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Abstract. We investigate the topology of convergence to limit sets for one-
dimensional linear cellular automata using Z,-valued upper semi-continuous
functions, where p is a prime integer.
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§1. Introduction

Cellular automata are discrete dynamical systems with simple construction,
and are used as models for physical or biological phenomena [9, 13]. In more
detail, a cellular automaton consists of a finite-dimensional lattice of sites,
each of which takes an element of a finite set Z, = {0,1,...,p — 1} of integers
at each time step and the value of each site at any time step is determined as
a function of the values of the neighbouring sites at the previous time step.
Precisely speaking, the site values evolve by the rule

’LU(J?,t—i- 1) = f(’LU(IE + klat)a s ,’LU(II? + kmat))a

where w(z,t) denotes the value of site z € Z? at time ¢ and f is a Z,-valued
function which determines the cellular automaton rule with k; € 7% (5 =

1,...,m), which are neighbouring sites of the origin. When f is a linear map,
that is,

m
(1.1) w(z,t+1) = ajw(z+kjt) (mod p),

=1

167
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with oj € Z, (j = 1,...,m), then the cellular automaton is said to be a
linear cellular automaton (LCA). It is known that linear cellular automata
may generate patterns which have connection with fractal sets, while non-
linear cellular automata may sometimes cause chaotic phenomena [3, 4].

The rule defined by (1.1) determines the values of sites at time ¢ + 1 from
the values of finite sites at time ¢t. Moreover if we introduce the set P of all
configurations a: Z¢ — Z, with compact support (i.e., #{i | a(i) # 0} < o),
then w(- ,t) € P implies w(- ,t+1) € P. So we can consider an operator L in
P derived from (1.1), which maps a € P to

m

(1.2) (La)(z) = aja(z + kj) (mod p).
j=1

Then L is linear (=a Z,-module endomorphism) and is translation invariant,
ie., (La;)(z) = (La)(x — 7), where a,(x) := a(z — 7). The configuration of
cellular automata at time step ¢ is represented by operating L on the initial
configuration by ¢ times.

In case of p = 2, S. J. Willson [10] investigated the so-called limit set of
LCA. For n € N and a € P, he considered the set

K(n,a) = {(z,t) € 24 x Zy | 0 < t < 2", (Lla)(z) = 1},

where L' is the t-th power of L. The set K(n,a) is determined by the val-

ues up to the 2”-th time step of LCA with the initial configuration ¢ € P.
By contracting K (n,a) with the rate 1/2", he considered the set % =

{(£,5) | (z,t) € K(n,a)}. Then the set % is a subset of R? x [0,1]. He

showed that for any nonzero a € P the following equality holds in the sense
of Kuratowski limit [2, 7],

K(n,a) K (n,?) K(n,?)

n 7

K
lim inf = lim sup (2nn, @) = liminf = lim sup

where § € P satisfies §(0) = 1 and d(z) = 0 for z # 0. When liminf%
(n,a)

coincides with limsup —5

are called the limit set of % When the limit set does not depend on the
initial configuration, the limit set is called the limit set of LCA. F.v. Haeseler,
H.-O. Peitgen and G. Skordev [1] studied the existence of the limit set of LCA
in Hausdorff metric by using matrix substitution systems and polynomials
which induce LCA. As an extension of the result of Willson, S. Takahashi [8]
investigated the case of an arbitrary prime number p > 2 and he considered
the set

in the sense of Kuratowski limit, both of them

K(n,0) = {(z,t) € 2T x Zy | 0 <t <p" — 1, (L'6)(x) # 0}
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Figure 1: A sequence of ¢, (0) with La(z) = a(x —2) + a(x — 1) + a(z + 1)
(mod 3).

for n € N. By using the set K (n,d), he also defined the limit set as a subset of
R? x [0,1] in the same way as in the case of p = 2, and showed the existence

of the limit set Ys of { } Takahashi also investigated the limit set of
7 j-state” K (n,é) {(x,t) €Zx 7y | 0<t<pr—1, (L) (x) = j} for

We recall that the sets lim sup ( 9 and lim inf in the sense of Kura-

K(n,) -
"

towski limit are the same with (2, Un>k én and Jp2, ﬂn>k pn n.9) respec-

tively, since { } is an increasing sequence. Hence the above results of [10]

and [8] are concerned with the set [, UnZk pn’ and (Jp2,; ﬂnZk pn

So it is natural to consider the limit set in the sense of set theory, which is
defined if the set (72, U,k La) coincides with the set UpZ; M5 (” a)
without taking its closure. “Since the convergence of a sequence of sets {A }
in the sense of set theory corresponds to that of characteristic functions {14, }
in the pointwise topology, we shall consider the convergence of the character-
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istic functions {¢,} on R? x [0,1] corresponding to the set %. Moreover,

we shall consider a Z,-valued function 9,,(5) on R? x [0, 1] which corresponds
to the values of sites up to the p™-th time step of LCA and expresses all
the states simultaneously, though Takahashi considered the limit set of each
state K(n,d) separately. In Figure 1, we show an example of a sequence of
¥ (9) (defined in (2.3)), which suggests that the set {(z,t) | ¥n(0)(z,t) # 0}
converges to a fractal set.

In this paper, we shall treat the linear cellular automata whose values are
elements of Z, for a prime number p, and investigate the topology of conver-
gence of 1, (0). In Section 2, we shall consider the convergence in the pointwise
topology. We show that there exists lim 1), (0) in the pointwise topology (The-
orems 2.2 and 2.5). We also show that there exists lim ¢, in the pointwise
topology which corresponds to the set ;2 U,>x K(;fja) = Urz1 Niusk Kgi’a),
where the closure is not taken (Theorem 2.6).

Though neither lim ¢,, nor lim ¢, (d) corresponds to the characteristic func-
tion ly;, the results of Willson [10] and Takahashi [8] indicate the existence
of some topology in which 1), (d) converges to a function f5 corresponding to
the limit set Y5 of % in the sense of Kuratowski limit. Since f5 and 1), (6)
are Z,-valued upper semi-continuous functions on R? x [0, 1], we introduce the
space USC of Z,-valued upper semi-continuous functions on RY x [0, 1], where
the order in Z, is considered as a subset of R and investigate the topology in
which 1), (§) converges to fs. Section 3 is devoted to the study of two metrics
df,Dy in USC. In Section 4, we investigate the convergence of {¢,(d)} in
these two metrics in the space USC' of Z,-valued upper semi-continuous func-
tions on R x [0, 1]. We show that {1, (d)} is a Cauchy sequence in the metric
dy and 1, (6) converges to the function f5 in the metric Dy (Theorem 4.1). In
Section 6, we show that the similar results hold for any initial configuration
a € P (Theorem 6.4) and that the limit function in the metric Dy is the same
as f5 if a(0) # 0 and also show that f, is the upper envelope of g, (Theorem
6.4).

When p is a prime number, we can show that the limit function in the
metric Dy takes only two values by using Lemma 6.1 in [8]. However, when
p is not a prime number, it occurs that the limit function in the metric Dy
takes more than two values and the results in this case will be reported in [6].

