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Abstract.  The initial value problem for a system of PDEs of the form

Oui(t, x) + Oui(t, x)
ot Ox

is solved. In (%) t is a real variable. x is a variable moving in a real Banach
space X. u1,...,uy are unknown functions whose values are in a real Banach
space G. u denotes the ‘vector’ (u1,...,un). Differentiation in z is taken in
the sense of the Fréchet derivative. fi,..., fy are G-valued given functions and
A1, ..., An are X-valued given functions.

(%)

)‘i(t7$7u(t7$)) = fi(taxau(taa:)): 1<i<N.
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§1. Introduction
In the old textbook [6] on partial differential equations by Petrovsky there
is a section with the title “Cauchy problem for hyperbolic systems in two in-
dependent variables”. He considers there an initial value problem of the form

Ou;(t, Ou;(t, z N .
(1) 2902, 2 2 aift-2hut.0) +0(60), 1 SIS
(1.2) u;(0,2) = pi(z), 1 <i<N.
In (1.1) ¢t and z are variables moving in the real line R. u,---,uy are R-

valued unknown functions. );, a;; and b; are given functions. According to
the terminology of Petrovsky the system (1.1) is of the standard form of the
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first order linear hyperbolic system with two independent variables. It is shown
in [6] that the problem (1.1)-(1.2) has a unique (local) C''-solution under the
assumption that the given functions A;, a;j, b; and ; are in the C' class. In a
footnote of the book it is noted that the above result can be easily generalized
to the case where the linear system (1.1) is replaced by the ‘semi-linear’ system

8“1' (ta ZE)
ot

8“1' (ta ZE)

(1.3) =

+ Ai(t, z) = filt,z,u(t,z)), 1<i<N,
where u(t, z) = (u1(t,2), ..., un(t, ).

In some other textbooks on partial differential equations such as Garabe-
dian[3] and Williams[7] a more general problem is treated. In [3], [7] the

semi-linear system (1.3) is replaced by the ‘quasi-linear’ system

aui (ta ZE)
ot

aui (ta ZE)

(1.4) =

+ Xi(t, z,u(t, z)) = fi(t,z,u(t,z)), 1<i<N.

The author of the present note believes that the initial value problem for
a system of the form (1.4) was first solved by Friedrichs[2]. It was proved in
[2] that the initial value problem (1.3)-(1.2) has a unique local C*-solution, if
the functions );, f; and ¢; are C?-functions. See Theorem 7.2 of [2]. Lax [5]
treated a similar problem mainly within the framework of analytic functions.

By the monogragh [4] of Jeffrey we know that the above mentioned initial
value problem has good applications in some fields of physics such as gas
dynamics.

The purpose of this note is to consider a problem that is more general
than those treated in [2], [3] etc. Here we want to replace the real variable
z in (1.4) by a variables moving in an arbitrary real Banach space X. We
also want to consider the case where the values of the unknown functions
u1,---,uy are in another arbitrary real Banach space G. We take the partial
derivatives du;(t, z)/0z in the sense of the theory of Fréchet derivatives. Note
first, however, that it is difficult for us to consider the problem with no change
in the form of the differential equations. This is because of the difference
between the meaning of a partial derivative in the ordinary sense and that
in the sense of the theory of Fréchet derivatives. In the theory of Fréchet
derivatives the value of the partial derivative du;(t,z)/0z is not a point of the
space G, but a bounded linear operator from X into G. If we denote the set
of all bounded linear operator from X into G by, according to Dieudonné[1],
L(X;G), we can say that the partial derivative Ou;(t,z)/0z is in the space

L(X;G). In this interpretation of partial derivatives, therefore, the value of the

Oui(t,z) .

second term \;(t, z, u(t, x)) in (1.4) is not in the space G, if we take

the value of the ‘coefficient” \;(¢, z,u(t,x)) as a mere number. This difficulty
can be overcome, if we consider \; (¢, z,u(t,z)) to denote a point of the space
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L(L(X;@G);G). However this interpretation of the coefficient A;(---) is a little
cumbersome. So we take a little bit different way. We assume that the value
of A\i(---) is in the space X and consider, instead of (1.4), the system of the
form

Ou;(t, ) n Oui(t, )

1.
(1.5) ot ox

Xi(t,z,u(t,z)) = fi(t,z,u(t,z)), 1<i<N.

Ou,;(t
If Xi(---) € X, then the product duilt,z)
the left hand side of (1.5) as a whole becomes an element of G.
In what follows we denote by 0; the partial differentiation with respect
to the ith variable for a function of several variables. By this notational
convention the system (1.5) is rewritten as

Ai(--+) becomes an element of G and

(1.6) O1ui(t,z) + Oou;(t, z)Ni(t, z,u(t, z)) = fi(t,z,u(t,x)), 1<i<N.

We want to solve the system (1.6) under the initial condition (1.2). But, as
is usual, there is no loss of generality in considering the homogeneous initial
condition

(1.7) u;i(0,2) =0, 1<i<N,

only, instead of the general condition (1.2). In this note we consider, therefore,
the condition of the form (1.7) only as the initial condition.

To sum up, we want to solve the initial value problem (1.6)-(1.7) with
respect to the G-valued unknown functions uq,...,uy of the variable (¢,z) €
R x X. In what follows we write IVP instead of ‘initial value problem’. So
our purpose is to solve the IVP (1.6)-(1.7).

In the next section, §2, we solve the IVP (1.6)-(1.7) in the ‘semi-linear case’,
i.e., in the case where \;(¢,x,u)’s do not depend on u. This problem is solved
by a method similar to the one in Petrovsky[6], i.e., the method using ‘the
characteristic curves’. A result for the semi-linear IVP will be stated in §2 as
Theorem 2.1. In §3 we consider a system of the form

(18) (91Ui(t,(L‘) + aQui(t’x):ui(taxav(tax)) = fi(t,(II,U(t,(L‘)), 1<i<N,

where v is a G"-valued given function. This system is still semi-linear, not
quasi-linear. So the existence of the solution of the IVP (1.8)-(1.7) directly
follows from the result of §2. Our purpose of §3 is to investigate how the
solution wu of this IVP depends on the given function v. Using the results in
§3, the quasi-linear IVP (1.6)-(1.7) will be solved in §4. The final result of
this note will be stated in §4 as Theorem 4.1. It is hoped that this result may
have applications such as in Jeffrey’s book in a wider context.

