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Abstract. We study the exact asymptotic behaviour of some special gen-
eralized renewal measures on the whole line R and, in particular, that of the
ordinary renewal measure on R. When the underlying distribution F' is con-
centrated on [0, 00), these measures are closely related to the higher renewal
moments EN(t)", where N(t) is the number of renewals up to time ¢. The tail
of F' is assumed to possess the tail behaviour of a distribution from the class
S(7) for an arbitrary v > 0.
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§1. Introduction

Let X;,7i=1, 2, ..., beindependent, identically distributed random variables
with a common non-arithmetic distribution F' and finite positive mean .
Write Sy = 0 and S :ZleXi, k=1,2,....
In this paper we shall be concerned with the exact asymptotic behaviour
of the generalized renewal measures of the following type:
n-(n+k—1)

(1.1) d,(A) = — F’“*(A), AeB,
k=0 )

*This research was supported by Grant 96-01-01939 of the Russian Foundation for Fun-
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where n > 1 is integer, F** is the k-fold convolution of F, F'* def F, F% ig

the Dirac measure ¢, i.e. the atomic measure of unit mass concentrated at the
origin, and B is the g-algebra of all Borel subsets of R. The ordinary renewal
measure H = > 3% , F** is a particular case of (1.1): H = ®;. The question
arises whether the series in (1.1) will converge for, at least, bounded A, i.e.
whether the measure ®,, will be o-finite. In this respect, the following assertion
is true [22, Proposition]: the measure @), is o-finite if and only if E(X[ )" < oo;

here £~ = max(0, —z). Moreover, the function ®,(¢) © o n((—00,t]) is finite

if B(X; )" < oo; see [27, Corollary 5.2].

In the class of all generalized renewal measures » ;- ap F¥* the measures
®,, are distinguished by their close relationship with the higher renewal mo-
ments EN ()", n > 1, in the following sense. Suppose temporarily that the
X, are non-negative. Denote by N(t) = sup{k > 1 : Sy < t} the number of
renewals up to and including time ¢. Obviously, H(t) = EN(t) + 1. Instead
of EN(t)™, it is convenient, from the technical point of view, to study the
renewal ®-moments defined by Smith [26] as

O, (t) = E{[N(t) + 1][N(t) + 2] -- - [N(t) + n]}, n=12...,

since the Laplace-Stieltjes transform of @, (t) is then given by the following
simple expression:

D, (s) def /0 exp(sz) d®,(x) =n![l — Eexp(sX1)]™", Rs<O.

It is easy to verify that the measure ®,, generated in the usual way by the
non-decreasing function ®,,(¢) admits precisely the representation (1.1).
Suppose E|X;|" < oo. Define coefficients 'y,(cn), k=1, ..., n, by the

following asymptotic relation:

(1.2) [1_7 - Z ”’“ (%) as s — 0.

If E|X|""! is also finite, we slightly change this definition by replacing the
right-hand side of (1.2) with Zzzo(—1)”“’)/,(?)/3”c + o(1) in order to define 'y((]n)
as well. It is clear that the coefficient ’y,(cn) depends on the first n — k + 1
moments of F.

We shall be concerned with the exact asymptotic behaviour of the remain-
der term R, in the representation

(1.3) B, (A) = any,g%k*(A) FRa(4), Ac€B,



EXACT ASYMPTOTIC BEHAVIOUR 249

where the 'y,(cn) are defined by (1.2) and L is the restriction of Lebesgue measure

to the non-negative half-axis [0, 00). More precisely, we will study the exact
tail behaviour of R,, i.e. the behaviour of R, ((t,00)) as ¢ — oo. This will
allow us, by putting in (1.3) alternatively A = (—o0,t] or A = [0,¢], to
obtain asymptotic expansions for the specific quantities of interest, i.e. @, (%)
or ®,([0,t]). Setting n = 1 will then yield a refinement of the following

well-known renewal theorem on the whole line R: H(t) —t/p — pa/(2u?) as

t — oo, where H (t) aof ®1((—o0,t]) is the renewal function and py = EX?