§2. Convergence in the pointwise topology

Let p be a prime number and let P be the set of all configurations a: Z¢ — Ly,
with compact support. We define § € P as
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_J 1 (=0,
o) = { 0 (z#£0).
Let L: P — P be a linear operator derived from the cellular automata rule
(1.1) as follows:

(2.1) (La)(z) = Y aja(z+k;)  for a €P,
jeG

where G is a finite subset of Z with G > 2, k; € Z¢ (j € G) is a neighbouring
site of origin, ay, € Z,\{0} and the summation ) is taken as the summation
with mod p throughout this paper.

Let

t
an{(;%,ﬁ)ERdX[O,l] |z ez teZ,,0<t<p}

for n € N. Then {X,,} is an increasing sequence, that is,
X1CXoC---CX, CXpy1 C---.

For j € N, put

(2.2) G; = {t ez | (L/5)(¢) #0}.

Define a map 1, from P to the function space on R? x [0, 1] for a € P and
n € N by

z ta)(z) if (&, L -
(2.3) (d)n(a))(ﬁ,i):{ (L'a)(z) f(,,i pt)eX

" 0 if ( ) € (R x [0,1]) \ Xp.

We shall quote the following useful lemma in order to consider the convergence

of tn (9).

Lemma 2.1 ([8],Theorem 3.1). Let L be a linear operator derived from the
cellular automata rule (1.1) with p prime. Then for j,n € N, we have

(Ljp"(;) (z) = (L70)(y) if there exists y such that p"y = z,
0 otherwise.

By using this lemma, we have

Theorem 2.2. v, (8) converges to a function on R? x [0,1] in the pointwise
topology.
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Proof. By Lemma 2.1, we have (,(8))(-%, L) = (z/)nﬂ(é))(l%,l%) for

PP
(575 ﬁ) € X,. So {1} is a bounded increasing sequence and there exists a
limit function in the pointwise topology. O

The above theorem concerns § € P. Now for a € P with a(0) # 0, we shall
consider the convergence of ¢, (a).
For a configuration a € P, put

I(a) = max{li — j| + 1| a(3) # 0 and a(j) # 0},
ne = min{n € N | p" > [(a)}.
The following lemma shows the relation between L/P"*q and L74.
Lemma 2.3. For a € P and j,n,1 € N, we have
(2.4) (L7 Ha) (@) = 3 (L) (O)(Lia) (@ — "),
[GG]'
Proof. By the linearity of L, we have
(L7 Fa)(x) = Y (La) (@) (L 6) (@ — ).
i eZ’

Forz € Z4 put G' = {L € 7% | £ = “"Z;f, with n € N and i’ € Z%}. Then G,
defined in (2.2) is included in G’ and (L’¢)(¢) = 0 holds for £ € G' \ G, by
the definition of G;. Therefore by using Lemma 2.1, we have (L/P"*a)(z) =
Yeecr (Lla) (@ — p")(LI0)(0) = 3 peq, (Lla) (z — £p™) (L7 6)(0). 0

By referring to the above lemma, we shall define an operator T' as follows.

Define a map Sy ;: R% x [0,1] — R? x [%’ j%l] by

x t

(2.5) Spj(z,t) = (5,;) + (

Ly
O _)
b p
as shown in Figure 2, where the positive direction of ¢ (virtical) is downward.

For a function g on R?% x [0,1], by using maps Sy ; define a function T'g on
R x [0, 1] by

(2.6) Ty(y,q) = Y (L76)()g(S;} (y,q))
=

for%<q§%with0§j§p—land

Tg(y,0) = g(py,0).

Then we have
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Figure 2: An exapmle of maps Sy ; with La(z) = a(z —2)+a(z —1) +a(x+1)
(mod 3).

Proposition 2.4. The following relation holds for a € P and n € N:

T"(¢1(a)) = T(¢pn(a)) = ni1(a).

Proof. For (pn+1 , ]p:fli) € Xp41 with 7 €Ny i € {0,...,p" —1}, by using (2.3)
and (2.4) we have

(ur(@) (g ) = (WP ) (@) = Y (WHOEa) o — ")

ZEGJ'

By the relation (44na)(S; ) (557, 1)) = (na) (32, ) = (Lia)(z — &™),
we have

T ip" + 1 . T ip" + 1
(T(T/)n(a)))(wa%) = Z;j(ya)()wn( a))(S ﬂl(pnﬂ,@n—“))
= Y @) (Lia)z - ")
LeG;

Since (T(4pn () (4:9) = (Yn11(@)) (@) = 0 for (y,) € RY x [0, 1\ Xy 11, we
have T'(¢, (a) z/)n+1( ), from which we also have T" (11 (a)) = ¢Ypy1(a). O

By using the above lemmas, we prove the following theorem.
Theorem 2.5. For a € P with a(0) # 0, we have the following assertions:
(1) 9n(a) converges to a function on R% x [0,1] in the pointwise topology.

(2) The limit function g, of the sequence {1y (a)} in the pointwise topology
1s T-invariant, that is, Tg, = gq.

(3) As for the limit functions g5 and g, of {¢n(6)} and {1pn(a)} respectively,
we have a(0)gs = gq-
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Proof. (1) For (‘”gza : t’;za) € Xn_n,, with n > n, and m > n, we have

) = Gl

ng+m—n

(Ep”“ tp”“
pm pn

2.7 (dm(a))( )

pm

= (L" a)(p" " ")

= Y (L')(Oap"" "z~ b))
LeGt

= a(0)(L'0)(=),

by Lemma 2.3. S0 lim,, 00 (¢m (a)) (Brs, 22) = a(0)(L'6)(z) .

pn b pn
For (y,q) € (R¢ x [0,1]) \ Uzo:na_i_l X}, we have

(2.8) (Yn(a))(y,q) =0 forany n € N

by the definition of 1, and there exists lim,,_, o (1, (a))(y, ¢). So the sequence
{4, (a)} converges to a function on R? x [0, 1] in the pointwise topology.
(2) By using the relations lim, 0 (¥n(a))(y,q) = ga(y,q) for each (y,q) €

R? x [0, 1] and (T4n)(a)(y,q) = (Yn+1(a))(y, q), we have Tg, = go.
(3) By equations (2.7), (2.8) and Theorem 2.2, we get the conclusion. [

Now we have investigated the convergence of 1, (a) in the pointwise topol-
ogy. Since Takahashi investigated the limit set of the set K(n,d) = {(z,t) €
78 x 7y | 0 <t < 2% (Pn(d))(z,t) # 0} in the sense of Kuratowski
limit, we shall consider the characteristic function corresponding to the set
% ={( p—tn) | (z,t) € K(n,d)} and the limit function in the pointwise
topology. As shown in the following theorem, the limit function in the point-
wise topology is the characteristic function corresponding to the limit set in
the sense of set theory, where (122, U,>x K(n.a) and Ure1 Nk K(n.0) sre the

p" p"
same.

Theorem 2.6. For a € P with a(0) # 0 and n € N, let
_ U if (¢n(a))(y,q) #0,
i ={ 5 e Lo
Then
(1) (¢pn(a))(y,q) converges to a function on R% x [0,1] in the pointwise topol-
0gy.