For the possibilities of further extending the result of this note see the
remark at the end of §4.
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82. Solution of a Semi-linear IVP
In this section we want to solve the IVP (1.8)-(1.7) in the semi-linear case.
In other words we want to solve here an IVP of the form

(2.1) O1ui(t, z) + Ooui(t, ) Ni(t, ) = fi(t,z,u(t,z)), 1<i<N,
(2.2) u(0,z) = 0.

In (2.1) ¢ is a real variable. z is a variable moving in a real Banach space X.
uy,...,uy are unknown functions whose values are in a real Banach space G.

Now, before starting detailed discussions on the system (2.1), we want to
simplify the expression of the system. We write

(2.3) Oiu(t,z) = (Qju1(t, x),...,0un(t,z)) (1=1,2),
(2.4) At,z) = (At z), ..., An(t, 2)),

(2.5) flt,z,u) = (fr(t,z,u),..., fn(t,x,u))

and

(2.6)  Dhu(t,z) © X(t,z) = (Qour (t, z) A1 (t, ), ..., Ooun (t, 2) AN (E, ).
Then the system (2.1) is rewritten as the single equation
(2.7) Ou(t,z) + Oeu(t,z) © A(t,z) = f(t, z,u(t, x)).

We seek a solution of the IVP (2.7)-(2.2). In order to state and prove a result
on this IVP we need to make some more notational agreement. If A, R and
L are positive constants, we write

D(A,R) ={(t,z) e Rx X ; 0 <t < A, |2| < R},
Q(R,L,A) = {(t,z) ERx X ; 0<t < A, |lz]| < R— Lt},

Q(R,L,A) = {(t,to,xo) ERXRx X ; (to,xo) € Q(R,L,A), 0<t<L to}.
Further, if S is a positive constant or S = oo, then we write
WA, R, ) = {(t,5,w) ER X X x G5 0 <t < A, |al| < R, Jul] < S}.

Next, if Y is a normed space and h is a Y-valued function defined in a set S,
then let us agree to write

|hlls = sup [|h(2)]|-
z€ES

Using the above notational agreement, the main result in this section is
stated as the following theorem.
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Theorem 2.1. Let X,G be real Banach spaces. Let A, R, Ly, L1, Ky and
K1 be positive constants. Let S be a positive constant or S = oo. Let N
be a positive integer. Let \(t,z) = (A (t,z),...,An(t,7)) be an XN -valued
C'-function of (t,z) € D(A,R) and f(t,xz,u) a GN-valued C*-function of
(t,x,u) € W(A, R, S). Assume that

(2.8) IMoeam™ < Lo, 182X\ lpar < L,

(2.9) I fllwa,r,s) < Ko, 119 fllwea,r,s) < K1 (5 =2,3).

Assume further that o f and Osf are uniformly continuous. Let B be a positive
constant satisfying

1 1
(2.10) B< min{A,—,i,—}.
2L, 2K, 4K

Then the IVP (2.7)-(2.2) has a unique C*-solution u : Q(R, Lo, B) — GV.

Proof. In order to solve the IVP (2.7)-(2.2) we first consider the following
N ordinary differential equations:

(2.11) Le) = MLEW), 1<i<N.

&(t) in (2.11) is an X-valued unknown function of ¢ € R. It is necessary for
us to solve the above differential equations under the initial condition

(2.12) £(to) = o,

where (g, o) is a given point in the set D(A, R). Since ); is a C'-function,
the IVP (2.11)-(2.12) has a unique C'-solution in a neighborhood of #;. We
denote it by &;(¢,t9,z9). For any given point (¢g,z0) in D(A, R) the map
t — &i(t,to, zo) is defined (at least) for ¢ such that

(2.13) 0<t<ty, Lolt—to| < (R~ |zol]).

In particular, if (t9,20) € Q(R, Lo, A), then &;(t,t0,z0) is defined for all ¢ €
[0,%9]. Therefore &;(t,t9,zo) is defined for all (¢,%p,z¢) € Q(R, Ly, A) and
satisfies

(214) “fi(t,tU,IEU)H S “I()H + L()(t() - t) S R - Lot() + Lg(to - t) = R - Lgt.

This means that (¢, &;(t, o, 20)) € Q(R, Lo, A) for all (¢,t0,20) € Q(R, Lo, A).
Further, by a well-known theorem on the smooth dependence on the initial

D IMlpa,ry = maxici<n [|Aillpea,r)- Other similar symbols such as ||f|wa,r,s),
[[02A|lpca, Ry etc. are interpreted similarly.
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condition of the solution of an ordinary differential equation, we know that
&i(t, o, z0) is a C'-function of (¢, g, o) € Q(R, Ly, A). For our later purpose
we need to estimate the magnitude of ||0s&; (¢, %o, zo)||. Since &;(¢, to, xo) is the
solution of the IVP (2.11)-(2.12), we have, for (¢, o, z0) € Q(R, Lo, B),

t

(2.15) &i(t,to,z0) =0+ | Ni(o,&i(o,to, z0)) do
to
and .
(2.16)  33&(t,t0,z0) = 1x + t OaXi(0,&i (0,10, 10)) 03 (0, to, 20) do,
0

where 1x is the identity map in the space X. From (2.16) and (2.10) we obtain

to
105&i(¢, to, zo)|| < 1+/t 102i (0, &io, to, zo)) | - |103&i(0, to, o) || do

<1+ LiBl0sGillor,io,m < 1+27 1958iller 00,3

and
(2-17) ||a3fi||fz(R,L0,B) <2
Now assume that u(t,z) = (ui(t,z),...,un(t,z)) is a C'-function of (t,z) €

Q(R, Ly, B) and satisfies the partial differential equation (2.7). Then we have

(2.18) %{Uz‘(tafz‘(t,toax))}Q) = O1u;(t, &+ 7)) + Oaui(t, &+ ) 0n&i(-++)
= Ovui(--+) + Ogui(- - )N+ +) = fi(t, &i(t, to, ), u(t, &(--+)))-

If, further, u(t, z) satisfies the initial condition (1.7), then we have

(2.19) u;(0,&(0,t0, 7)) = 0.

From (2.18) and (2.19) we obtain

220)  wit&ltt0,2) = [ £i(o: &0 t0,2),ulor & o, 0))) don

It is easy to show, conversely, that a C'-function u : Q(R, Lo, B) — GV
satisfying (2.20) becomes a solution of the IVP (2.7)-(2.2). Therefore, seeking
a Cl-solution in Q(R, Lo, B) of the IVP (2.7)-(2.2) is the same as seeking C'-
functions u; : Q(R, Lo, B) — G,1 <1 < N, that satisfy the system (2.20) of
integral equations.

