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Abstract. In this paper we introduce a bottom-up pushdown tree trans-
ducer (b-PDTT) which results from generalizing a bottom-up tree transducer
by adding a pushdown storage (where the pushdown storage have the form of
trees, i.e., a tree-pushdown storage) and may be considered as a dual concept
of the top-down pushdown tree transducer (+-PDTT). After proving some fun-
damental properties of b-PDTT, such that any b-PDTT can be realized by a
linear stack with single state and converted into G-type normal form which
corresponds to Greibach normal form in a context-free grammar, we compare
the translational capability of a b-PDTT with that of a t-PDTT.
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§1. Introduction

J. W. Thatcher[20] introduced a tree automaton as an extension of a finite
state automaton. The set of trees accepted by this tree automaton is called
a recognizable set and it is shown that a set of derivation trees (a local set)
of a context-free grammar (CFG) is recognizable. Moreover it is shown that
any recognizable set is the image of a projection of a local set. Consequently,
the yield of a recognizable set is a context-free language. After that, W. C.
Rounds[18] introduced the context-free tree grammar (CFTG). Later the top-
down pushdown tree automaton (t-PDTA) was introduced [12, 13, 24] and
many properties were investigated.

From the 1970’s, the field of translation schema, i.e., the translation from
tree languages to tree languages was extensively investigated [5, 7, 18, 21]. This
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translation is called the finite state transformation (FST) by J.W.Thatcher,
the finite state translation (FST) by W.C.Rounds, and the finite state tree
translation (fst) by J.Engelfriet. In this paper, we call the translation device
the finite state tree transducer (FST), and the translation performed by the
FST is called the finite state tree translation. Such a translation includes the
concepts of a syntax-directed translation (SDT) introduced by E.T.Irons[16],
the attributed translation originated by D.E.Knuth[17], which can be consid-
ered as an extension of SDT, and the L-system (especially ETOL) of A. Linden-
mayer (1968)[7]. In response to the above studies, we introduce a pushdown
tree transducer (PDTT)[28] which may be considered as an extension of a
pushdown transducer (PDT) and a finite state tree transducer (FST), and we
discuss the fundamental properties of a top-down case.

In this paper we introduce a bottom-up PDTT (b-PDTT) which may be
considered as a dual concept of top-down PDTT (t-PDTT) and discuss the
relation between two kinds of PDTT. These b-PDTT and t-PDTT extend a
bottom-up FST and a top-down FST, respectively, which are syntax-directed
translations of a context-free language in compiler theory.

The organizations of this paper are as follows. In Section 2 we state some
preliminary definitions and notations. In Section 3 we introduce a t-PDTT
and a b-PDTT and state some related concepts to them. After that we con-
sider the relation between t-PDTT (b-PDTT) and top-down FST (bottom-up
FST), and also t-PDTA (bottom-up pushdown tree automaton). In Section 4
we show some fundamental properties of b-PDTT, such that, the final state
translation is equivalent to the empty stack translation, and we can always
convert a b-PDTT M into a single state b-PDTT M’ which is equivalent to
M. Moreover we show that any b-PDTT can be always converted into a linear
stack (i.e., the stack symbols are monadic) b-PDTT with single state. In Sec-
tion 5 we introduce an extended linear stack t-PDTT which is an extension of
the linear stack t-PDTT and show that for any extended linear stack t-PDTT
there always exists an equivalent t-PDTT. And it is shown that any b-PDTT
can be converted into a G-type normal form which corresponds to Greibach
normal form in CFG. In Section 6 we compare the translational capability of
b-PDTT and t-PDTT, and show that the class of translations generated by
nondeleting linear t-PDTTs properly contains the class of translations gen-
erated by nondeleting linear b-PDTTs. In Section 7 some conclusions are
stated.