(2) The limit function ¢4 of the sequence {¢n(a)} in the pointwise topology
is the characteristic function corresponding to the limit set in the sense
of the set theory, that is, (Niey Uk K(n’a), which is the same as the set

pn
K ]
Uzozl nnZk E)Ti “ '
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(3) As for the limit functions ¢s and ¢ of {Ppn(6)} and {Pn(a)} respectively,
we have ¢s = ¢q.-

Proof. The proof is done in a similar way to that of Theorem 2.5. U

As shown in the above theorems, the limit function of {¢,,(d)} in the pointwise
topology does not correspond to the characteristic function of the limit set
in the sense of Kuratowski limit. However, the results of Willson [10] and
Takahashi [8] indicate the existence of some topology in which v, (J) converges
to a function f5 corresponding to the limit set Ys of % in the sense of
Kuratowski limit. So we shall investigate the topological space in which 1), ()
converges to a function related to 1y;. Since t,(a) and ly; are upper semi-
continuous functions on R? x [0, 1], we introduce the space USC of Z,-valued
upper semi-continuous functions on R? x [0, 1] and investigate the topology in
which ,,(d) converges to the function related to ly;.

§3. Metrics in the space USC

In this section, we shall introduce two metrics d¢, Dy in the space of Zy-valued
upper semi-continuous functions on a compact subset of R¢ x [0, 1], which have
some relation to the convergence of {1, (0)} to 1y;. Let USCbe the space of Z,-
valued upper semi-continuous functions on R? x [0, 1], where Z,-valued upper
semi-continuous functions mean upper semi-continuous functions embedded
in R-valued function spaces. For functions f, g € USC, the order f > ¢ is
defined by f(y,q) > g(y,q) for any (y,q) € R? x [0,1] by considering Z, as a
subset of R. For functions {fy}xea € USC having an upper bound, let

91(y,q) = inf{g(y,q) | g € USC,g > f for any X € A}

and

92(y,q) = inf{fx(y,q) | for any A € A}.

Then g; and g, belong to USC and ¢; is the least upper bound function \/ fy
and go is the greatest lower bound function A f) in USC. So the space USC
is an order complete lattice.

Let K be a compact subset of R? x [0,1] and (yo,q0) be a point of (R? x
[0,1]) \ K. Let

USC|k ={g € USC | support of g C K}.

By using the Hausdorff distance D (A, B) of non-empty compact sets A and
B in RY x [0, 1], we shall define the pseudodistance Dg(A, B) of A and B in
R x [0, 1] by

Dy(A,B) = D(AU{(y0,90)}, BU{(y0,q0)})
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and metrics dy, Dy in USC|k as follows:

df(g1,92) = maxi<j<p—1Do(g7 " (4), 95 (),

Dy(g1,92) = maxi<s<p—1Do (g7 [s+], g5 ' [s4]),

for g1,92 € USC|k, where g '[s+] = {(z,t) | g(x,t) > s} and g7 (j) is the
closure of the set g, *(j) = {(z,t) | g(z,t) = j}. It is easy to see that dj and
Dy satisfy the axioms of metric in USC|g.

As for the relation between distance D and pseudodistance Dg, we can
easily show the following

Proposition 3.1. For compact sets A and B in RY x [0,1], we have the
following:

(1) If both A and B are non-empty subsets of K, then

Do(A, B) = D(A, B).

(2) If both A and B are empty sets, then

Dy(A, B) = 0.

Concerning the Hausdorff distance, we shall recall the following lemmas.

Lemma 3.2. Let Ay, Ag,... and By, Bo, ... be non-empty compact subsets of
R? x [0,1] included in a fized compact set. Then the following relation holds:

D(U;4;, UjB;j) < max D(A;, Bj)
J

Lemma 3.3. Let {A,}, be a monotone decreasing sequence of mon-empty
compact subsets of R x [0,1], that is, A, D Apy1 and satisfy

D(A,,Ap) = 0 as n,m — oo.
Then the following relation holds:
D(An, (Np>14m) = 0 as n — oo.
By using above lemmas, we have

Proposition 3.4. For f, € USC|k, suppose df(fn, fm) = 0 as n,m — oo.
Then for any n € N, there exists the least upper bound gn, = \/},, fr in USC|k
and we have the following assertions: B

(1) Df(gnagm) — 0 as n,m — oo,



CONVERGENCE OF LINEAR CELLULAR AUTOMATA 177

(2) D¢(fn,gn) = 0 as n — oo.

Proof. Since the support f, is contained in a compact set K and f, is bounded,
there exists the least upper bound \/,,, fx- By assumption,

Do(fn ()fm())—>0 forall j € {1,2,--- ,p—1}

as n — oo. So for any ¢ > 0 there exists ng € N such that for n,m > ny,
Do(fgl(j)?fnzl(j))< € for alle{l,Q,"- ap_l}

Therefore by Lemma 3.2 and f,, '[s+] = Us<j<p-1 fnt9),

Dolfy s+ £ s+ < | max Do(Fa () F'G)) < ¢

holds for n,m > ng. By using the relation g, '[s+] = Uy, fi '[s+] and
Lemma 3.2, we get -

Do(gy ' [s+),9m' [s+]) < & for n,m > no,
which implies (1). Put

Do(A,B) = sup{d(AU{(yo,20)},y) |y € BU{(y0,9)}},
Doe(A,B) = sup{d(z, B U{(y0,90)}) | = € AU{(y0,90)}}-

Then Dy(A, B) = max{Dy (A, B), Dy, (A, B)} and
Doo(fn [s+], 9, [s+]) =0 for all n € N.
By Do (f ' [s+], 95 [s+]) < supys, Do(f ' [s+], £ [s+),
Do (fo s+ g0 [s+]) < € forn>ng
holds. So Do(f, Y[s+],9, [s+]) < e, which implies (2). O

Theorem 3.5. For f, € USC|k, suppose d¢(fn, fm) = 0 as n,m — co. Let
9= Nie1 Vysi fn- Then we have

D¢(fn,g9) = 0 as n — oo.

Proof. Put gn, = V>, fr- Then gn H[s+] D g1 [s+] and

s = ) 9 [s+]
m>1

hold. By using the relation
Do(fy '[s+],97 [s+]) = Do(fi [+, N 19m' [5+)
< Do(fy s+, 95 [s+]) + Dolgn  [s+], Nz 19m' [s+]),

we get the conclusion by Proposition 3.4 and Lemma 3.3. U
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Remark 1. We don’t know whether the metric space (USC|k, dy), or (USC|,
Dy) is complete or not. However, Theorem 3.5 shows that any Cauchy se-
quence in (USC|k, dy) converges to an element in USC|k in the metric Dy.

§4. Convergence of 1, (d) in case of R X [0,1]

In this section, we will consider the convergence of {1, (d)}, in the space of
Zp-valued upper semi-continuous functions on a compact subset of R x [0,1].
At first we give some notations.

Let ay be as defined in (2.1). Suppose that at least one of « is nonzero.
Then put

k- =min{k € G | o # 0},
ki =max{k € G | o # 0}

and
ko = ky — k.
For j € {0,1,...,p} and i € {1,...,jko + 1}, put

i
(4.1) rj=9+‘7(]2 Vo

and £ =r; +i.