(see Theorem 5 below). Finally, the choice A = (¢,¢ + h] for h > 0 will lead
us to an expansion for ®,((¢,t + h]) as t — oo, which in the case n = 1 will
turn out to be a refinement of Blackwell’s renewal theorem.

The tails of distributions from the classes S(vy), v > 0, (see Definition 1
in Section 2) proved to be ideal comparison functions for determining exact
asymptotic behaviour of various quantities of interest not only in renewal
theory, but also in branching processes, random walks and infinite divisibility
(more on that in Section 2). So our main assumption on F' will be F'((¢,00)) ~
G((t,0)) as t — oo for some G € S(7y) with v > 0 (the notation a(t) ~ b(t)
as t — oo means that limy_, ., a(t)/b(t) = 1).

The asymptotic behaviour of the generalized renewal functions ®,,(t) was
studied in detail by Smith [27] under moment assumptions on the underlying
distribution F. In the one-sided case, i.e. when F'([0,00)) = 1, the exact
asymptotic behaviour of the renewal measure H = ®; was studied in detail
in Frenk [14]. As far as the subexponential behaviour of ®,, is concerned,
i.e. when the “comparison” distribution G € S(y) with v = 0, the reader is
referred to Sgibnev [22].

§2. Preliminaries

Definition 1 The distribution G of a non-negative random variable is said to
belong to the class S(7y), v > 0, if the following conditions are satisfied:
lim [1 - G(z +y)]/[l —G(z)] = Vy € R;

T—00
G(y) def / e’ G(dr) < oo;
0

lim [1 - G2 (@))/[1 - G(2)] = 2G().
T—00
The class S = §(0) (later called the class of subezponential distributions)
was introduced by Chistyakov [4], while the classes S(v) for positive vy were
first considered by Chover, Ney, and Wainger [5, 6]. The importance of such
distributions has widely been illustrated by the fact that in many cases the
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exact asymptotic behaviour of probabilistic quantities of interest can be ex-
pressed in terms of the distributions of S(y). There is a rather extensive
literature concerning both the properties of S(y)-distributions themselves and
their use in various areas of probability theory (branching processes, queueing
theory, infinite divisibility, etc.); see, e.g. Athreya and Ney [1], Teugels [28],
Veraverbeke [29], Embrechts, Goldie and Veraverbeke [11], Embrechts and
Goldie [9, 10], Pitman [17], Embrechts and Veraverbeke [12], Cline [7, 8],
Sgibnev [21, 22, 24], Kliippelberg [16], Bertoin and Doney [2].

We shall need some knowledge about Banach algebras of measures. A
function ¢(z), x € R, is called submultiplicative if ¢(x) is finite, positive,
Borel measurable and ¢(0) = 1, p(z +y) < p(z) p(y) Yz, y € R. The limits
r_(p) © limy,_solog p(x)/z > —00 and () € lim,_e logp(x)/z < 00
exist and r_(¢) < r4(¢) [15, Section 7.6].

The collection S(p) of all complex-valued measures « such that

def
[l =

| oo (o) < 0
R
(here || stands for the total variation of ) is a Banach algebra with norm ||s||,
and the usual operations of addition and scalar multiplication of measures; the
product of two elements v, k € S(p) is defined as their convolution v x k. The
unit element of S(yp) is the atomic measure J of unit mass at the origin [15,
Section 4.16].

The following theorem of [19] describes the structure of homomorphisms of
S(¢) onto C.

Theorem 1. Let m : S(¢) — C be an arbitrary homomorphism. Then the
following representation holds:

m(v) = /X(w,y) exp(az) v(dx), v e S(p),

where a is a real number such that r_(p) < a < ri(v) and the function
x(z,v) of the two variables z € R and v € S(p) is a generalized character.

Here we mention only one property of a generalized character which will be
used later: v —esssup,cg |x(z,v)| < 1.

