(n, H)
= 3 logldet{~H — 6H — (3 +on)(s” + q")}] + 3 logldet(~H — "]

1 )

= — log[det{I,, + (—H — ")~ (=6H —ndy" — dim" — dndn")}]
1 B ~

= LOr{(—H ) O 4 mon® + )]+ (IS,

we obtain the equation (33).
O

The equations (32) and (33) are parallel to the Amari-Nagaoka’s ( [2], p80 ).
Note that this parallel formalism is only possible by our definition 2.3 of deriva-
tive.

In order to investigate the geometric structures between the dual spaces ©
and ®* in terms of the two metrics and the dual connections, we will prepare
three Lemmas by using the higher order differential operators (™) up to the
third order. For later use we introduce the notation O(n) = O(|[6X||").

Since the dual potential functions 1,/; and g5 are convex, we can employ
the second order differentials for the potentials as Riemannian metrics. The
metrics g on © and g* on ©* are defined as
(34) g=0DP(6), gt =0T ¢(H).

Each tangent vector 0y € Tg® and 0 € T7D* correspond to the incre-
ment 60 and §H, respectively. We define two kinds of inner product

Tr[0© 166,067 — © 160,07 1950T — 0950l 0150,
+07150,07100707160, + ©07160,07150,],

« 1 _
g ((Og)1, (31;)2)‘;} = —§T7“[2(H + ") tomond

— (H + ") (6Hy +noni + omn™)(H +nn™) ™!
x (6Hy + dnan™ +néns ).

9((9s)1, (95)2)]

o}
N | =

Then we have

Lemma 4.5. Under the definition (34) of metrics, we have

9((96)1,(96)2) |5 =< (Io)1 < (Fg)2th, 00 >,001 > |5 = 08)(35)9)] 5,
g (0)1,03)2) g =< (0)1 < (B7)2, 0 >,6H; > |, = 64
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Proof.  Since

1 1
07'9)s07 — (59—1 + Ze—leeT@—l)ael],

- [{1(®+5@2) 10 + 005) 1007 — %(9—19)5917’]

—Tr [{5(@ +60,)71

\)

1
Z(@ +602) 710 + 062) (0 + 662)T (O + 60,) 71160,

( o'+ ZefleeT@*l)(s@l] +0(3)

— il - 0 160,071 + 0(2))(860F + 56,007 — lo1g 667
2 2

— Tr[%(e)*l —07160,071 + 0(2))§0,

1
+ Z(@—1 —07150,07 + 0(2)) (007 4 05605 + 5020 + 562663
x (071 —07160,07" + 0(2))§0,

1 1
— 5@*15@1 — Ze)*leeT@*lael] +0(3)

= %TT[@71502501T — 0 150,0719501]

+ %Tr[@*la@Qe)*la@l - %@*105956*1561 - %@*15920%*15@1

1 1
+ 56‘16626‘1007’6‘1661 + 5@—1997’@—15@2@—15@1] + 0(3).
Hence we have
5505 ) = 5Tr[®’169269f — 0 150,0 10507 — © 95670150,
+ 0 150,0 199Te 150, + © 150,0 150,].

In the same way, the second equation can be derived.
O
We next define the two connections associated with the two potential func-
tions ¢ and ¢.

Lemma 4.6. Let © = (0,0), H = (n,H). For any vectors (3g)2, (9g)3 €
Te® and ()2, (07)3 € T®* if we identify two kinds of covariant deriva-
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tives as follows.

T(;)@ > V(aé)3 (8(:))2 < (z,X) € R" x 6,
TyD* 5 Vi, 1, (7)2 ¢ (1Y) € R" x &,

where
X) = (—06030 166y — 60,071505, —60,0 1603 — 6030 150,),
y =—0Hy(H +nn") " ons — (dnan™ +nong )(H +nn™) " 'ons
— 6H3(H + ") onz — (dnsn” +nong ) (H +mm") " ony,
Y = —0Hy(H + ") "Y0Hs — 0H3(H + ") 16 H,
— 6Hy(H +nn")"nong — SHs(H +nn™ )~ "ndn,
— onan” (H + " )6Hs — dnsn” (H +nn" )~ 0H,
— nan” (H + ")~ (5nsn™ +nén3 )
— nan” (H + ")~ (Sn2n” +néng )
— (6m2n™ + oz )(H +nn™) " "nong
— (6nsn™ +non3 )(H +nn™) " "nony
+ dnadn3 + Onzdny ,

then we have
g(v(aé)B(a(:))2? (Og)1) = 5(:)13 (5((:)12) (5((:)11)1]))),

Proof. We first show the equation g(V(aé)g(Bé)z,(Bé)l) =
6((:)3)(62) (5%31/))) From Lemma 4.5 and the facts