Then the map Sy ; defined by (2.5) with double suffix can be reindexed
with single suffix for those satisfying Sy j(Xo) C Xo (Xo is defined in (4.4)) as
follows:

Y9,

—jky +i—1 j
4.2 Se(y,q) = (2,2 2
(4.2) (y,9) (p )

Put
co=L6(—jky +i—1)
with £ =r; +4 and
A={te{l,...,rp} | ce #0}.
Then for (y,q) € R x [0, 1] satisfying 1% <q< j%l with 0 < 7 <p—1, we have
Ti+1

(4.3) 1 ()@, 0) = D celthn(9)(S7 (y,0)

ZZT]‘+1
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by using (2.3), (2.6) and Proposition 2.4.
Let X, be the smallest convex subset of R x [0, 1] containing the support
of 11(0), that is,

(44)  Xo={(y,9) eRx[0,1][0<g <1, —gky <y < —qgk }.

Then for any n € N, the support of 1, (d) is contained in X and for £ € A,
Se(Xo) is also contained in Xj. So we consider the space USC|x, and the
metrics dy, Dy in USC|x, as in Section 3 and prove the following theorem.

Theorem 4.1. For ¢, (5) € USC|x,, we have the following:
(1) df(l/)n(é)al/)m((s)) — 0 as n,m — oo.

(2) Put fs = Ag>1 Vask¥n(0), where A\ and \/ are lattice operations in
USC. Then we have

D¢(n(8),f5) >0 as n— oo.

Since the proof of the theorem is pretty complicated, we shall describe the
strategy of the proof.

4.1. Strategy of proof

Roughly speaking, our fundamental idea is to show the estimate

(4.5) dj (s msn) < édf(z/)n,«,bm)-

Indeed, if {(S¢(X0))°}rea is mutually disjoint, the inequality (4.5) can be
verified without too much work, where (Sy(Xy))° is the interior of Sy(Xp).
However, we cannot prove (4.5) if {(S¢(X0))°}rea are mutually overlapped.
So we introduce an auxiliary quantity Mg’ " and show the following estimates:

M-1) dy(thn11(8), b1 (0)) < LM (Proposition 4.5);

M-2) ML < Ly (Proposition 4.6).

1
p
M{f’n’ is devised to compensate the fact that {(S¢(Xo))°}een may overlap

mutually. To define M’ " we use two divisions {E,} and {4} of X; and
functions {h]}.
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4.2. The definition of {E,} and {A4;,}

We shall divide X into subsets {E,} and {4} as follows (see Figure 3).
Let

F={(L7,8) [ 1 <s <pho,1 <j <sHU{(2,5,5) | 2< s <pkop, 1 <j <s—1}

We define {E, }(y € ') as follows:
In case of v = (1,7,s) € T, let

s—1 S §—3 ]
Sq< o kgL <y < kgt

By ={(y:9) |

Let for 1 <s<kjand 1 <j<s,

S j—1 5—3j
A1js ={(y,9) | <q< o kgt ——<y<—kg-—}
0 p p

ko
and for 2 <s<kpand1<j<s—1,

s—1
ko

S s—j ]
0 P p

Then we have the following properties.
Proposition 4.2. (1) The sets {E,} have the following properties.

E-1) For v = (b,5,s),7y = (b,j',s) € T, E, is the shift of E, in the the
first coordinate direction for any s and b € {1,2}.

E-2) ESNE, =0if y#19'.

E-3) If (Si(X0))° N (Se(X0))° # 0, then S¢(Xo) NSw(Xo) is the union of

some K., ’s.
E-4) X, = Uvel“ E,.

(2) The sets {Apjs}o.j,s have the following properties.

A-1) For any Ay s, there existy € I and £ € {1,--- ,r,} such that Ay ;s =
Sy H(Ey).

A-2) Xo = ngl U];0:1 U;:1 Ab,j,s-
A'3) g,j,s N Ao’,j’,s’ = @ Zf (baja 3) 7é (blajla S,)'
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Eiq1
Eqi12 Es19
. 1,13 B3
2,1,5 p
24,5
~ s Ey
Ei15 <_E)

(a) The locations of E1,1,1, E1,1,2, E21,2, E1,1,3, E2,1,3, E1,a5, E2,45, E1,15
and E2,1,5.

(b) The locations of Ai1,1, A1,1,2 and Az 1 2.

Figure 3: {E,}, and {Agjs}2,js for La(z) = a(z —2) +a(z — 1)+ a(z +1) +
a(z +2) (mod 3).
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Proof. By the definition, we can easily get the result. O
Put
Ay ={teA|E, C5(Xo)}

for v € I and let £, € A be the minimum number in A,. Then equation (4.3)
can be rewritten as follow:

(4.6) ($ns1(0)1E,) (0, 0) = Y ce(tbn(8))(S, (5, 9)),

teA,

where ;. b means 0 if Ay = (). Then (4.3) and (4.6) is the same, since the
left side of (4.6) is zero if A, = 0.

If ($n41(6))71(4) and (m41(0))~"(j) are nonempty and #A, = 1, then by
using (4.6) for j = ¢; X j' (mod p)

D((4hn+1(8)) 7 (4) N By, (hm+1(8)) ™' () N E)

- %D((@bn(f?))l(j’) NSy (Ey), (hm(9) () N ST (E))-

Though equation (4.2) is useful to prove the convergence of {1}, (4.2) does
not hold if #A, > 1. So we introduce the function Aj.
4.3. The definition of {h]} and their fundamental properties

We shall define the function h; as follows. Put

4 :{1) = (713--'3777!) | m e N371 € ' with #A’yl > 1,y € r
with #A, > 1 and Sy, (B, ) C B, _, forany k€ {2,...,m}}.

For v = (y1,...,7m) € V and n € N, define

hpyg) = > o > cy..oca,

(4_7) LiENy, I €Ay,
X (1 (6))(S, " ... 8 S, - S, (v D)ls;t (i, (1:9)

for (y,q) € R x [0,1].
When v = (v), h]! satisfies

By (ysa) = D cebn(8)(S, St (9:0) L1 (1, (0 s
en,



CONVERGENCE OF LINEAR CELLULAR AUTOMATA 183

and
o (S2 (Y, @) = ($n41(8)) (y, )1, (, 9)

for n € N. Since the length of v is one, A} has the relation with ;.
If the length of v is m, then h] has the relation with 1,1, and this is useful

in estimating the metric dy(h}, h"') as shown in the following Lemma.

Lemma 4.3. For v = (v1,72,.-.,7m) € V, k € {1,...,m} and (y,q) €
R x [0, 1], put

Fi(y,q) = Se,, (Se,, (- (Se,, (y,9)) - ))-

Then we have
(1) for (y,q) € Fr-1(Ey,,),
hy (Fon (4,9)) = $nam (6w )15, (5, (45 @)
and

(2) if the sets {j € (1-.p— 1} | (1)) = 0} and {j € {1,....p— 1} |
(h")=1(j) = 0} are the same, then

d(h, ) = " df(Ynsm(0)1p,,_ (., ) Y +m(O)1E,_ (E,,,))
for any n, n' € N.