In the present paper we shall use the following system of submultiplicative

functions: ¢ (z) def (1 + |z)¥, z < 0, and @ (z) def exp(yz), ¢ > 0, where

v>0and k=0, 1, .... The Laplace transform of an element x of S(pp) is

defined as follows: %(s) of Jr exp(sz) k(dz); this integral converges absolutely
with respect to || for all s in the strip

H('y)d:ef{SEC:OS%SS'y}.
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Now choose an arbitrary distribution G € S(). Put 7(z) = 1 — G(z).
Define

Q) =supv((z,00))/7(z), v & Slpo)
x_
Consider the collection &I(7) of all measures v € S(ypp) such that Q(r) < oo
and there exists the limit

I(v) © lim v((z,00))/7(z) € C.
T—>00
As shown in [21, Proposition 2], &I(7) is a Banach algebra with respect to
some norm ||v||" equivalent to the norm ||v||,, + Q(v). Moreover, for any two

elements v, k € &l(7), the following equality holds:

(2.1) Wy k) =1w)EO) +1(K)D(Y).

Let A be an arbitrary commutative complex Banach algebra with unit
element e. The spectrum o(a) of an element a € A is defined to be the set
of all complex numbers \ such that the element ¢ — Ae does not have an
inverse. If f(z) is an analytic function in a domain containing the spectrum
of an element a € A, then there exists an element f(a) € A such that for each
homomorphism m : A — C the following relation holds: m(f(a)) = f(m(a))
[30, Section 3]. The element f(a) € A is called the value of the analytic
function f(z) at the element a € A.

We shall need the following result on the values of an analytic function at
elements of &/(7) [21, Theorem 3].

Theorem 2. Let f(z) be an analytic function in a domain containing the
spectrum o(v) of an element v € S(pp), and let f(v) be the value of f(z) at
v e S(po). If v e 8I(r), then f(v) € &I(T) and the following equality holds:

)] =fPml-iw).

Let v be a finite measure. Define a o-finite measure, say T'v, by the formula
Tv(A) = / n(x) dz, A€ B,
A

where n(z) = —v((—o0,z]) for z < 0 and n(z) = v((z,00)) for z > 0.
Notice the following properties of the operator T'. First, if [ |z|*|v|(dz) < oo
for some positive integer k, then [ |#|* !Tv|(dz) < oo, so that the kth
iteration T"v is a finite measure. Hence Tv € S(pg_1), provided v € S(pg)
with £ > 0. Second, the Laplace transform (Tv) (s) is given by (Tv)"(s) =
[0(s) — D(0)]/s, Rs = 0, provided [ |z||v|(dz) < co. The value (Tv)"(0) is
defined by continuity as [ = v(dz).
The proof of the following lemma can be found in [24].
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Lemma 1. Let G € S(vy) withy > 0 and let 7(x) = 1 —G(z). Ifv € &l(1)
and ono |z| [v|(dz) < oo, then Tv € Sl(1) and I(Tv) =1(v) /7.

Theorem 3. Let X, X9, ... be independent, identically distributed ran-
dom wvariables with a common non-arithmetic distribution F, y = EX; > 0
and E|X1|" < co. Then, for each h > 0, the following relations hold:

@, ((z,z +h]) ~nha" 1 /u" as T — 0o,

O, ((z,z+h]) =0 as & — —o0.

The absolutely continuous part of an arbitrary distribution F' will be de-
noted by F. and its singular component, by Fs: Fy = F — F,.. In particular,
(F"™*)5(y) will stand for the Laplace transform at point 7 of the singular
component (F™*), of the m-fold convolution F™*.

83. Renewal theorem

In what follows we assume that in the Banach algebra &l(7) the comparison
function 7(x) is the tail of a distribution G € S(vy) with v > 0.

Theorem 4. Let X;, Xo, ... be independent, identically distributed ran-
dom wvariables with a common distribution F € SI(t), p = EXy > 0 and
E|X1|™ < co. Suppose that (F™ )s(y) <1 for some integer m > 1, and that
in the strip TI(7) there are no roots of the equation 1 — F(s) = 0, distinct
from zero. Then the representation (1.3) holds, where the restriction of R, to
[0,00) belongs to Sl(T) and

(3.1) Tim R (1, 00))/7(t) = m - nlU(F)/[1 — F()]" ™.