Letting to = ¢ in (2.20), we obtain

(2.21) wilt, z) = /0 (0, 6(0. 1, 5), (0, & (001, 7)) do

2) Note that (¢, & (¢, to, x)) € Q(R, Lo, B) if (¢, t0,z) € Q(R, Lo, B). This is seen by (2.14).
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Conversely, suppose that (2.21) is satisfied for all (¢,z) € Q(R, Lo, B). Then
we have

(2.22)
u;(t, & (t,to, z)) = /Ot filo,&i(o,t,&i(t, to, 2)), u(o, (0,1, &i(t, to, x)))) do

for (t,to,z) € Q(R, Lo, B). From (2.22) and the relation

(223) fi(a,t,fi(t,to,x)) = gi(o—a thx)

we obtain (2.20). We have thus shown that seeking a C''-solution in Q(R, Lo, B)
of the IVP (2.7)-(2.2) is the same as seeking C''-functions u; : Q(R, Lo, B) —
G,1 < i < N, that satisfy the system (2.21) of integral equations.

The system (2.21) of integaral equations is solved as follows. If a function
u: Q(R, Lo, B) — G" is continuous and has the continuous partial derivative
du : Q(R, Ly, B) — L(X;GN), then we say that u is a GV-valued C(*1)-
function in Q(R, Ly, B) and denote by Fp the set of all GN-valued C(%-1)-
functions in Q(R, Ly, B). Further we write

I ={u€Fp; |ullanrr,,n < 5/2, 0ullor,Le,p) < 1}
For each element u € I'p we can define an element w = (wy,...,wy) € Fp by
e2)  wilth) = [ o Glone) e 6o, 2) do
We denote the map u — w by ®. If w = ®u, then we have
it D) < [ 15003 &, ,2), 0006306, 00 o < Kt < Ko B
for (t,z) € Q(R, Lo, B). Therefore we have
(2.25) |Pulla(r,zo,B) < KoB < S/2.

In order to estimate ||02(®u)|lq(r,L,,p) We differentiate (2.24) in z. Then we
obtain

(2'26) 82wi(t7$) = /Ot a2fi(0-7 fi(O',t,J?),u(U, fi(gatvx)))a?)fi(o-atv]:) do
+f 00,6l (0,65 (), €5~ ))Oai(- ) dor

From (2.26), (2.17) and (2.9) we obtain

||82wi(t,x)|| < {K1 24+ Kq-1- 2}t <4KB<1
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and
(2.27) 102(®u)|lo(r,Le,8) < 1-

(2.25) and (2.27) show that ® maps the set I'g into itself.

Therefore we can construct a sequence {Uk}k:[]yl,m of elements of I'p by
setting u’(¢,z) = 0 and uF = ®uF~! for k = 1,2,... . If we write u¥ =
(u}, ..., uk), we have

(2.28) uE Ut ) = /0 (0,60, 3), 6 (0, £4(0, £, ) o
From (2.28) we obtain
(2.29)  wlt(t,x) — ub(t, )
- /0 LR .60 ) = Filo, (), a5 (o, 4l ) o
From (2.29) and the inequality
1fio, &), uF (0, &) = filo, &), u" (o, il -)

<10 fllwars) - v —u* o re.s < KilluF —u* o, Lo.5)

we obtain

uf t1(t, 2) — uf (t,2)|| < Kitllu® — " arze,m) < KiBllu" —u" g

and, using (2.10),
(2.30) "™ — w¥|lq(re.5) < K1Bllu* — uF Hgey <47 —uF g,
It follows that
(2.31) lim sup “uk - UZHQ(RL B =0
I k> o

and that the sequence {u*} of functions u* : Q(R, Ly, B) — G" converges
to a continuous function u® : Q(R, Lo, B) — G uniformly in Q(R, Lo, B).
Letting k — oo in (2.28), we see that u> = (u$°,...,uf?) satisfies

(2.32) u(t,x) = /Ot filo,&(o,t,z),u>(0,&(0,t,x)))do.

Next let us see that the sequence {9;u*} converges. For this purpose we
differentiate (2.28) in z. Then we obtain, just like (2.26),

(233) 82U?+1(t,I) = /t ani(O', fi(O',t,IE),’U,k(O', fi(O',t,IL')))agfi(O',t,I) do
0

* /ot Osfi(o, & (), uF (0, & (- ) DauF (0, & (- ) Ds&i (- ) do
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From (2.33) we obtain
(2.34) H82uf+l(t,:1:) - 82ué+1(t,$)]|
< [13 o) = Baite sl D 1056
+/0t 105 fi(- -+ uF () = B il (DI 1820 ey - 10s€ill ...y do
+/0t 103 £ - u! (DI - 102u® = Dot .y - 10s€illey..., do
<2 [Nl ) = il ) do

t
42 [0l ) = afile ) do
+2K1||00u* — vl lo(r 1.3y - t

Now suppose an € > 0 is given. Then, by the assumption that the functions
Osf and Os5f are uniformly continuous, there is a § > 0 such that, u and v are
in I'p and [|u — v|lo(r,L,,5) < 0, then the inequality

(2.35) 10;fi0, &il---), wlo, &il--+))) = 85 filos il --), (o &) < e

holds for all (o, t,2). Therefore, if ||uf — ul“Q(R,LO’B) < 0, then we have

(2.36) ||82uk+1 - a2ul+1||Q(R,L0,B) S 4K1t -€+ 2K1t||62uk - 82ul||Q(R7LO,B)
< 4KlB<€ + 2K1B||82uk — 82ul||Q(R7LO,B)

< e+ 2 M0F — ! llar,1o,5)-
By (2.36) and (2.31) we know that the inequality
(2.37) |00t — 0pu (R 1o,y < €+ 27 020" — Oaul (R Lo, 5)

holds for all sufficiently large k& and I. Tt follows that the sequence {9;u*} con-
verges uniformly in Q(R, Ly, B). From this fact and the fact that the sequence
{uF} converges to u™ it follows that u™(t,z) is continuously differentiable in
z. From this fact and the relation (2.32) it follows that u>° (¢, =) is continuously
differentiable in ¢, too.