Proof. (1) By using (4.6) and (4.7), we have

hy (F (y,9))
= > Y e, (a0 ))(S[J---Sal(y,q))ls ', ) (Fot (y,0)

L€AY, EmEA,,m

= > . > ey,

£1 EA'yl em71€A7m71

X (ns1(0)(Sp, - Siy (W, O, (1, (5 0)

= (Ynt+m ()W, D1r,_y(5,,,) (Y, D)

(2) By the assumption, if (h?) 1(j) # 0, then

Do((hy) (), (W) (5) = D) (), ()1 (7)
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and
(h) ™ () = {(y, @) | K3 (y,q) = 5}
= {1, Q) | Wntm () (Fnly, )5, (2,,)(Fn(y,q) =5}
={F.' 0 d) | onim O k() d) = 4}
(4.8) =F,' ({0, ) | onamONW )y, d) = 4})

hold. If both (A")~1(j) and (h")~1(j) are empty, then
(4.9) Do((h) (), () "1(3)) =0
holds. So the relations (4.8) and (4.9) imply

dy(h B ) = p™df (Ym0 15, (2, ) Ym0 p_ (5, ))-

O

In Lemma 4.3 (2), we put assumption that the sets {j € {1,...,p — 1} |
(h)~1(j) = 0} and {j € {1,...,p —1} | (M")"'(j) = 0} are the same.
However, this is true for sufficiently large n, n’, which is proved by using the

following proposition and Lemma 4.3 (1).

Proposition 4.4. For sufficiently large n € N, the following assertions are

equivalent for any v = (y1,...,Ym,) €V, £ € Z,\{0}.
(1) (ntmy (8))"H(0) N (Fony—1(Ey,,, ))° # 0
(2) (Yntm,+1(0)) 1 (€) N (Fin, 1(E,,))° # 0.

The proof is given in Section 5.

4.4. The definition of {M"} and their properties
By using h!’, we shall define M’ n by
Mg = sup{dg (b2, b)) [ v € V).
Then we have the following crucial estimates in Propositions 4.5 and 4.6.

Proposition 4.5. (1) sup{Mg’”, | n,n' € N} < oo.

(2) df(Pn41(0), hpr41(0)) < %Mg’nl holds for sufficiently large n,n' € N.
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Proof. (1) Put ¢ = sup{d((yo,q0), (v,9)) | (v,q) € Xo}, where (yo,q0) ¢ Xo is
the point defining the pseudodistnace Dy as shown in Section 3 and d(-,-) is
the Euclidean distance in R x [0,1]. Then ¢ is finite, since X is a bounded
set. For any g, f € USC|x, and j € {1,--- ,p — 1},

Do(g~"'(7), f1(5)) < max{e, | Xol},
where |Xy| is a diameter of Xj. So we have
sup{M(?’nl | n,n" € N} < max{c, | Xy}
(2) By the definition,

df (l/JnJrl (5)7 d)n’-i-l (5))
= maxi <¢<p—1D0((Vn+1(0)) 1 (£), (Yn+1(6))(£)).

(4.10)

By using Proposition 3.1 and Lemma 3.2,

(411)  Do((thn+1(8)) ™ (0), (b 1(5)) ™' (9))
< max Do( (1 (9) ™ () N By, (1(9) 7 () N1 B

For sufficiently large n, n’, we have by Proposition 4.4 and by Lemma 4.3 (2)

Do(thnt1(8) () N Ey, o 11(8) 'O NE)) < dp(ns1(0)1e,, Y1 (9)1E,)
(4.12) < A

By using the inequalities (4.10), (4.11) and (4.12), we get the conclusion. O

Proposition 4.6. For sufficiently large n,n’', we have

n+1,n'+1 1 n,n’
M < My

Proof. For v = (v1,...,vm) €V, let F), be as defined in Lemma 4.3. Then

hZJrl(yaQ): Z Z Cy---Cyp,

LrEN, L €Ay,
X (ns1 (5))(8[,: cee Sg_llFm(ya Q))ls[’yl (Eﬂrm)(ya q)-
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For E,, ., C S’[ﬁ}n (B, let vy oo = (715--- s Ym41). Then we have

hyt Y, e, (,9)

= > ) w1 (DS} - S5 Py )L, (9,0)
LreN, lmeAWm
=S S e @S ST ) e, (1)

Li€hy  bnp1€Ay, 4y

- Y

LreN, 4m+1€A7m+1
-1 -
(d’n( ))( z 41 ---Sel FmSl"rmHSK

Y
— jn (Sfl

LR I g

(W)l

l,y +1 (E'Ym+1

(ya q>)15{71n+1 (E’Ym+1) (S['YinJrl (ya q))

By using above equations, we have

(hy™)7HG) = U {w,0) |1, (ST (y.0) =4}

Tm41
E’Ym+1 CS (E’Ym)

= U St LW ) TH, (0 d) =34}),

—1
Byt CSZWI (Bvm)

and

1
dp(RIFY YY) < p maxldy (g, b ) | amen C ST (B,

for sufficiently large m,n’ satisfying the condition in Proposition 4.4. So we
get the conclusion. O

4.5. Proof of Theorem 4.1

By using above propositions, we shall prove Theorem 4.1.
(1) By Propositions 4.5 (2) and 4.6, we have

lim Mnm =0.

n,m—o0
By Proposition 4.5 (1) , we have

df (11 (8), Pms 1 (8)) < %M!J’m-

So we obtain the conclusion.
(2) We get the result from (1) and Theorem 3.5. O
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§5. Proof of Proposition 4.4

In this section, we shall prove Proposition 4.4. We will prove it in the case of
my = 1, since in the other case the proof is similar to the case of m, = 1.
At first, we shall consider the property of 1, (J)1 BS-

Lemma 5.1. Let~y € I" and suppose that an(é)lEg =0 for somen > 2. Then
Y 1(0) e = 0.
Proof. 1t is clear by the relation
T t pr pt
1/)n—1(5)1Eg(F, F) = d)n(é)lEg(ﬁa ﬁ)
]

In order to prove Lemma 5.4, we prepare the following Lemmas 5.2 and
5.3.

Lemma 5.2. Fors e {2,...,ky},be{1,2}, mn' >1, 3, €Z,({=1,...,m)
and n € N satisfying p™ 3 > 2kg, suppose that

(5.1) > Betbn(®)1a, Ny +L—1,9) =0
=1
and
(5.2) > B )i (o Ny +E—1,9)=0
=1

hold for any (y,q) € R x [0,1]. Then

m

(5.3) > Be(bnym (9)1ag, Ny +£—1,9) =0

=1
holds for any (y,q) € R x [0, 1].
Proof. At first consider the case of b = 2. Put tg = min{t € Z; | Iz €
Z st. (z/p",t/p") € A5, } and set

By ={(y,q) € A5y | g >1to/p"} (see Figure 4).

