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Abstract. Aluthge and Wang [4] showed that “if T is p-hyponormal then
T" is (£)-hyponormal for p € (0,1]”. Firstly we obtain precise estimation of

n

this result. Secondly we show that “f T is log-hyponormal then T™ is log-
hyponormal” and this result is an extension of Theorem B by Aluthge and
Wang [3].
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8§1. Introduction

In what follows, a capital letter means a bounded linear operator on a
complex Hilbert space H. An operator T is said to be positive (denoted by
T > 0) if (Tz,z) > 0 for all z € H. Also, an operator T' is strictly positive
(denoted by T' > 0) if T' is positive and invertible.

An operator T is said to be p-hyponormal if (T*T)? > (TT*)P for a pos-
itive number p and log-hyponormal if T' is invertible and log T*T > log TT™*.
p-Hyponormal and log-hyponormal operators were defined as extensions of
hyponormal one, i.e., T*T > TT*, and also they have been studied by many
authors for instance, [1, 2, 3, 4, 5, 7, 11, 12, 14, 17, 18]. By the celebrated
Lowner-Heinz theorem “A > B > 0 ensures A* > B* for any « € [0,1]”,
every p-hyponormal operator is g-hyponormal for p > ¢ > 0. And every in-
vertible p-hyponormal operator is log-hyponormal since logt is an operator
monotone function.

An operator T is said to be class A if |T?| > |T|? [11]. As an extension of

class A operator, we defined class A (k) operator if (T"‘|T|2]’€T)k#+1 > |T|? for
k> 0 [11]. We remark that class A(1) operator is class A operator.
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It is well known that there exists a hyponormal operator T' such that 7"
is not a hyponormal operator [13, Problem 209]. Very recently, Aluthge and
Wang [4] obtained the following theorem.

Theorem A ([4]). Let T be a p-hyponormal operator for p € (0,1]. The

inequalities
b
n

(T T > (T*TY > (T > (T°T")
hold for all positive integer n.

Theorem A is a very interesting result, because Theorem A asserts that if T’
is p-hyponormal for p € (0,1], then T™ is (£)-hyponormal. Moreover, Aluthge

n

and Wang [3] obtained the following result on log-hyponormal.

Theorem B ([3]). If T is log-hyponormal, then T?" is log-hyponormal for
any positive integer n.

In this paper, we shall show further extensions of Theorem A and Theo-
rem B.

§2. Results
Theorem 1. Let T be a p-hyponormal operator for p € (0,1]. Then
() (T*T) < (T?*T?)2 < - < (T™T™)w,
(i) (TT*) > (T?T%)2 > .- > (T"T™),

hold for all positive integer n.
In Theorem 1, raising each side of (i) and (ii) to the power p € (0,1]
by Lowner-Heinz theorem and using the p-hyponormality of 7', we obtain

Theorem A.

Theorem 2. Let T be a log-hyponormal operator. Then

S|=

S|

(i) (TT%) > (T?T%")2 > > (T"T™)7,

hold for all positive integer n.

Corollary 3. Let T be a log-hyponormal operator. Then T™ is also a log-
hyponormal operator for all positive integer n.

Corollary 3 is an extension of Theorem B.
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§3. Proofs of results

To prove Theorem 1 and Theorem 2, the following Lemma C and Theorem D
are important.

Lemma C ([10, 11]). Let A and B be invertible operators. Then
(BAA*B*)* = BA(A*B*BA)* 1 A*B*
holds for any real number .

Theorem D (Furuta inequality [8]).

If A> B >0, then for each r > 0,
()  (BSA’B%)i > (B5BPB3)

(i)  (A5APA3)7 > (A5BPAS)

(1,0 q

hold for p > 0 and q > 1 with (14+r)q > p+r.  (0,-1) FIGURE

Tanahashi [16] shows that the domain drawn for p, ¢ and r in the Figure
is the best possible one for Theorem D.

Theorem E ([6, 9, 10, 15]). Let A and B be positive operators satisfying
A* > B* > 0 for a > 0 or positive invertible operators satisfying log A >
log B. Then

(i) for each ¢ >0 andt >0,
t
frq(s) = (A%BSA%)E_L is decreasing for s > q > 0,

(ii) for each ¢ >0 and t >0,
+t
Grq(s) = (B%ASB%)(;_H is increasing for s > q > 0.