Thus the proof of the fact that, if the positive number B satisfies (2.10),
then the system (2.21) of integral equations has a C'-solution in Q(R, Lo, B) is
now complete. The uniqueness of the solution of the system (2.21) of integral
equations is proved as follows. First note that, if v : Q(R, Lo, B) — GV is
a Cl-solution of the equation (2.21), then |lullog, 1,5y < KoB < oo. Next
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suppose that there are two C'-solutions u = (uy,...,uy) and v = (v1,...,vN)
in Q(R, Ly, B) of the system (2.21). Then we have

lui(t, 2) — vi(t, )|

t
< [ Iilo. &0 t0), (e (0,6, 0) = Fi(0:66(01,2), (0, &30, ) o
1
<05 fllw(-y - lu = vllae.) - B < KiBllu —vllg(..) < §||U —v|la(..) < oo,
from which we can conclude that [|u — v|or,r,,5) = 0 and u = v. QED

In Theorem 2.1 it is assumed that A(¢,z) is defined in the set D(A, R).
However, as is easily seen by the above proof of the theorem given above, this
assumption can be weakened as is stated in the following proposition.

Proposition 2.1. Let X, G, A, R, Ly, L1, Ky, K1, S and N be the same
as in Theorem 2.1. Let A(t,x) = (M (t,x),..., AN (¢, 7)) be an XN -valued
C'-function of (t,x) € Q(R, Lo, A) and f(t,z,u) a GN-valued C'-function of
(t,x,u) in the set W(A, R, S). Assume that (2.9) and, instead of (2.8),

(2.38) MR Lo,4) < Lo, 102X |lo(r,Lo,4) < L1

Assume further that the partial derivatives Osof and Osf are uniformly contin-
uous. Let B be a positive constant satisfying (2.10). Then the IVP (2.7)-(2.2)
has a unique C'-solution u(t,z) in the range Q(R, Lo, B). Moreover, it satis-
fies the inequalities

S
(2.39) lullor,Lo,B) < 2 |02ullo(r,Le,) < 1.

For our later purpose, however, we have to modify the above proposition
further. Let us prove the following proposition.

Proposition 2.2. Let X, G, A, R, Ly, L1, Ky, K1, S and N be the same
as in Theorem 2.1. Let M(t,z) = (A\i(t,z),..., An(t, ) be an XN -valued C*-
function of (t,z) € Q(R, Lo, A) satisfying (2.38) and f(t,z,u) a G -valued
Cl-function of (t,z,u) in the set W(A, R, S) satisfying (2.9). Assume further
that the following Lipschitz type inequalities hold:

(2.40) |02 A(t, 1) — O2A(t, 22)|| < Lillwy — a2,
(241)|0: f (t, 21, u1) — Oi f (t, wo, u2)|| < Ki(|loy — wol| + lur —uzl) (i =2,3).
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Let B be a positive constant satisfying

1 s 1
9.42 B<minid — =2~ |
(2.42) —mm{ ’2L1’2K0’28K1}

Then the IVP (2.7)-(2.2) has a unique C'-solution u : Q(R, Ly, B) — G that
satisfies (2.39) and the Lipschitz condition

(2.43) ||82u(t,x1) — (92’[1,(15,:52)“ S ||(II1 — :EQH

Proof. The condition imposed on A, f and B in the present proposition
is stronger than that in Proposition 2.1 3). Therefore we can use the result of
Proposition 2.1 for the present situation. So we see that there is a unique C'-
solution u : Q(R, Lo, B) — G that satisfies (2.39). The only thing we have
to do here is, therefore, to prove that O,u satisfies the Lipschitz condition
(2.43). To do so, however, we have to prove first that d5£(¢,to,zo) satisfies
the Lipschitz condition with respect to zy. From (2.16), (2.40) and (2.17) we
obtain

|03&:(t, to, z0) — O3&;(t, to, z1)||
t

< /t 102i (0, &i(0, to, x0)) — D2i(0, &0, to, 1)) | - |03&i (0, to, xo)|| do
0

t
+/t 102Xi(0,&i (o, to, x1))[] - |03&i (0, to, o) — 3Ei(o, to, x1)| do
0
t
< /t L1||§i(0-7 t(),I()) - fi(o-a t07$1)“ : “8367:||§~2(R,L0,B) do
0
t
+ [ 102N oo, ) - 1056:(0 o, 20) = O, to, ) | do
0

t
< L13H33§z'“?§(...)||$0 — ol + Ll/t 1038i (0, to, To) — 03&i (0, to, 71)|| do
0
< 4LlB||:I?0 — I1“ + LB sup “8367;(0', t(),]?()) — 8367;(0', to,Il)“.
0<o<to

Therefore we see, since 2L1 B < 1, that the inequality
(2.44) 1038 (%, to, z0) — 93&i(t, o, z1) || < 4l|z0 — z1]]-

holds.

%) We cannot say in the complete sense that the Lipschitz condition (2.41) is stronger than
the condition in Theorem 2.1 or Proposition 2.1 that 92 f and 05 f are uniformly continuous.
But the Lipschitz condition (2.41) is stronger than the condition actually used in the proof
of Theorem 2.1.
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Next we prove by mathematical induction that each member of the sequence
{uF} of successive approximations of the solution of the IVP (2.7)-(2.2) satisfies
the Lipschitz inequality

(24:5) ||32uk(t,$1) - 82uk(t,:1:2)|| S “]71 - IEZH

The inequality (2.45) holds for k& = 0, because u’(t,z) = 0. Assume now that
(2.45) holds for some k£ > 0. In order to prove that (2.45) holds for £ + 1, too,
we use (2.33). From (2.33) we obtain

Oul T (t, 1) — Dl T (8, 1)
= [0, &ty m2) 1 (0,640, 1))
—0afi(0,&i(- - m2), uF (0, &(- -+, 82)))} B30, 8, 1) do
+/0t Qo fi(0,&il- -+ wa),uP (0, & (-, 2)){Ds&i(- -+, 1) = Dai(- -+, ) } do

+ [ (0fio, 600, o6 0)
=03 fi(0, &+, m2), uF (0, & (- -+, m2))) }OouF (0, & (- -+, 1)) B3 (- -+, ) do
+/0t 0313(0, E:(0, , 12), uF (0, E(0, 1, )
(0508 (0, &30, 1, 1)) — Do (0, 4(0, £, 79)) Y0340, £, 1) dov
+/0t 0313(0, (0, , 12), uF (0, E(0, 1, )
DouF (0,&(0,t,2)){0s€i(0, t, 1) — D3&i(0, t, 2)} do.