1 1
(1) 5(;)3[5%(@—150250{)] = —ETr(e—l(s@g@—léeQaelT) +0(4),

|
(i4) 5(;)3[—5%(@—15@]-@—1950?)]
_ _%Tr[eflaejeflaeg,aef —07150,0 50,0 19567
—67150,07150;07 10807 + O(1),  ((i.4) = (1,2),(2,1)
|

(i) 5(;)3[5%«(@*15@2@*15@1)]

= —Tr(0 16030 160,060 160,) + O(4),
1
(iv) 5(;)3[ETT(®_15®2®_100T®_15®1)]
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= %TT(—®_199T®_16®2®_16®16_1663
— 01907016050 160,060,
— 019070 160,07 16030160,
+ 0 160,01050F0 160, + © 10,0 1663670 150,) + O(4),

we obtain the equation
W 5D (507,
600 (09 (6 élz/)))
1
Tr5(©7 -0~ 'xo7'9)s07
%(—@—lomTe—l +o7'xeo e o' x0T
=9(V(a5)s(95)2, (95)1)

+

We omit the proof of the other equation because it is derived in the same way
with tedious calculations.

O
We recall the Legendre transformation, i.e.,

1 1 1
£ D35(0,0)— (n,H) = (56*10, —56*1 — Z@*199%*1) € D*.

We show that the dual metrics g and g* are transformed each other by the
Legendre transformation, i.e.,

Lemma 4.7. Let
£ TED* 5 6H = (dn,6H) — 66 = (60,00) € TED
be defined by
00 = (H +nn" )~ (0H + 6qn" +non")(H +nn")~'n — (H + ")~ on,
50 = 1(H+7777 )" H(OH + onn" +non")(H +nn") 7"
Then we have
£(g") =y

The transformation £* is derived from the Legendre transformation as fol-
lows. Differentiating the equation n = %@‘19, we have

(35) 250 + 2001 = 6.
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On the other hand, differentiating the equation —(H +nn’) = %@‘1, we have
(36) 60 = 20(0H + dn" +non™)o.

Substituting the equation (36) into the equation (35), we have the transfor-
mation £*.

For the proof of Lemma 4.7., we should prepare the second order differential
expansion of the potential function 4 (©), which is based on the following
lemma.

Lemma 4.8. For any n by n matric X and its eigenvalues X\, ( i =
1,2,...,n ), if max,<;<, |Ai| <1 then

logdet(I + X) = Tr[log(I + X)].

Now the second order differential expansion of the potential function 1/; is
given as follows.

5 = (6 + 30,0 + 60) — (6, 0)
1 _
= LTr [{@(I +07150)} " (007 + 056" + 500" + 50507

- %log [det {O(I +07'60)}] — iTr(®_100T) + % log(det ©).

From (I 4+ 07 1§0) ' =T - 07160 + (67140)% 4+ O(3) and Lemma 4.8, we
have

§ip = 6y + %6(2)@7) +0(3),

where the differentials 64 (i = 1,2) are given as

64 = T?“[(%@’IO)MT - (%9*1 - %@*I%T@*l)(s@]
= Tr[né0" + HiOT] =< H,50 >,
79 = %TT[G‘l(soaeT —207160071600" + (©7'00)*0 00"
+(07150)%.

We next consider the second order differential expansion of the dual potential
function ¢.

o = —% log[det{—H — 6H — (n+ én)(n + 67])T] + %log[det(—H — 7777T)]

1
=—3 log[det{I, + (H + nn")(6H + nén™ + dnn™ + dnén™)}]
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|
= =5 Tr[(H +mn") " (6H +ndn" + o’ + onon")
1
— SUH + ") T OH +non” + dny" + dnon" )} + O(3)].
Hence, we have

S
W = =5 Trl(H +mn")™ (6H +ndn" + dm")].
0@ ¢ = Tr[—(H + ™) Lonon” + {(H +mT) 'non” }?
+2(H +nn") 'H(H + ") 'nen”
_ _ 1 _
+ (H +nn") " non™ (H + m™) " tonm™ + S UH +mnt)LoH}?).