Proof. By the hypotheses of the theorem, F € S(p,). Choose ¢ > 7.
Consider the function

def 5
(s) = (s —e)[L=F(s)]/s,  seI(y)\ {0}
Define v(0) = ep. By the properties of the operator T', we have TF € S(¢p—1),
and hence v(s) is the Laplace transform of the measure V' Y errys-Fe
S(‘:Onfl)-

Lemma 2. Let F' € S(pk41), kK > 0. Suppose that (F™ )s(y) < 1 for some
integer m > 1. Then V € S(pr) and there exists V1 € S(px). Moreover, if
F € Gl(1), then V=! € GI(1) and

(3.2) (v =
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Proof of Lemma 2. As shown above, V' € S(pg). Let M be the space
of maximal ideals of the Banach algebra S(p). The following facts are well
known from the theory of Banach algebras. Each maximal ideal M € M in-
duces a homomorphism of the Banach algebra S(¢y) onto the field of complex
numbers C; moreover, M is the kernel of this homomorphism. Denote by
v(M) the value of this homomorphism at v € S(pg). An element v € S(py)
has an inverse if and only if v does not belong to any maximal ideal M € M.
In other words, v is invertible if and only if v(M) # 0 for all M € M.

The space M is split into two sets: M is the set of those maximal ideals
which do not contain the collection L(yy) of all absolutely continuous measures
from S(pg), and Mg = M\ M;. If M € M,, then the homomorphism
S(pr) — C induced by M is of the form v — D(sg), v € S(px), where sq is
some complex number such that 0 < Rsy < . In this case, M = {u € S(py) :
p(so) = 0} [15, Chapter IV, Section 4]. If M € May, then v(M) = 0 for each
absolutely continuous measure v € S(py).

We now show that V(M) # 0 for each M € M; hence we will establish
the existence of an inverse element V' € S(p;). Actually, if M € My,
then, for some sy € {0 < Rs < v}, we have V(M) = 17(30) # 0. Let
M € Ms. First of all, we note that the condition (F™*)5(y) < 1 implies the
inequality (F™)(«) < 1 for all « € [0,v]. In fact, the function (F*)s (),
a € [0,7], is convex and (F™*)5(0) < 1 since the inequalities (F™*)5(y) < 1
and (F*)"(y) > 1 imply that (F™*).(R) > 0. Applying Theorem 1, we have
that, for some « € [0,7v],

[E(M)[™ = [F™(M)| = [(F™)s(M)

_ / (F™),) explaz) (F™), (dz)
< /exp(a:p) (F™)g(dz) < 1

Since TF € L(yy), we obtain that |[V(M)| = |1 — F(M)| > 0. This means
that there exists an inverse element V! € S(¢y) and that the function 1/v(s),
s € TI(y), is the Laplace transform of V=1,

Applying Lemma 1, we see that TF € &i(r) with I(TF) = I(F)/v, and
hence V' € &I(r) with I(V) = I(F)(e — v)/v. Applying Theorem 2 with
f(z) = 1/z, we obtain [(V 1) = —I(V)/[V(v)]?, whence (3.2) follows. This
completes the proof of Lemma 2.

We return to the proof of Theorem 4. Denote W = (V1)™*. We have

(3.3) ﬁ —nl (3 . 6>n W (s) = n! Zn:(—g)’c (Z) W;Ef).
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Further,

- k
po  TPome w0y
7=1

where w;(s) o [wi—1(s) — wj—1(0)]/s, 7 = 1,2,... .k, and wp(s) et W(s).
Substituting (3.4) into (3.3) and collecting similar terms, we obtain by the
uniqueness of the expansion (1.2) that

(3.5) o zn:(—nkﬁ +nl Xn:(—g)k (”) w(3).
L-Fer = 5 K

Denote

n

Ro=nlY (—¢)* (Z) TEW.

k=0
By Theorem 1 with f(z) = 2", we have W € S(p,—1) and W € &I(7) with

W) = ni(v=) _ ny" UI(F) _
TP (el P

Note that wy(s) is the Laplace transform of the measure T*W. By the prop-
erties of the operator T, T*W € S(¢n_j—1) and, by Lemma 1, T*W € &i(7)
with [(T*W) = I(W)/4*, k = 1,...,n — 1. We cannot, however, assert
that T"W € Sl(r) since |[T"W|((—o0,0)) may be infinite. Nevertheless, by
Lemma 1, the restriction T"W ;g o) of T"W to [0, oo) is an element of &I(7)
and [(T"W (o, 0)) = {(W)/". Therefore, the restriction Ry|[o, ) belongs to
Sl(7) and

. n k(n L :M
HRaljo,00)) = !g( €) (k)l(T ") [1— F(y)tt

This proves the theorem in the case F([0,00)) = 1 since relation (3.5) for
s < 0 is precisely the Laplace-transform version of (1.3).