§2. Preliminaries

We first introduce basic definitions and concepts. For a denumerably infinite
set X = {z1,z2,---} we let X;, = {z1,---,2,} and an element of X is called
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a variable. An alphabet X is ranked if X' = |J;2, X, where the X, are (not
necessarily disjoint) subsets of X' such that only finitely many of them are
nonempty. If o € X, then we say that o has the rank n. For a ranked alphabet
Y and a variable set X, (X N X = (}), we inductively define the set T's;(X},)
as the minimum set satisfying (1) for any o € X, U X,,, 0 € T'»(X,,), and for
any x € X, ¢ € Tx;(Xy), and (2) for any | with [ > 1, if ¢1,---,¢ € Tx(X,)
and o € X then o(t1,---,%) € Tx(X,). When X,, = () we denote T'x(X,,)
as Tx;. We call Ty, the set of X-trees (or simply trees) and a subset of T is
called a tree language. When a leaf of a tree is an element of X,,, that leaf
is called an indezxed leaf. Moreover, for Tx(X,) and a special symbol $ not
contained in XU X, the set Txg)(Xp) is defined as the minimal set satisfying
the following conditions: (1) $ € Ty and for any x € Xp, = € Ty (Xn),
(2) for any o € Xy, 0(8) € T(5)(Xn), and (3) for any o € X} with [ > 1 and
any t1,---,t; € T2<$> (Xn), o(ty, --,t) € T2<$> (Xy). We denote T2<$> (Xn)
as Ty if X, = (). For a ranked alphabet ¥ and any ¢t € Ty (Xp), if
the indexed leaves of ¢, in the order from the left, are z; ,---,z; (z;; € Xp
with 1 < j < 1), then we denote t as ¢y (i, -+, 2;). In addition, let @
be a finite set of symbols, I" be another ranked alphabet distinct from the
ranked alphabet X, # be a special symbol not contained in I', and Y, be
another variable set {y1,---,yn} distinct from the variable set X,,, where
I'nY = (. (In this paper we use two distinct ranked alphabets X and I,
and also use two distinct variable sets X and Y. Note that Y, X are used
for a input tree and I', Y for a stack tree.) For 1 < j <[, if we substitute
([Qjauj]axij) (qj € Q,uj € TF(ﬁ>(Ym)) for Zi; in Ls(s) (Tiy, -+, zi), we denote
the resulting tree as tx g (([q1,u1],7i,), -+, ([a, w), zi,)), and ([gj,u;], %) is
called an indexed label instead of an indexed leaf. The set of such trees is
denoted by T'sg)([Q X T (Yin)] X Xy). In addition, 5y € Txg)(0) is simply
denoted by #g) if no confusion occurs and the notation # ;) (t1 < By by
t.) indicates that the subtree ¢; is replaced by ¢, with 1 < i < n. Based on
the above definitions, we define a substitution function which is important to
describe the behavior of the tree transducers.

Definition 1. (Substitution Function) For u € T (X,) and a sequence
of trees (t1,---,t,), we inductively define a substitution function u(ty/x1,- -,
tn/xy) (or simply u(t;/z;) if no confusion occurs) as follows:

(1) foru =0 (0 € Xy), u(t1/z1,- -, tn/zpn) = 0,
(2) foru==z; (z; € Xy), ulty/w1, -+, tn/zn) = tj, and

(3) for any o € Xy, (m > 1), if u = o(u1,+,um),where uj € T (Xn)
with1<j<m,
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w(ty/z1, - tn/xn)
=o(ui(ti/z1, - tn/xn),  um(ti/z1, - tn/Tn)).

§3. Pushdown Tree Transducers and Translations

In this section we introduce a pushdown tree transducer (PDTT for short)
which is an extension of a finite state tree transducer (or finite state tree
transformation)[5], a pushdown transducer[2], and a pushdown tree automaton
[12, 23]. After that we define some related concepts of PDTT such as a (direct)
generation, a generation form, and a translation.

Definition 2. A pushdown tree transducer (PDTT) M is an 8-tuple (Q, XU
{81, AU {8}, I U{t}, 6, do, Zo, F), where:

(1) Q is a finite set of states.

(2) X is a ranked alphabet of input symbols and $ is a special symbol not
contained in X' (we call § the input bottom marker).

(3) A is a ranked alphabet of output symbols and $' is a special symbol not
contained in A (we call §' the output bottom marker).

(4) I' is a ranked alphabet of pd-symbols and f§ is a special symbol not
contained in I" (we call § the pd-bottom marker).

(5) qo is the starting state (¢p € Q).
(6) Zp is the starting pd-symbol (Zy € I}).
(7) F is a set of final states (F' C Q).