We denote the five integrals in the right member of the last equality by
Ii,...,Is. I is estimated as follows. In virtue (2.41), (2.17) we have

(2.46)

102fi(0, &0, t, 1), uF (0,&i (0,1, 1)) — Oafi(0,&i(0, 1, 22),uF (0, &i (0,1, 22))) |
< Ki(||&i(o,t,m1) — &ilo b, @) | + [[uF (0, &0, 8, 1)) — u¥(0, &i(0, 1, 22))|])

< K1 (1+ [|02u¥ ]| ar 10, 3)IGi (0, 8, 21) — &i(0, 8, 72) |

< 2K1([08ill o, o, ) 121 — w2

Therefore, using (2.17), we see that
111l < 2K1 B(105€illy g, 10,)) 121 — 2| < 8K1B|z1 — 2.
Similarly we have

11l < 2K B([1056illgy..y)? - 1926F agy - 171 — 2] < 8K1B||z1 — 22
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Using (2.45), (2.17) and (2.9), we obtain ||I4|| < 4K B||z; — z2||. Using (2.44),
we obtain ||Iz]| < 4K B||x1 —x2|| and ||I5|| < 4K B||z1 — 22]|. Using the above
estimation of I1,... ,I5, we obtain

(2.47) [|0ou™ (¢, 1) — OouF T (8, 20) || < 28K B||z1 — 22| < |21 — 22,

which completes the proof of the fact that (2.45) holds for all .
Letting k — oo in (2.45), we obtain (2.43). QED

§3. Preparation for Solving the Quasi-linear IVP
Our final purpose is to solve the quasi-linear IVP (1.6)-(1.7). As a prepa-
ration for this purpose we consider in this section the semi-linear equation
obtained by substituting a known function v(¢,z) for u(t, x) in u(t, z, u(t, x)).
So we consider here the IVP (1.8)-(1.7). The system (1.8) is rewritten as

(3.1) O1u(t,z) + Oeu(t,z) © pu(t,z,v(t,z)) = f(t,z,u(t, x)).

The relation between (1.8) and (3.1) is just like the relation between (2.1) and
(2.7). Throughout this section we denote by X and G two fixed real Banach
spaces and by N a fixed natural number. Using Proposition 2.2 in §2 we can
easily prove the following proposition on the IVP for the equation (3.1).

Proposition 3.1. Let A, R, My, My, Ky and K, be positive constants. Let S
be a positive constant or S = co. Let u(t,z,u) be an XN -valued C'-function

of (t,z,u) € W(A, R, S) satisfying
(3.2) lellwia,r,s)y < Mo, N105ullwarsy <M1 (7 =2,3)

and f(t,z,u) a GN-valued C'-function of (t,z,u) € W(A,R,S) satisfying
(2.9). Assume further that Lipschitz type inequalities (2.41) and

(3.3) [0ip(t, 21, u1) =05 u(t, w2, u2) || < Mi(llzr =2l +lur —uel]) (2 =2,3)
hold, where (t,2z1,u1), (t,229,u2) € W(A, R, S). Let B be a positive constant

satisfying

1 s 1
4 B < min{A
(34) —mm{ ’10M1’2K0’28K1}

and v : Q(R, My, B) — GV a C'-function such that

(3-5) lo(t, z)[| <8, [[Gav(t, z)|| <1

and
(3.6) |02v(t, 1) — Dov(t, z2)|| < [l21 — 22
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Then the IVP (2.7)-(2.2) has a unique C'-solution u : Q(R, My, B) — GV
that satisfies the inequalities (2.39) and the Lipschitz condition (2.43).

Proof. Write
(3.7) At 2) = ult, 5, v, ).
If (t,z) € Q(R, My, B), then v(t,z) € GV, ||v(t,z)|| < S and (t,z,v(t,z)) €
W(B,R,S) C W(A,R,S). Therefore A(t,z) is certainly defined for (¢,z) €
Q(R, My, B) and we have || Allq(r,mo,8) < [litllwia,r,s) < Mo. Further we have

(3.8) D(t,x) = Oop(t,z,v(t,x)) + O3u(t, z,v(t,x))02v(t, x)
and

(3.9) %A ar,m,B) < 1021llwia,r,s) + 103pllwa,r,s) - 1 < 2M;.

We have to confirm further that dxA(t, z) satisfies the Lipschitz condition with
respect to 2. Take two points (¢, z1), (t,z2) € Q(R, My, B) arbitrarily. Then
we have, in virtue of (3.8),

82 (t 5131) ( 2) 82 (t 1,V (t,xl)) - 32,u(t,$2,v(t,$2))
+{63,u(t T1,v ( 1 83,u(t T9,V (t,(L‘g))}@gU(t,(L‘l)
+Bu(t, xo,v(t,

) —
HOv(t, m1) — Oav(t, 2)}
(3.

2
and, in virtue of (3.3) and (3.6),

[02A(t, 1) — Do A(E, 2)|| < Mi([[z1 — @2 + [[020]l0...) - [l21 — 22])
+Mi (|21 — 22| + 1020]lac.y - |21 — z2[)[|O2v]l0(...)
03l |1020(E, 1) — Dpu(t, z2) ||

< 2Mi ||z — z2|| + 2M1 ||21 — z2|| - 1 4+ My ||z1 — 22| = 5My ||z — x2||.

As aresult of the above arguments we see that, if we write Ly = My, L1 = 5Mq,
then the inequalities (2.38) and (2.40) hold. Further the condition (3.4) implies
the condition (2.42), if L; = 5M;.

Therefore we can use Proposition 2.2 with A = B for the IVP (2.7)-(2.2)
with A(¢, z) defined by (3.7) and conclude that the IVP (3.1)-(1.7) has a unique
C'-solution u : Q(R, My, B) — G satisfying (2.39) and (2.43). QED

Next we substitute two different functions for v(¢,z) in (3.1) and compare
the corresponding solutions of the IVP. To be exact we now prove the following
proposition.

Proposition 3.2. Let A, R, My, My, Ky, K1 and S be the same as in Propo-
sition 3.1. Let u(t, z,u) be an XN -valued C'-function of (t,z,u) in W(A, R, S)
satisfying (3.2) and (3.3). Let f(t,z,u) be a GN -valued C*-function of (t,x,u)
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in W(A, R, S) satisfying (2.9) and (2.41). Let B be a positive constant satis-
fying (3.4). Let v' : Q(R, My, B) — G be a C'-function such that

(3.10) o' (,2)| < S, (0! (t,2)] <1
and
(3.11) 1850 (¢, 1) — Dav* (¢, 22) || < ||lz1 — 2.

Let u' : Q(R, My, B) — GV denote the unique C'-solution, whose existence is
guaranteed by Proposition 3.1, of the IVP

(3.12) Oyu(t,z) + dou(t,x) ® ,u(t,w,vl(t,x)) = f(t,z,u(t,z)), u(0,z)=0.