In the general case, i.e. when F([0,00)) < 1, an additional argument is
needed to justify the transition from (3.5) to (1.3). This argument is based on
the theory of tempered distributions [20, Chapter 7]. Denote by S; the space
of rapidly decreasing functions defined on R, and by ] its dual space. The
elements of S| are called tempered distributions. All measures in (1.3) may be
regarded as tempered distributions since they are slowly increasing measures
[20, Section 7.12]. Recall that a o-finite measure v is slowly increasing if, for



EXACT ASYMPTOTIC BEHAVIOUR 255

some k > 0, [5(1+ 2%)7*|v|(dz) < oo [20, Section 7.12]. For example, the

formula ®,, (1)) def Jr ¥(x) ®p(dx), 1 € Si, defines an element of S7, which

will again be denoted by ®,,. The Fourier transform F(u) € Sf of an element
u € 8] is defined as follows:

Fu)() = uw(F@), ¢es,

where
PO Y 0r) 7 [ pw)ep(-ita)dr, teR,
R

is the Fourier transform of the function ¢)(z). If v is a finite measure, then F(v)
may be identified with the function (27) '/2D(—iz), © € R, i.e. F(u)(v) =
(27r)_1/2 fRﬁ(—zx)l/)(x) dz, ¢ € 8.

Let a o-finite measure v be an element of S]. For a > 0, put v,(A) o v(A—
a), A € B, WhereA—adéf{xER:x+aEA}. We set Aazzdéfz/—ua S
Then F(A,v) = (1 — e%®) F(v) in the sense that

FAw)(y) = FW)(1 —e )(x)]
~ (2n)12 / / (1 — e=1%)b ()6~ das (dt).
RJ/R
In what follows, the notation A¥ will mean that the operator A, is applied
k times. If v and k are two measures for which the convolution v * x makes
sense, then clearly Ay (v * k) = (Agv) * & = v % (Agk). The measure A,L
is nothing else but the restriction of Lebesgue measure to the interval [0, a].
Therefore, the tempered distribution F(A¥L**) may be identified with the

function (27)~/2(1 — e~®)k/(iz)*¥ z € R, and hence F(APL**) is defined
by the function (27) Y2(1 — e~%*)"/(iz)*, = € R.

Lemma 3. Let v be a finite measure. Then the tempered distribution
F(ATv) may be identified with the function

(2m) 2 (1 — e ) [D(—iz) — D(0)]/(—iz), r €R.
Proof of Lemma 3. The measure A,Tv has density
f) = v(R)d((—o0,t]) —v((—o0,t])

— [P(R)I((=00,t —a]) = v((~o0,t — a])]
= [W(R)S —v]((t - a,t]).

We have
v = (2m)" /2 z)e " dy .
F(ALTv)(4) = (2r) /R /R lx)e"= da £ (1) dt
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Since v is a finite measure, it is easily seen that the function v((¢ — a]) is inte-
grable and so is the function f(¢). By Fubini’s theorem, we may interchange
the order of integration to obtain

F(ATV)() = %lﬂ/m /-Mla ] (du) dt d

= (2nm) 1/2/ P(x / / e dt [w(R)S — v](du) dz
=(%rm/wm%—é;wmwﬁemwm
R —ir
This completes the proof of Lemma 3 since obviously v(R)
A,

Applying Lemma 3 with v = T"~'W, we see that F(
with the function

(2m)~1/2(1 — ¢tom n'z ( ) —iz), z€R,

and hence F(A'R,,) is given by the function

(2m)~1/2(1 — ¢7iom) ”n'z ( ) —iz), z€R.