Then by (5.1) and Lemma 2.1, we have

m

top™
> Be(nw ()1ag, Ny +€—1, pn+n,) =0
=1
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Es pe—1)+1,p(s—1)+1

s—1
ko |
to

pko £

X

|||
%

4
*k‘aé* \AZ,Z,S

Y

Figure 4: The positions of By, Ey pp_1)41,p(s—1)+1 and Az g .

for any y € R. Hence Y ;" Be(¢nin (0)18,)(y + £ —1,q) = 0 by (2.1) and
(2.3). So we shall only show

m

D Beniw (Ol gag, \B0ES )WL 1,9) =0,

(=1
To do so, note that the equations (¢, (8))((z — i)/p"t™ ,t/p"") = 0 for
All i € {1,...,ko} and (b4 (D) (& — k) o™ (6 + 1)/p" ) = 0 imply
(gt (6)) (/p" ™ ,t/p" ™) = 0. By virtue of this property, beginning from
the lower left corner to the upper right corner, we can successively verify that

m

> Be(niw (6)1ag, Jy+£—1,9) =0

/=1

at every lattice point (y, q) in (A3, ;\ (Be UEg,p(Z—l)—I—l,p(s—l)-i—l)) N Xp4n . For

the case b = 1, we can prove in a similar way that (5.3) holds. O
Let
(5.4) ng = min{n € N | kg + 1 < p"~3}.

Then it is easy to show that E, N X, # 0 holds for any v € I and any n > ny.
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Lemma 5.3. Let v = (b,j,s) € I satisfy B, C U2, Se(Xo). Then there
exist an infinite sequence {sx}i and a finite or infinite sequence {{Bf Z’“:Ibﬂ}
satisfying the following (1) ~ (3).

(If b= 1, {{BF}5E,""" Yy s an infinite sequence. If b= 2, then {BF}5E "™
is defined as long as sy > 2 (& sp—b+1>1). )

(1) s1 = s (mod ko), sg+1 = p(skg — 1) +1 (mod ko), s € {1,...,ko} and
BE €7y, forkeNand € {1,...,s, —b+1}.

(2) For any (y,q) € Eb,js, there exists (yo,qo) € Ay, 4, such that

s1—b+1

(5.5 Wm(@)leg, )y, a) = D Bi(m-1(8)Lag,  )(yo+£—1,q0)
=1

b.,j,s

for any m > ng + 1, where the mapping (y,q) — (Yo,q0) is an affine
isomorphism from Ej ;o to Ap s, -

(3) For any m > ng and k =2,...,m — ng, where ng is defined in (5.4),

Sk_l—b+1
-1
Z By (¢m—k+1(6)lEg,p(l_lHl,p(Skil_l)_,rl)(y +£—1,q)
(5.6) =t
Sk7b+1

= > B Wmk(Olag, ISy i y,9) + (£~ 1,0)
=1

holds for any (y,q) € R x [0,1] as long as sy — b+ 1 > 1, where 1, is
defined in (4.1) and iy € Z4 is determined by the following inequality:

ik < p(sg—1 — 1)/ko <ip + 1.

note. The relation between Ey o 1)1 p(s—1)+1 and Azps is shown in
Figure 4.

Proof. At first consider the case of (2,7,s) € I'. Let s; € {1,...,ko} satisfy
s1 = s (mod ko) and i1 € {0,...,p — 1} satisfy iy < sk;ol < k—so <41 + 1. Then

for any (y,q) € ES % <q< “TH holds. So there exists an ¢y € {1,...,s1 —

’j7s,
o -1 o o
1} such that S, 1j-g+1(Xo) D E3; . Then Sri1+j*£0+1(E2;j:5) = A5 4 s
Let (y07q0) = Sr:ll+j,go+1(y7q) - (60 - 170) Then (yﬂaqU) € Ag,l,sl and the

mapping (y,q) — (yo,qo) is an affine isomorphism from Ej ;o to A1, . As
for S;i_ll_k(y, q), we have

(5.7) S, 0) = S (a) = (k=1,00  (1<k<si—1)
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and
(58) S Ly +6a) =549 + (pL0).
Since S,nilJrj,gH(Xo)ﬂE;] s =0 for £ > sy, by using (4.3) and (5.7), we obtain
(m (6 )1E;“)(y q)
81 1)

= E : Criy+j—4+1

(]+1 (T11+1 Tll))

-1
X (d)m 1(6)1 "y +J “_I(E‘;]s))(Sril+j7[+1(yaQ))
JN(s1—1)
= > Criyti—t41(Pm-1(0)1ag  )(yo + £ —1,40)
[:1V(j+1—(7‘i1+1—7‘i1))

s1—1

= > BiWm1(9)1ag,, )yo + £~ 1,q0),
=1

for any (y,q) € Es s, where ﬁel = Cr; +j—b+1 (mod p) if (1V (j4+1— (riy+1—
i) <I<(jA(s1—1)and B} =0if 1 <L < (1V (j+1—(riy41—1i,))) or
(A (s1—1)) <€ <s;—1 (see Figure 5). Thus we have shown equation (5.5)
in the case of k = 1.

In the case of £ = 2, let s9 € {1,...,ko} satisfy s9 = p(s; — 1) + 1
(mod ko) and i € {0,...,p — 1} satisfy i9 < p(s; —1)/ko <ia+ 1. If s =1,
then the sequence {{8}};*, b+ }i consists of only one element {{3}}1] b"'l}.
If sy > 1, then Ez,p(g_1)+1,p(sl_1)+1 C U2, Se(Xp) and we have for each
Le {1,...,31 — 1}, m >ng+ 2 and (y,q) € R x [0, 1], by using (4.3)

(1/)m—1 (6) lEg,p(l,1)+1,p(sl —1)+1
(P(L=1)+1)A(s2—1)
(59 = 2. Criy +p(E-1)—0'+2
=1V (p(t—=1)+2—(Tiy41—Tiy))

X (Pm—2(0)1 a3

2,0/,

)y +£—1,9)

-1
)(Sri2+p(571)7['+2(y + l— 1? Q))

So by using (5.7), (5.8) and (5.9), we obtain for any m > ng + 2 and (y,q) €
R x [0, 1],
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_&WA_VAVA_Y&W_AVM,

}/}z\
212 111

1 2 1 1 1 2

21 22 12 11 21 22
2 1

1 2 21 11 2 2
2111 1/ 221 1t /221 1 1211

Ao A3

Figure 5: (¢3(0)1es, ,,) (W, @) = 2(¥2(0)1ag, ,)(Sio (4, @)+ (¥2(8)1ag, ) (S5 (v,9)
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| |
| |

Es 512 A4 Az 34

(a) s1 = 4 and i1 = 2. (¢n(5)1E2,5_12)(y,Q) = 2(1/}”—1(6)1142,2,4)(51701(?/7Q)) +
(Yn-1(8)1455.4) (S5 (v, 9))-

1 2 AN

Esa10 Eorio A1

(b) s2 = 2 and 4> = 2. (¢n—1(5)1E2,4,1o)(y,Q) = 2(1/}”—2(6)1142,1,2)(Sfol(yv‘I))
and (d’n*l((s)lEzﬂ,w)(y:q) = (1/}“*2(6)142,1,2)(51_21 (v,9))-

Ey1.4 Asia

(c) s3 =4 and i3 = 0. (¢n*2(6)1E2,1,4)(y7q) = (1/}“*3(6)142,1,4)(51_1(%Q))'

Figure 6: An example of s; and iy for La(z) = a(x — 2) + a(x — 1) + a(z +
1) + a(z +2) (mod 3)(ko = 4) and F3 5 12. See also Figure 5.
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> B (pm—1 (D)1

s1—1 (p(€—1)+1)A(s2-1)

- Z B Z Criy+p(—1)—£/+2

=1 O=1V(p(£—1)+2—(rig+1—Tiy))
X (z/)m—Q (6) Lo

)y +£—1,9)

o
2,p({=1)+1,p(s1 —1)+1

(S, L) + (¢~ 1,0))

2,[’,32
so—1
= > Bo(m2(lag, )(S,111(5:9) + (¢ = 1,0),
=1

where 8 = 30171 Bley, ype-1)-et2 (mod p) if (1V (p(€— 1) +2 = (riy1 —
riy))) <O < ((P(l—=1)+1) A(s2—1)) and B = 0if 1 <L < (1V (p(£—1) +
2 — (riy41— i) or (Pl —1)+1)A(sg—1)) <V <s9—1.