Theorem E is obtained by using Theorem D.
Proof of Theorem 1. Let T = U|T| be the polar decomposition of T

Proof of (i). We will use induction to establish the inequality
(3.1) |T"+1|n2_£1 > T for all positive integer n.

In case n = 1. Suppose that T" is p-hyponormal. T' is p-hyponormal if and
only if

(3.2) T > T .
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We obtain the following (3.3) by (3.2).

(3.3) T*|T|*T > T*|T*|*’T = T*(TT*)PT = |T|2P+1).

On the other hand, by (3.2) and (ii) of Theorem E, for each ¢ > 0 and ¢ > 0,
Gq(s) = (|T*|t|T|25|T*|t)§_ﬁ is increasing for s > ¢ > 0. Then we have

IT? < (T*|T/PT)7T by (3.3) and Lowner-Heinz theorem
= (U ||TTe O T

U (T |\ T U

U g1,0(p)U

Urgio(1)U

U*(IT*|T*|T*)) U

= (U*|TH|TP|T|U)*

= (THT]PT)% = |T?|.

IA I

Hence we obtain (3.1) in case n = 1.

Assume that (3.1) holds for n = 1,2,--- k — 1. Raising each side of (3.1) to
the power % € [0,1] by Lowner-Heinz theorem, we have

(3.4) THE > |75 T > > (T > (TR

Moreover, by using Léwner-Heinz theorem, the p-hyponormality of 7' and (3.4)
imply the following inequalities.

(3-5) THE > T YT > 2 T2 > (T > (T,

By (3.5), we have |Tk|%p > |T*|?". Then for each t > 0 and ¢ > 0, g14(s) =
(|T*|t|Tk|%s|T*|t)§_ﬁ is increasing for s > ¢ > 0 by (ii) in Theorem E. Then
we have

|T]€|2 — T*|Tk—1|2T

w1k 21
< THTH| " * T by (3.1) forn=k—1
* |k k 20k-1) *
= UTH|T*]"*|T*|U
= U S
U*gl,k_l(k — 1)U
< U'gip-1(k)U

U (T TR ) F U
(U ||| T P |
= (T*|T*PT)™ = TR+
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Hence we obtain (3.1) for all positive integer n.

Then we have (T”“*T”“)#l > (T”*T”)% for all positive integer n by
(3.1) and Lowner-Heinz theorem.

Proof of (ii). We will use induction to establish the inequality
(3.6) |T"+1*|n2_4rf1 < T for all positive integer n.

In case n = 1. Suppose that T is p-hyponormal. T' is p-hyponormal if and
only if

(3.2 TP > [T,
We obtain the following by (3.2).
(3.7) T|T*?T* < T|T|*T* = T(T*T)PT* = |T*|*P+D.

On the other hand, by (3.2) and (i) of Theorem E, for each ¢ > 0 and ¢ > 0,
t
ftq(s) = (|T|t|T*|25|T|t)g_J+rt is decreasing for s > ¢ > 0. Then we have

T2 > (T|T**T*)77 by (3.7) and Lowner-Heinz theorem
= (UIT||T* PP |T|U) T

U(|T|\T* | T)) 7 U

Ufiop)U*

Ufio(1)U*

U(|T||T*|T) U

= (UT||IT*PIT|U*)?

= (T|T*PT*)3 = |T%).

AV ||

Hence we obtain (3.6) in case n = 1.

Assume that (3.6) holds for n = 1,2,--- k — 1. Raising each side of (3.6) to

the power % € [0,1] by Lowner-Heinz theorem, we have

(3.8) TH|E < TRV << T < TR

Moreover, by using Léwner-Heinz theorem, the p-hyponormality of 7' and (3.8)
imply the following inequalities.

(39) T < TF VT < < TP < TP < TP
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By (3.9), we have+t|Tk*|%p < |T|?. Then for each t > 0 and q > 0, fi4(s) =
(|T|t|Tk*|%s|T|t)g_+t is decreasing for s > ¢ > 0, by (i) of Theorem E. Then
we have
|Tk)*|2 — T|Tk)—1*|2T*
pok 22D

> T|IT" | T by (3.6) forn =4k —1

= Ul T

= (Tt EED ) R
Ufig—1(k—1)U"
Ufip—1(k)U*
U(TIT [ T)
= (U P
= (T PTY R = [T

\%

AV

k—141
r+1 U*

Hence we obtain (3.6) for all positive integer n.
o L 1 e
Then we have (TPF1T"+1*)7F < (T"T™)w for all positive integer n by
(3.6) and Lowner-Heinz theorem.