Let v2 : Q(R,My,B) — G~ be a C'-function such that ||[v?(t,z)|| < S
for all (t,z) € Q(R, My, B) and assume that there is a C'-solution u? :
Q(R, My, B) — GV of the IVP

(3.13) Ovult,z) + Ooult,z) @ u(t,z,v%(t,z)) = f(t,z,u(t,z)), u(0,z)=0.
Then the inequality
(3.14) u' — |l e, < 270" — 02l or,Mo,B)

holds. If it is further assumed that

(3.15) 18202 (¢, z)|| < 1
and
(3.16) [020° (¢, m1) — 0o (t, 22)|| < ||lz1 — 22,

then the inequality
(3.17) (|02’ — 0u®(lo(ronte,8) < 200" — 02 (lo() + 272|020t — v [l..n

holds.

Proof. First note that u' satisfies, by Proposition 3.1,

S
(3.18) ||U1HQ(R,M0,B) < 3 “82ul||Q(R,M0,B) <1
and
(3.19) [02u’ (t, 1) — Dou' (t, 22) || < [|lz1 — m2]|.

In order to compare u' with u? it is necessary for us to compare the solution
of the ordinary IVP

d

(3200 =

&i(t) = pit, &(t), 0" (8, &(1))), &ilto) =x0 (1 <5 < N)
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with that of the IVP

Dt = milt, &0, 2 (L&), &ilto) =20 (1< j < N).

(321) -

In (3.20) and (3.21) the initial data (¢, zo) is a given point in Q(R, My, B). We
denote the solution of the IVP (3.20) by &} (¢, 9, zo) and that of the IVP (3.21)
by £2(t,to,z0). Each &(t,t9,20) is an X-valued C'-function of (t,tg,zo) €
Q(R, My, B) V). Since it satisfies the integral equation

. t . . .
(322) £ZJ (ta th xO) =20+ /t Mi(av £ZJ (Ua th (I;O)a v’ (Ua £ZJ (0—3 th (II()))) do.
0
we have

(323) gil(tathxO) - g?(tatﬂaxO)

- /tt{ui(o-a 51’1(07 tg,:L‘g),Ul(U, le( ’ ))) - :U‘i(o-v 51’1(0’7 t07$0)7v2(07 511( ’ )))}da
+/t:{uz'(07§z-1('")702(0,53(“'))) — pi(0, &5 (), 0% (0,61 (-+))) Yo
+/t:{uz'(07§z-2('")702(0,53(“'))) — pi0, &5 (), 0% (0,6 (- +))) Yo

Let us denote the three integrals of the right member of (3.23) by I, I> and
I3. The norm of I; is estimated as follows. Since

li(0, & (0, t0, o), v" (0,1 () — (o, & (0, to, o), v* (0, & -+ )|
< |10spillwiar,s) - 0" (& &) = v (& (- DI < Millvt = v llogr, e, B)

and M B < 107! < 273, we have
(3.24) L]l < MyiBllv' —0*(lo(r,ne,5) < 272 10" — 0% [lo(r, 16, 5)-
|12] is estimated as follows. Since

||Mi(aa 511 (Ua to, 150), ,UQ(O—a 511( ' ))) - lj'i(o—a 5722(0—3 to, xO)a 1)2 (Ua 57,1( ' )))H
< 10omsillwa,r,s) - € (05 to, 20) — € (0, to, x0) | < Mill&d = €Ml aro,):

we have

(325) ||l < MiBIE — & llamramnp) <2716 = Elar,am,5)-

1) Note that this statement is true for j = 2, too, under the sole condition that v> (t,z)
is a C'-function such that ||v*(¢,z)|| < S for all (¢,z) € Q(R, Mo, B).
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I13] is estimated as follows. Since

ni(o, & (0, to, 20), 0% (0, (- +))) = pil0, & (0, t, x0), v* (0, & (- )
< N0spillw-y - 1020% gy - N6 () = €¢I < My~ 1- I — € llgy..),

we have
(326) |1 < MiBI& = Elln ey < 27160 = & llaymono, m)-
From (3.23) through (3.26) we obtain

1€} = & lagran.p) <272 I0" = 0’ laras.) + 272 1E = & a5
Therefore we see that the inequality
(3.27) &5 — €Nl ronro,m) < 27200 = 0% llagr v, B)

holds.
Using (3.27), we can estimate the difference u! — u? of the solutions of
the IVP (3.12) and (3.13) in terms of the difference v! — v?. By the proof of

1

Theorem 2.1 we know that uw/ = (u],...,u)) satisfies the system of integral
equations
. t : , :
628 wlte) = [ 580 0),0 0,8 (0t 2)do
0

From (3.28) we obtain
(3:29)  ul(t,s) — ul(t, )

- /(]t{fi(07 gil(gvtvx)vul (07 le (U,t,IL‘))) - fi(ga 512( ’ ')7“1(07 511( ’ )))}do’
+/0t{fi(0v 512( ’ ')vul(av 511( ’ ))) - fi(av 512( ’ ')aul(av 512( ’ )))}dd
+/0t{fi(0v £z2( ’ ')vul(av £z2( ’ ))) - fi(av £z2( ’ ')aU'Q(Uv £z2( ’ )))}dd

We denote the three integrals of the right member of (3.29) by Iy, I and Is.
By (2.9) and (3.27) we have
1 1 1 2 1 1
||fi(07 gz (07 t, IL‘), u (Ua 67, (07 t, IE))) - fi(o-a gz ( : ')7 u (Ua gz ( ' )))“
<02 filwars) - € (0 ts2) = () < Kl — & llroany )
<27 2K |v' = v |lagr Mo, B)»

and
(3.30) 1L < 272K Bllv' — v*|laer, M, B)-
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Similarly we have
(3.31) |||l < KiBlldau'la(.- - 1€ — € la..y < 272K Bllv' —vlo(...

and
(3.32) 113]| < K1Bllu' = u?|lorvo,8)-

Using (3.29),..., (3.31), we obtain
(333) Hul - UZHQ(R,MO,B) < KlBHul - UZHQ() + 2711(13”’01 - ’U2||Q()

From (3.33) we obtain, since K1 B < 1/28 < 274, the desired inequality (3.14).