Thus we have established (5.6) for £ = 2. In the case of k > 2, we obtain
equation (5.6) by repeating the procedure above (see Figure 6).

For the case of (1,4,s) € I', we can prove similarly that there exist infinite

sequences {si}, and {{BF Z’“:Ibﬂ}k satisfying (1) ~ (3). O

Lemma 5.4. For each sufficiently large n, 1/)n(5)1E$ = 0 implies

Yn1(6)1ge =0
for any vy €T.

Proof. Consider the case of (2,7,s) € I'. Suppose

(5.10) n(®)lpe =0

2,5,8

holds for a sufficiently large n € N such that the number i + j2k; given below
is less than n —mng. If Ey ;s C UZI Sp(Xo) does not hold, then it is clear that
1/)n+1(5)1Egjs =0. If B> C U, Se(Xo) holds, then by Lemma 5.3, there

exists {sg, {ﬁf};’;l}k (s € {1,...,ko} and Bf € Z,) satisfying the relations
of Lemma 5.3 (1) ~ (3).
At first we shall consider the case that s; > 2 holds for any £ € N. By using

the relation E5 o 1)1 p5-1)11 C 4200 (5.10), (5.5) and (5.6) repeatedly, we

have
Sk—l

(5.11) > B (Wn-r(8)Lag,, Ny +£—1,q) =0
=1

for any £ € N with 1 < k < n — nyp.
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Since s; € {1,...,ko}, there exist k&1 € N(1 < k; < ko) and iy € N

such that s;, = sjp4k,- S0 si; = Sig4+jk, for j = 0,1,... by Lemma 5.3 (1).
Since ﬁzoﬂkl. E.{O,l,...,p — 1}, there exist ji,j2 € N (j1 < j2) such that
ﬁzoﬂlkl = ﬁz‘ﬁ”kl for £ =1,2,...,8, — 1. Since iy + joki does not depend

on n and n is sufficiently large, we can assume that ig + j2k; < n — ng holds.
So by applying (5.11) with & = 4y + j1k1 and by using ﬁzoﬂlkl = ﬁz“’”kl
and S;4 ik, = Sig+jke» We have

Sig+jaky —1

L
(5.12) Z ﬁéo—i_n ' (d)nf(ioJrjlkl)(6)1A§,z,si0+j2kl Jy+£€—1,9) =0.

=1
Hence by applying (5.6) with m = n+ (j2 —j1)k1, k = io+j2k1 — 1 and (5.12),
we have

(5.13)

Sigighy —11

Z IBio +j2k1—1
l

/=1

X (z/)nf(io+j1k1)+1(6)1E )(y + e - 13 Q) =0.

2,p(E=1)+1p (g 4y —1 =D+
We use (5.11) with k = iy + jok1 — 1 and get

(5.14)
Sigtigky—1—1

Z Bé0+j2k171 (1/)n—(i0+]'2k1)+1 (5) 1Ag,z,s, )(y +4-1, q) =0,

—1 igtjzk1—1
which yields
(5.15)

Sigtijgky —171

Yoo BT W gk 41 (0)ag, y+e-19)=0

igt+ioki—1
=1

together with (5.13) by Lemma 5.2. The step from (5.12) to (5.15) increases
the suffix of ¢ by one and decreases the suffixes of s and A by one. So by
repeating this step, we have

s1—1

Z /8[} (/L/)n-l-(jQ—jl)kl—l(5)]‘143,[,51)(y + l— ]-7 q) =0.
/=1

Hence by (5.5)

Yt (a—ji)ks (O 1mg . = 0.

o .
2,7,
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By Lemma 5.1 and (jo — j1)k1 > 1, we have

1/)n+1(5) Lig = 07

2,7,

which ends the proof of the first case.
For the other case where there exists a k' € N such that sy 1 = 1 and

. r—1 ’
sg > 2, the equation > )¢ Bk (d)m'*k'(6)IES,p(z_1)+1,p(sk,—1)+1)(y+€_1’ q)=0
holds for any m' with m’ > ng + k’. So by putting m’ = n + 1, we have

Sk/—l

(5.16) > B 1w ()1 )y +¢—1,q) =0.
=1

2p(¢=1)+1,p(sy —1)+1
On the other hand, for k& € {1,...,k’}, equation (5.11) holds. By using Lemma
5.2 withn =n — k' and n’ = 1, we have

spr—1

> B Wnrw(@)lag,, )y +E~1,9)=0.
=1

Repeating the process from (5.12) to (5.15), we get
s1—1
Y BiWa(@lag, Ny +L—1,q9)=0
(=1
and
Yns1(6)1pg. = 0.

So we have proved the lemma for the case of (2,7,s) € I.
For the case of (1,7,s) € I, the lemma can be proved in a similar way. O

We use the following lemma to prove Lemma 5.6.

Lemma 5.5 ([8], Lemma 6.1). For all ¢ € {0,...,p — 1} there exist x € Z
and t € Z such that L'6(z) = ¢ and 0 <t < p.

Lemma 5.6. For sufficiently large n, if (4, (8))~1(€) N ES # 0 holds for some
yel,te{l,...,p—1}, then

Wu(0) T () (VES#D  forany €' € {1,...,p—1}.

Proof. By Lemma 5.4, there exists an ny € N such that 1/)n(5)1Eg = 0 implies
z/)n+1(6)1E3 =0 for any n > ny. Put

By = {(z/p*t/p*) |0 <t < p? kit <z < —k_t}.
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Let ny € N satisfy p™2 > (ko + 1)p? and

(5.17)  {(wr /o™t /p™) + (y/p" T2 q /0™ T2) | (y,q) € Bi} C EY

for any (z1/p™,t1/p™) € E5 N Xy,. For an n > ny + ng, suppose

($n(8) (O [ B #0

for some £ € {1,...,p —1}. Then ¢y, ()1ge # 0 holds by Lemma 5.4. So
there exists (z/p"t,t/p™) € ES such that (¢n, (0))(z/p™,t/p™) = ' for some
¢ e{1,...,p—1}. Lemma 2.1 implies

(5.18) ($ny4na (D) (P2 — 1) /p™ T2, p"2t [p™772) = 0
for (ko + 1)p? < < (ko + 1)p%(i # 0) and
(5.19) (¥n14n2 (0)) ((p"22) /" T2, 2t fp™ 72) = 1.

So we have by using Lemma 5.5 with (5.17), (5.18) and (5.19)

(o402 (8) (") [V B # 0

for all " € {1,...,p—1} . So in the same way as the proof of Lemma 5.1, we
have

(4 ()71 (€") [V B3 # 0
forall /" € {1,...,p—1}. O

By using these lemmas, we shall prove Proposition 4.4.