We now turn to (3.5). Put s = —iz, x € R, multiply both sides by
(2m)~1/2(1 — e1%)n)(z), ¢p € Sy, and then integrate the equality thus ob-
tained over the whole line R. This yields

= v(0).
R,,) is identifiable

(3.6)

T -1/2 n'(]' — e—iaz')n v = n k* n
2 [ ) d Z% FALLF) () + F(ATR,) ().

Lemma 4. The left-hand side of (3.6) is equal to F(Al®,,)(1)).

Proof of Lemma 4. Define a measure ®,, , for z € (0,1) by

k=0

This measure is finite and @L,Z(s) = n!/[l—zﬁ(s)]”, Rs = 0. Hence F(®, ;) €
S! may be identified with the function (27)~'/2n!/[1 — 2F(—iz)|", © € R.
Clearly ®, ., — ®, in the topology of the space S| as z — 1—, and hence
Al®, . — Al'®, as z — 1—, whence it follows that F(A7®,, ;) = F(A}D,)
in ] as z — 1—. In order to complete the proof of the lemma, it remains
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to notice that we may take the limit z — 1— through the integral on the
right-hand side of the equality

—1axr\n
P81, )0) = (ny 2 [ L2 V00 g,
R [l — zF(—ixz)]"

since the integrand is bounded from above by the integrable function C|¢(¢)],
uniformly in z € (1/2,1), where C is a positive constant (see the proof of
Lemma 1 in [18]). In view of Lemma 4, we may replace the left-hand side
of (3.6) by F(A®,) () and then go over from the Fourier transforms to their
inverse images. We obtain

n
(3.7) ArD, =S A MARLH £ AIR,,.
k=1

Let D(R) be the space of all infinitely differentiable functions with compact
supports. Any tempered distribution is completely determined by its values
at functions ¢ € D(R) since D(R) is dense in S; [20, Theorem 7.10]. Let v be
an arbitrary element of D(R) whose support is contained in a finite interval
[c,d]. Then the left-hand side of (3.7) will be equal to [ 9 (x)®y(dz) plus a
finite number of integrals of the form + [g ¢(z + ja)®,(dz), where j > 0 are
integers. The latter integrals are estimated by the quantities ®,,([c — ja,d —
ja])max{|y)(z)| : € [c,d]}, which tend to zero as a — oo (see Theorem 3).
Similar reasoning is also valid for the summands in the right-hand side of (3.7).
Letting a — oo, we obtain the representation (1.3). This completes the proof
of Theorem (4).

We now present some results concerning the asymptotic behaviour of ®,,(A)

for various choices of the set A. We begin with the generalized renewal function
D, ().

Theorem 5. In addition to the hypotheses of Theorem 4, suppose that
E| X" < 0o. Then

By (2) © Bp((—00,z]) = S 12t /K — Rul(2, 00)),
k=0

where Ry ((z,00)) satisfies (3.1).

Proof. The assertion of the theorem is an immediate consequence of Theo-
rem 4. We only need to verify the equality 'y((]n) = R,(R). Tracing the proof of
Theorem 4, we see that the additional hypothesis F|X;|**! < oo implies that
T™W is a finite measure and so is the remainder R,. Moreover, the Fourier
transform F(A!R,) may be identified with the function

(2m) /2 (1 — emiaryn {n!/[l — F(—iz)]" - Zy,(cn)/(ix)k} , z€eR
k=1
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On the other hand, since R, is a finite measure, F(AR,) is identifiable
with (27)~1/2(1— *"”)”R (—iz). But if any two locally integrable functions
define one and the same tempered distribution, they must coincide almost
everywhere. Hence

(3.8) Rn(—iz) = nl/[1 — F(—iz)] Z’yk

almost everywhere and, since both sides of (3.8) are continuous functions, this
equality holds for all z € R\ {0}. Lettlng z — 0 in (3.8) and recalling the
definition of fy(() ), we obtain R, (R) = R, (0) = fy( ") The proof of Theorem 5
is complete.