Now we add the assumptions (3.15) and (3.16) and want to estimate the
difference dsu' — Ohu?. Note that v2 now satisfies the same conditions as
those for v! and the solution u? of the IVP (3.13) satisfies the same type
of inequalities as (3.18) and (3.19). In particular note that the inequality
|02u?(t,z)|| < 1 holds. Keeping this fact in mind, let us consider estimating
the difference dru' —ru?. To this end it is necessary to estimate the difference
O3&k(t,to, 1o) — D32(t, to, wo). To this end we differentiate (3.22) with respect
to zg. Then we obtain

. t . , . :
(3.34) 03&] (t, 10, w0) = 1x +/t Bapi(o, & (0, to, 20),v7 (0,0 (- ) 3Ed (- - -)do
+/t O3pi(0, & (0, t0, o), v? (0,&] (-++))) 0! (-+ ) D3E! (- - -)do
From (3.34) we obtain

05&; (t,t0, m0) — D3] (t, to, T0)
= /to{awz'(g, & ()0 (0,60 (-+4)) — Oopi(o, (- ), 0% (0,6 ()}

03¢, (---)do
+ ) Dopti(0,& (), v (0, & (- )O3 () — Bl (- ) Yo

+ [ 10l € ) = Gl )P0, )
x Dot (---)03E) (- -)do
t

4 [ B, 200,020, ) (00 () = () ug - o

+ /tot Osp1i(0, & (), 0% (0,6 (- )))0v* (- ){05&] () — Ds&F (- +) }do.

We denote the five integrals in the right member of the last equality by
I,... ,Is. We want to estimate the norms of these integrals. In order to
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estimate I; we can use the Lipschitz condition (3.3) for d2u. By (3.3) we have

(3.35)
10211 (0, &1 (0, t0, m0), v (0,1 (- ))) — Dopui(, & (0, b0, m0), v* (0, &7 (- - )
< M(Jlgf(---) = ()l
Hlv' (0,6 () = v*(0, & (- NI + 0P (0, & () = v* (o, (- D))
< My(272 + 14110203 logr,m0,8) - 27 ) Iv' = v° llagr, i, B)

< 2Mi[[v" = v?|lo(r 00, B)-

From (3.35) and the inequality ||03£} (- --)|| < 2 we obtain
(3.36)  [II1]| < 4AMBllv" — v |lor e,y < 27 0" — 03[R, 00,5)-
Since ||Oapi(- - -)|| < My, we have
(3-37) 1 12|l < M1BI|0s&} — 05 Ny nsy iy < 27 105E — 05y, -

As for I3 we use the Lipschitz condition (3.3) for dsu; and obtain, just like
(3.35),

(3.38)
|03 i (0, €} (0, to, 0), v (0, €L (- - ) — Dapi(o, €2 (o, to, x0), v (0, E2(-- )l
< 2M|v" — 0?0, B)-

By means of (3.38) and the inequalities ||G2v!(---)|| < 1, [|03&}(--)|| < 2 we
obtain

(3.39)  |[[f3]| < 4M,Bljv" — ”2||Q(R,M0,B) <27Mp! - v2||Q(R,M0,B)-
Since [|O3p;(---)|| < My and [|03&}(--)|| < 2, we have

||| < 2M,B||0ov" — 82v2||Q(R,M0,B) < 2720’ - 82U2||Q(R,M0,B)-
Since [|02v?|g(..) < 1, we have

IIs]| < My B|8s&; — 05 ey nao, ) < 27 N05E8 — 03E] ey vt ) -
In conclusion we know now that

105&} (t,t0, m0) — 057 (¢, to, o) || < 1|l + 1121l + 1131l + [ 74ll + || 15|
<2lv" = v?larme,B) + 2 211020 — 02v*|la(r Mo, B)
+2721056) = & oy )
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and
(3.40) (195" — 58 ey gy 3y < 20" = 7l +2 120" — B0 -

Using (3.40), we can estimate the difference dyu! — dou?. To this end we
differentiate (3.28) in z. Then we obtain

(3.41) @@awraf%ﬂ@ewwwmmmgownae@aww
+ [ 000,101,000 (0, €1+ ) o, €1 - )REL o
From (3.41) we obtain
(3.42)  Ogui(t,x) — Doul(t, z)
=A?%mm5wmmm%m¢v»»—%mmﬁc»mﬂmﬁc»»}
03¢ (---)do
f[&ﬁ@ﬁc»m%mﬁvwnae«»—%ﬁvowa

+A%%M“30”W%@5VJ»—%Mmﬁﬂﬁw%mﬁﬂﬁﬁ}
Oau' (0,¢} (-+-))05& (- -)do
+/0t A fi(o, & (o,t,x),u* (0, E2(--+)))
[0yl (0, €L(-- ) — Bpul (0, E2(- - )V BsEL(- - ) dor
+/Ot Bafi(0, E2(- ) u? (0, E2(---)))
{0yul (0,€2(- ) — BpuP (0, E2(-- ) }OsE) (- -)dor
+/0t83fi(a,§§(o,t,x),u2(g,5z.2(...)))
002 (0, (- )D€} () = Ba2(-) o

We denote the six integrals in the right member of (3.42) by Iy,... ,Is. By
(2.41), (2.17), (3.27) and (3.14) we have

(343) |0l < K{llEl () = ¢+ llu' (0,61 (--) = (6l )]
(0, () = (0, (=) 1} - 13ag) (-]
< 2K1B{l16] = &l + lu” = w’llogy + 10l 16— & o)}
2K B2+ 27+ 277 ol — 0%log

< 2K1Bllv" = *llar,n,8) < 27 10" = 2 llar,m,,B)-
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By (2.9) and (3.40) we have
(3.44) |||l < 2K1B|v! — v’ llor.a,5) + 27 K1 B||02v" — 020 |lo(r,00,5)
< 270" = 0?(|lora,B) + 22 020" — 820 |l o(R, 0o, B)
Like (3.43) we have
(3.45)  |Is]] < 2K Bljo" — o*[lo(a,no,5) < 270" — 0* gk, 5)-
By (2.9), (3.19), (2.17) and (3.27) we have
(346) [ILll < Killé) = & llgy s,y - 2- B <27 KiBlv' = 0®llogr,m,5)
< 270" = v |la(r,ao0,B)-
By (2.9) and (2.17) we have
(3.47) ||Is]| < 2K B||0su' — 0o llaernte 5y < 27 020 — 02u®|lor o, B)-
By (2.9), (2.39) and (3.40) we have
(3.48) |[Z6]l < K1B(2llv" — v*|lo(r,mo,5) + 2~ |020" — 020* (R, 00, 5))
<278 w' — v?|lar,a,) + 270 11020" — B2v®lla(r M0, R)-
From (3.42),...,(3.48) we obtain
102" — 02u®|la(r,am,5) < 27 1020 — 02w lla(r 00, B)
+27P 27427 4270 127 o' — v |ler Mo, B)

+(27% +27%) 920" — 00,0, )

< o' - UZ“Q(R,M{),B) +274 00" — 62U2||Q(R,M0,R)

and the desired inequality (3.17). QED

84. Solution of the Quasi-linear IVP
Using Propositions 3.1 and 3.2 we can now easily solve the quasi-linear IVP
(1.6)-(1.7). Our result is stated in the following theorem.