Proof of Lemma 4.7. Decomposing the second order differential 5(2)1/;
into four parts, we substitute the increment of © into these parts.

(1) %Tr(@*laoaeT)

= Tr[—(6H + dnn" +non" ) (H +nn")nn™ (H +nn) " (6H + én" +nd")
X (H+mm")~"

+2(6H + onn" +nén" ) (H +nn")non”™ (H + ")~

— non” (H +mm")~"].

(i) —Tr[0 1600 15967T]

= 2Tr[(0H + onn™ + non™ ) (H + nyT) " (0H + onT + nonT)

x (H +nn™) '™ (H + ")~

— (6H + dnn™ +nén™ ) (H +nn™) " onn™ (H + ") .

(i43) %TT[(®_16®)2®_100T]

= —Tr[(6H + dnn" +non")(H +nn") " (6H + dnn + non™ )(H +nn" )~

x " (H + "))
(i) 5Tr(©700) = STrl(5H +omn” + oy’ )(H + ")~

From previous quantities, we have

B7) ()70
= ~Tr[(H +n")" Suin" )+ STrIGH + 60" + nén”)(H + ")

Hence, we obtain the equation for the metrics.
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O
From previous observations, we have one of two main theorems in this
section.

Theorem 4.9. Under the assumptions of Lemma 4.5.,Lemma 4.6., and
Lemma 4.7.,

(i) The connection V satisfies the equation Xg(Y,Z) = g(VxY, Z) for any
vector fields X,Y and Z on ®.

(it) The connection V* satisfies the equation Xg*(Y,Z) = ¢g*(Y, V% Z) for
any vector fields X, Y and Z on ©*.

(iii) Let X,9) and 3 be three vector fields on N. If we pull back the metric
g and the connections V and V* by the maps Jg and T, i.e.,

A~ A~

then the two connections ¥V and V* become the dual connections with respect
to the metric g on N, i.e.,

X9(9,3) = §(VxD,3) + §(, V53).

Proof.  From Lemma 4.5 and Lemma 4.6, we find (i) and (ii). From
Lemma 4.7., we find § = J5"(9) = J;5"(¢%). Adding the two equations in (i)
and (ii), we have the result (iii).

O

Remark that Theorem 4.9 implies the theorem 1 in Ohara-Suda-Amari
[13] as a special case. In fact, we can find that the connections defined in
Lemma 4.6 conform to the dual connections in [13] by putting 8 =7 =0 €
R™. While Ohara-Suda-Amari [13] treated the connections on the cone of
symmetric positive definite matrices, the space ®* treated in this paper is
not a cone. Note also that Mitchell [12] obtained the coefficients of the a-
connection ( a = 0, Skovgaard [16] ) for the original parameter (u, ).

The Kullback-Leibler information originated in information theory for mea-
suring the divergence between two distributions. The following result is a
consequence of above propositions.

Theorem 4.10. Let Z1 = (1, %1) € R" X S, Eo = (u2,22) € R"x &, and
Oy = (02,02) = (35 ' 2, 5%, 7) €D, Hy = (1, Hi) = (1, —(S1 + papd)) €
D*. We have the divergence Div defined on 91 x N

Div(N (u2, 2), N(p1,51)) = Div(351(02), 35 (H))

= 13\';{)(62,17{1) = 1/;(@)2) + (%(ﬁl)— < éQ,Hl >
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where p(x; E;) is the density function of the Gaussian distribution with respect
to the Lebesgue measure dx.

Proof. In fact,
1/;((:)2) + &(Fh)— < (:)2,]:11 >
1 1 1
= [ZTT(G);@Q@ZT) — 5 log(det @2)] + [—5 log {det(—H; — mn{)}]
n

- [95771 +TT‘(®2H1T)] )

1 1 1
= [aTT(ZQ_I/@Mg) + = log(det 22)] + [—5 log(det 21)]

|3

- [ 55 tuopd ) TT{E (X1 +N1M1)}] -
1

lg(dt21>+2T 12+ 55 MZ)(M—NZ)]—§

= [ bl tog 2T

o5 5 )dac

[I] [I]

O

Remark 4.1. The definition of our divergence is different from that of diver-
gence in [2,9] because of the definition (8).
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