Further, we consider the asymptotic behaviour of ®,([0,z]) as z — oc.
We shall need some additional notation. Let n = min{k > 1: S > 0} and let
F, be the distribution of the first positive sum S,. Put

o
§, Z % e,

k=0
Since £X; > 0, both distributions F' and F; possess finite moments of the
same order. This may be seen as follows. By Theorem 10 I of [3, Chapter 4],
F((z,00)) < Fg((z,00)) < cF((z,00)), where Fg, is the distribution of the first
non-negative sum and c is a positive constant. Hence F' and Fyg possess finite
moments of the same order. Taking into account the connection Fyg = a+bF,
a, b > 0, between Fy and Fy [13, Section XVIIL.6], we arrive at the desired
conclusion.

Define coefficients %(Cn) in complete analogy with the 'y,(cn), taking the dis-
tribution F', as a starting point instead of F. Let @), be the measure with
Laplace transform

n
Qn(s) € /1= Fo(s)" = S (-DF50/s5, Rs <o,
k=1
Denote by D the distribution of infg>q Sk. Put

p(m) def gn / D Oull. 00)) D™ (dx),

where a = exp{>_7", P(S; < 0)/k}.
Theorem 6. Under the hypotheses of Theorem 4,

@,([0,2]) = +ka 2" [k = R((2, 00)),

where Ry ((z,00)) satisfies (3.1).
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Proof. The assertion of the theorem is an immediate consequence of The-
orem 4. We only need to verify the equality an) = R,([0,00)). First, we
observe that the condition (F"*)5(y) < 1 for some integer m = m(F) > 1 is
equivalent to (F7*);(r) < 1, where m = m(Fy) > 1 [25]. In particular, both
distributions F' and F; have non-vanishing absolutely continuous components.
Tracing the proof of Theorem 4, we conclude that

n

(3.9) 0u(4) = Y AL (A) +Qu(4),  AeB.
k=1

Moreover, @, is a finite measure. Putting A = [0,¢] in the lemma of [23], we
have

0 ~
(3.10) B, ([0, ¢]) :an/ &, ([—z,t —]) D™ (dz).

—o0

Putting A = [—z,t—x] in (3.9) and substituting it into (3.10), we obtain after
simple calculations that

n k 0
@, ([0,1]) :Zy,g’”%m"/ Qn([~2,t — 2]) D™ (dz).
k=1 -

The fact that, as a results of these steps, we will obtain Y ,_,; 'y,(cn)tk/k!
as the polynomial part of ®,([0,¢]) follows from the uniqueness of the ex-
pansion ®,([0,¢]) = Y.7_, axt® + o(t) as t — oo. Therefore, R,,([0,t]) =
a” f_ooo Qn([—z,t —x]) D™ (dz). Letting ¢ — oo, we obtain the desired equal-
ity T = R, ([0,00)).

Finally, let us consider the behaviour of ®,((z,z + h]), h > 0, as © — oo.

Theorem 7. Under the hypotheses of Theorem 4,

o Bal(@ e+ ) =R @+ W - aFR (1= ey n e nli(r)
o (@) 1= Fepee

Proof. The ratio under the limit is equal to R, ((z,z + h])/7(x). We have

Ro((z,z+h]) _ Ral(z,00))  Ral(z+h,o0)) (2 +h)
7(z) 7(z) T(z + h) 7(z)
— (- e‘”fi)n () as T — 00.
[1 = F(y)]"*

This proves the theorem.
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Remark 1 In the renewal-measure case, i.e. when n = 1, the S(y)-
behaviour of the remainder term was considered in [14] for distributions F
concentrated on the positive half-axis. Theorem 7 generalizes Theorem 3.1.14
of [14] to arbitrary n > 1 and to the whole line R.

Remark 2 The condition (F™*)g(y) < 1 for some integer m = m(F) > 1is
also necessary in order to ensure that [ €7%|R,|(dz) < co. Actually, suppose
the contrary. First, we observe that, by Theorem 3, ®,((z,z + h]) — 0 as
x — —oo. Hence ffoo P, (dx) = ono e’ |R,|(dz) < oo since v > 0. Then,
choosing A,,, € B of Lebesgue measure zero such that fAm eEYE(F™)g(dx) > 1,
we would obtain from (1.3) that, on one hand, ®,(U_; A,,) = oo and, on the

other hand, ‘fumﬂAm eWRn(dx)‘ < Jg €*|Rnl|(dz) < oo. This contradiction
proves the necessity of the indicated condition in Theorem 4.
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