Theorem 4.1. Let X and G be real Banach spaces. Let A, R, S, My, My,
Ky and K be positive constants. Let N be a natural number. Let pu(t,x,u) be
an XN -valued C'-function of (t,z,u) € W(A, R, S) satisfying (3.2) and (3.3).
Let f(t,xz,u) be a GN-valued C'-function of (t,z,u) € W(A, R, S) satisfying
(2.9) and (2.41). Let B be a positive constant satisfying (3.4).

Then the IVP (1.6)-(1.7) has a unique C*-solution u : Q(R, My, B) — G
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Proof. In order to show the existence of a solution of the IVP we construct
a sequence of successive approximations of the solution as follows. By Propo-
sition 3.1 we know that there is a unique C'-solution u' : Q(R, My, B) — GV
of the IVP

(4.1)  Su(t,z) + dou(t,z) © pu(t,z,0) = f(t,z,u(t,z)), w(0,z)=0.

Set v(t,z) = u'(t,z). Then Proposition 3.1 tells us that this v satisfies (3.5)
and (3.6). Therefore we can use Proposition 3.1 again and know that the IVP

(4.2) 01u(t, z) + Oou(t,x) ® u(t,x,ul(t,x)) = f(t,z,u(t,z)), u(0,z) =0

has a unique C'-solution u? : Q(R, My, B) — G". In this way we successively
obtain a sequence {u/(t,z)} of GN-valued functions of (t,z) € Q(R, My, B).
Each fuction u/ is the unique C'-solution of the IVP

(4.3) dvu(t,z) + dou(t,z) @ p(t,z,w’ L(t,z)) = f(t,z,u(t,z)), u(0,z)=0.

It satisfies the inequalities

. S .
(4.4) 1w la(r,Lo,B) < 3 102u” |, 10,8) < 1
and ' '

(4.5) 0207 (8, 21) — Do (8, z2)[| < [|z1 — 22f|-

For the above obtained sequence {u’} we can now apply Proposition 3.2.
Take two consecutive members u* and u**! of the sequence arbitralily. These
two functions satisfy the conditions imposed in Proposition 3.2 on the functions
v' and v2. Moreover, uft1 and u**? are, respectively, the solutions of the
IVP (3.12), (3.13) with v! = u¥ and v?> = w**!. Therefore we see that the
inequalities

(4.6) Juf Tt — Uk+2||Q(R,M0,B) <27uk - uk+1||Q(R,M0,B)
and
(4.7) 106" — 050"+ om0, )

< 2lluf = oeram,B) + 272 1020 — 00w la(r a0, R)

hold.
From (4.6) it immediately follows that the sequence of functions {u/} con-

verges uniformly in Q(R, My, B). Exactly speaking, there is a continuous
function u* : Q(R, My, B) — G such that

lim [Ju/ — u™lo(r,Mo,B) = 0-
j—00
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From this fact and the inequality (4.7) it follows that the sequence of functions
{02u }, too, converges uniformly in Q(R, My, B). Exactly speaking, there is a
continuous function w : Q(R, My, B) — L(X; G") such that

l' J = 0.
Jim 100" —wllo(a,ve,5) = 0

From these facts it follows further that u* (¢, z) is continuously differentiable
with respect to x and the equality d,u°(t,2) = w(t, z) holds. Further, letting
j — o0, in the relation

01! (t,x) + Opu (1, 2) © plt, &, 0! (E, ) = f(t, 2,0 (¢, 2)),

we know that u™ (¢, z) is continuously differentiable in ¢, too, and satisfies the
equation

nu(t,x) + pu(t, x) © p(t, z,u>(t,x)) = f(t,z,u™(t,z))

for (t,z) € Q(R, My, B). Thus we have shown the existence of a C'-solution
in Q(R, My, B) of the IVP (1.6)-(1.7).

The uniqueness of the solution of the IVP is proved as follows. If we set
vt = u®, then we can regard u™ as a solution of the semi-linear IVP (3.12).
Note that v! = u™ satisfies all the conditions imposed on v' in Proposition
3.2. Now suppose that there is another C'-solution v : Q(R, My, B) — GV of
the IVP (1.6)-(1.7). Then, by setting v? = u, we can regard u as a C''-solution
of the semi-linear IVP (3.13). Therefore we see, by Proposition 3.2, that the

inequality
4™ = ullogrm,m) < 270" = 02 (lo) =27 u™® = ullag..

holds. It follows that |u® —ullq(r,p,B) = 0 and u = u. This completes the
proof of the uniqueness of the solution of the IVP. QED

Remark. The author has some plans to extend the above result further. One
of them is to replace the real variable ¢ by a vector variable as in Yamanakal[8],
[9]. Another plan is to consider the case where the number of unknown func-
tions is infinite as in Zaitov[10].

References
[1] Dieudonné, J., The foundation of modern analysis. Academic Press, New York,

1960

[2] Friedrichs, K.O., Non-linear hyperboic differential equations for functions of two
independent variables. Am. J. Math., 70(1948), 555-589



294 T. EMURA

[3] Garabedian, P.R., Partial Differential Equations. John Wiley & Sons, New York,
1964

[4] Jeffrey, A., Quasilinear hyperbolic systems and waves (Research Notes in Math-
ematics, No.5). Pitman Publ., London-San Francisco-Melbourne, 1976

[5] Lax, P.D., Non-linear hyperbolic equations. =~ Comm. Pure Appl. Math.,
6(1953),231-258

[6] Petrovsky, I.G., Lectures on Partial Differential Equations. Interscience Pub-
lishers, New York, 1954 (First Russian Edition — 1950)

[7] Williams, W.E., Partial Differential Equations. Oxford University Press, Oxford,
1980

[8] Yamanaka, T., The Cauchy-Kovalevskaja theorem with a vector valued time
variable. Funkcialaj Fkvacioj, 24 (1981), 211-246

[9] Yamanaka, T., A Cauchy-Kovalevskaja type theorem in the Gevrey class with a
vector-valued time variable. Communications in Partial Differential Equations,
17(1992), 1457-1502

[10] Zaitov, F.A., The Cauchy Problem for a countable system of hyperbolic equations.
(in Russian) Izv. Akad. Nauk Kazah. SSR. Fiz.-Mat., 1975, no.5, 36-42

Takesi Emura

Department of Mathematics, College of Science and Technology
Nihon University

Tokyo 101-0062, Japan