Proof of Proposition 4.4.
At first we prove this proposition in case of m, = 1, that is, for y = (v) € T,
¢ € 7Zp\{0} and sufficiently large n, the following are equivalent.

(1-1) (¥n41(0)) "1 (6) N ES # 0.
(2-1) (¥n42(0)) "1 (6) N ES # 0.

(1-1) = (2-1) is shown in the same way as the proof of Lemma 5.1.
(2-1) = (1-1) : By Lemma 5.4, for v € I and sufficiently large n,
(5.20) Ynt+1(6)1ge =0 implies ¢ 12(6)1ge = 0.

Suppose (1, 42(6))7'(¢) N ES # 0. Then (¥n42(6))1Es # 0. So by (5.20),
$n+1(8)1pe # 0. By Lemma 5.6, we have (,41(8)) ™" (£) N E3 # 0.
When m, > 2, we can prove in a similar way that (2-1) implies (1-1). O
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§6. Convergence of v, (a) in case of R x [0, 1]

In Section 4, we have investigated the convergence of {1, (d)} in the space of
Zp-valued upper semi-continuous functions on a compact subset Xy of R x
[0,1]. In this section we shall show a similar result of the convergence of
{n(a)} for a € P with a(0) # 0 and the relation between the limit function
in the pointwise topology and that in the metric Dy. We first define { E7(a)},
corresponding to {£,}, in Section 4. Put

max(a) = max{z € Z | a(z) # 0},
min(a) = min{z € Z | a(z) # 0},

l(a) = max{i | a(i) # 0} — min{i | a(i) # 0} + 1,
ny = min{n | ky + l(a) < p"}

and
Xo={(y,9) €ERx[0,1] |0 < ¢ <1,—gk; +min(a) <y < —gk— + max(a)}.

Then the support of 1, (a) is contained in X, for any n € N.
Let I" be the same as that in Section 4, that is,

F={(L7,8) [ 1 <s <pho,1 <j <sHU{(2,5,5) | 2< s <pkop, 1 <j <s—1}

For n >ny+ 1 and v = (1,7,s) € I, put

S S
E”(a) = {(y, — <qg< —,
7 (a) {(yq)lpk0 <es o
min(a) j—1
—kyqg+ + <y<—-k_qg+
* " p Y " P

max(a) s—1j

}

and for n > n; + 1 and v = (2,4,s) € I, put

s—1 s
E%(a) = {(y, — <qg< —,
T =19 | = <a< -
—k_qg+ min(a) + ﬂ <y< _k_quM + l}
p" p p" p
Then X, D |, £4(a) holds and {(EY(a))°}, are not necessarily mutually

disjoint. So for v € T, put

Ea) = EMa) \ Uy B (a).

Let I'y and V' be the same as in Section 4.
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For v = (y1,...,7%m) €V, n € N and a € P, define
hZ,v(yaq): Z Z Cey ---Copy
LreN, €Ay,

X (1/)71,(0’))(’5’(;11 s SZIISLYI cee Sfym (ya q))]'S[’Yl (E;Lm(a))(y’ q)7

and
BZ,v(yaQ) = hZ,v(?/aQ)lgl—vl (Ez;m(a))(y’Q)'

Since hy ,, and Bgv belong to the space USC|x,, we shall consider metrics dy,
Dy in USC|y, as in Section 3.

MM = sup{d;(h?,,B%,) | v €V}

awr ayw
and

My = sup{dg (b, hit) | v € V.
Then in a similar way to that in Section 4 we have the following.

Lemma 6.1. For n,n’ > n;+1 and m > 1, we have the following assertions:

(1) By (F (5,0) = e (0) 0, DL, (1 ay) 5 9)-

(2) df(ilg,ujlg:u) :Pmdf(i/)ner(a)lFm_l(Egm(a))v1/’n’+m(a)1Fm_1(En (a)))‘

Tm

’

(8) My < Sagg

(4) Sup{]\;.f,?’n’ | n,n' € N} < oo.
The above lemma concerns Bg,v and M7, but the convergence of {1, (a)}
concerns M7 and hy, as follows.

Lemma 6.2.

(b2 (@) (@) < D2

Proof. We can prove this lemma by using the following relations in a similar
way to that in Proposition 4.5.

D((¢hnr1(a) =1 (0), (¢nr41(a))~(€))

< wax D((uia (@) (0 1 B (@), (et (@) (O N EFF ()
< r?glzidf(z/)nJrl(a)lel(a)a1/’n’+1(a)1E1;+1(a))
< max—dy (B2, BE).

veV p
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As for the relation between hg , and 712’0, we have

Lemma 6.3. (1) D(Eg(a),E’g(a)) — 0 as n — oo.

(2) If EZ(a) \ E[f(a) # 0, then there exists v' in T such that EIYL, (a) # 0 and
EZ(a) N EL (a) # 0.

Using above lemmas, we will get the following theorem in a similar way to
that in Theorem 4.1.

Theorem 6.4. For a € P with a(0) # 0, the following assertions hold:
(1) d¢(¥n(a), Ym(a)) = 0 as n,m — oo.
(2) Put f, = /\1@1 VnZk tn(a) € USC. Then we have
D¢(pn(a), fa) =0 as  n— oo.

We will consider the relation among fs in Theorem 4.1, f, in Theorem 6.4

and the limit set Y, = N2 Upsg Kgf;a).
Let ¢ be the upper envelope of g, that is,

9(y,q) = inf{p(y,q) | € USC,é(y,q) > g9(y,q)}-

Then the upper envelope of ¢, of the limit function g, in the pointwise topology
has the relation with the limit set in the sense of Kuratowski limit.

Theorem 6.5. For a € P with a(0) # 0, let Y, = oy U5k Kgfb’a) and g,
be defined by ga(y,q) = limy, o0 (¥n(a))(y, q) in the pointwise topology. Then
the following assertions hold:
(1) The characteristic function ly, of the set Y, satisfies
ga = (p - ]‘)]‘Ya

and

Ga = /\k21 Vnzkd)n (a).

(2) Though g, is not necessarily the same as gs for any a € P as shown in
Theorem 2.5, the upper envelope g, of gq is the same, that is,

Ga = G5 = fa = f5,

where fq is defined in Theorem 6.4.
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K(njv(s)}

p"

such that lim (yn;,qn;) = (¥,9)- S0 g5(Yn;,qn;) # 0. By Lemma 5.6, there
j—o00

Proof. (1) Let (y,q) € Y,. Then there exists a sequence {(yn;,qn;) €

exists a sequence {(z,,;,wn;) € M} such that lim (2., w,.) = (y,q) and
P/ j—00 J J

9a(zn;,wn;) = p—1. S0 gs(y,q) = p — 1. If (y,q) ¢ Ya, then there exists a

neighborhood U of (y,q) and k such that U N % = () for any n > k. So
Gs(y,q) = 0. Therefore we obtain (p — 1)1y, = gq.
By Lemma 5.6, we have

V dula) = (0 = Dy,

n>k

where Yy = Upsp %% S0 o = Ags1 Vs ¥n(a) holds.
(2) By Theorem 2.5 (3), Y5 = Y,. By using (1), we have f5 = g5 = §o = fa-
U
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