Whence the proof of Theorem 1 is complete.

We need the following Theorem F in order to give a proof of Theorem 2.

Theorem F ([11]). Every log-hyponormal operator is class A(k) for k > 0.

Proof of Theorem 2. Let T = U|T| be the polar decomposition of T

Proof of (i). We will use induction to establish the inequality
(3.1) |T7"”+1|n2_47—Ll > | T2 for all positive integer n.

In case n = 1. Suppose that T is log-hyponormal. Then T is class A by
Theorem F. T is class A if and only if |T?| > |T'|?. Hence we obtain (3.1) in
case n = 1.

Assume that (3.1) holds for n = 1,2,--- k — 1. Raising each side of (3.1) to
the power % € [0,1] by Lowner-Heinz theorem, we have

(3.10) THE > |5 T > > (T > TR
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Moreover, by the log-hyponormality of T' and (3.10), we obtain the following
inequalities.

(3.11) log |[T*|F > -+ > log |T?] > log |T|? > log |T*|>.

By (3.11), we have log |Tk|% > log [T*|%. Then for each t > 0 and ¢ > 0,
t
Gq(s) = (|T*|t|Tk|%s|T*|t)z_L is increasing for s > ¢ > 0 by (ii) in Theorem
E. Then we have
|Tk|2 — T*|Tk71|2T

e 2= 1)

T % T by (3.1) forn=k—1
* |k k 2(k—1) *

= Ut Tt U
= U |ITHER )
U*glykfl(k — I)U
U*g1k—1(k)U
U*(|T*|| T4 7)) T T
= (U O) T
= (T'|TFPT)®T = T e

N

IN

Hence we obtain (3.1) for all positive integer n.

Then we have (T7H'1*T7H'1)rt+r1 > (T"*T™)w for all positive integer n by
(3.1) and Lowner-Heinz theorem.

Proof of (ii). We will use induction to establish the inequality
(3.6) |7 T < T2 for all positive integer n.

In case n = 1. Suppose that T is log-hyponormal. By Theorem F, T is
class A if and only if

(3.12) (T*|TPPT)> = 72| > [T
By Lemma C, then (3.12) is equivalent to the following.
TT|(|T|TT*|T|) * |T|T > T*T.

Then we have

1
(3.13) T2 > (|| T**|1T))>.
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By (3.13), we have

|T*|2 _ U|T|2U*
U(|T|\T* 7)) 2 U
(UIT|IT*PIT|U*)*
= (T|T*PT*)% = |T%"|.

Y

Hence we obtain (3.6) in case n = 1.

Assume that (3.6) holds for n = 1,2,--- k — 1. Raising each side of (3.6) to
the power % € [0,1] by Lowner-Heinz theorem, we have

(3.14) TH|F < TR << T < TR

Moreover, by the log-hyponormality of 7' and (3.14), we obtain the following
inequalities.

(3.15) log |TF*| < -+ <log |T%| < log |T*|% < log |T|2.

By (3.15), we have log |Tk |k < log|T|?>. Then for each t > 0 and ¢ > 0,
frq(s) = (T |Tk*|k5|T| )s+t is decreasing for s > ¢ > 0 by (i) in Theorem E.
Then we have
|Tk*|2 — T|Tk—1*|2T*

k20—

T |" % T by (3.6) forn =%k —1
k* 2(k—1) %

ulT||T" [~ TIU
U(T TR D ) U
Ufig—1(k—1)U"
> Ufip—1(K)U"
Ul ) U
= U\ PTiU*)F

(T PPT) e = |7+ |,

v

\%

Hence we obtain (3.6) for all positive integer n.

Then we have (T7H'1T""r1*)n+r1 < (T"T"*)w for all positive integer n by
(3.6) and Lowner-Heinz theorem.

Whence the proof of Theorem 2 is complete. 0O
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Proof of Corollary 3. By Theorem 2,
and
(ii) (TT*) > (T2T2*)% > > (TnT”*)%

hold for all positive integer n. Since T is log-hyponormal, we have
log(T”*T”)% > log(T*T) > log(TT™) > log(T”T”*)%.

Hence log(T"*T™) > log(T™T™*) holds for all positive integer n, i.e., T" is
log-hyponormal. a
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