(8) ¢ is a translation function, which is either

(@) ) for n £ 0, mapping from Q x (3,() U (,)) x L (V)
into the finite subsets of Thg ([Q X Ty (Yin)] X Xp), and
(ii) for n = 0, a mapping from @Q x (X, ($) Ue($)) x In( m) into

the finite subsets of T\ ([Q X Ty (Yim)] x {8, $'}), o

(b) (i) forn # 0, a mapping from (X, (X, )Ue(X,))x ([Q X Im, (le)] X
x [@Q X Iy, (Y, )]) into the finite subsets of [Q X Ty (Y, U
UV, )] X Taggy (Xn), and
(ii) for n =0, a mapping from (X, ($) Ue($)) x [Q X [ (V)] into
the finite subsets of [Q x T (Yin)] X Tacgry-
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Here, X,(X;) = {o(zy, -+, 2n) | for any o € X}, [n(Yim) = {Z(y,,
"aym) | for any Z € Fm}a le(le) = {Zz(ylaayml) | for any
Z € Iy, } with 1 <7 < n, and ¢ is the empty symbol whose rank is 1
(in the case of (a)(i) and (b)(i)) or 0 (in the case of (a)(ii) and (b)(ii)).
Furthermore we assume Y,,, = {#} when m = 0, and also Y;;,, = {#} when
m; =0 with 1 <1¢ <n.

In the case of (a), M is called a top-down PDTT (t-PDTT for short) and
in the case of (b), a bottom-up PDTT (b-PDTT for short). Before we define
the direct generation of t-PDTT (b-PDTT), we need the following definitions.

Definition 3. For a ranked alphabet X, a cut of t € T’y is a set C of nodes
of ¢ such that

(1) no two nodes in C are on the same path in ¢,
(2) no other node of ¢ can be added to C' without violating (1).

In addition, if {ni,---,n;} = C and it is ordered from the left, then we call
{n1,---,n} an interior frontier node.

Definition 4. For a t-PDTT M = (Q, XU{$}, AU{$'}, 'U{t}, 0, ¢o, Zo, F),
if {n1,--+,n} is the subset of a cut C' of to(gy € Ta¢gy Which is ordered from
the left then, for ¢; € Q, u; € Tpyy, and t; € Ty (1 <0 < 1),

tagn (g, utls t), -, (s wl, @)
denotes the tree obtained by substituting ([g;,u;], ;) for t; € Ta(g, where ¢
is the subtree of ¢ gy whose root is n;.

We call ¢ ogy(([q1, w1, 1), - -, ([q1, w], 1)) an instantaneous description (ID
for short) of M and the set of such trees is denoted by T(g) ([Q X T4y (Yin)] X
Ts)). Note that, for {z1,---,7;} C X, where X is the set of variables, the
definition of  5¢gy (([q1, w1], 21), - - -, ([q1, w], 71)) is different from the definition

of tA<$’><([q17u1]7t1)7 ) ([qlaul]atl» with t; € TE(EB) (1 < { < l)

Definition 5. (Direct Generation of t-PDTT) For a t-PDTT M and ¢ €
Ta([Q X Try] x Tsy), a tree t is said to (directly) generate a tree ¢’ in the
t-PDTT M (denoted by tFpst') whenever the following conditions hold: Let
t be tA<$/>(---,([q,u],f),---), where ¢ € Q, u = Z(u1, -, uny) (Z € I, and
u; € pr) with 1 <7 <m), and te T2<$>.

(1) If i = o($), where o € X,U{e}, and the translation function applied to ¢
is 5(Q7 U($)7 Z(yla e 7ym)) > t£<$/><([q’1, ull]a $Ill)7 R ([QZ7 u;]? $21)>7 where
q¢j € Q, uj € Tpyy (V) with 1 < j <1, and 87 € {8,8'}, then

t = tA($’)<' e 7tg<$'><([q,17ull(ui/yi)]v $Ill)7 T ([qzvu;(uz/yz)]v $;I)>7 o )
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(2) Ift = o(t,---,t,), where 0 € X,U{e} (if 0 = ¢ then # = e(t1)) with n >
1, and the translation function applied to ¢ is 0(q, o (z1, - -, 2n), Z (Y1, - - -,
ym)) 3 t£<$,><([q’1,ull],x’1),- ) ([QEaU”JE)% where q}' € Qa u; €
Tr (Ym) with 1 <5 <1, and {2,---, 27} C X, then

th=tag (s e ((lar, wy (ui/yi)l 1), - -5 (g, vy (ui/yi)l 1)), <),
where, for some i (1 <1i <n), if :ch =1z; (1<j<I) then t;- =1t

Let 3, be the reflexive and transitive closure of |57, and if ¢; generates
to by exactly k steps then we denote this generation by ¢; l—’fw to as usual. If
([go, Zo(#)],t) 3, t' then ¢’ is called a generation form. Here, if a generation
form of M is t o (([q1, 1], 1), -, ([q1, w], ;) then, for 1 < j <1, M’s input
head can read one of the input symbols of the root of subtree ¢; € T'x(g) with
the state ¢; and the stack u; € Tpy. So, if some u; (1 < j < 1) is §f then
M stops its generation for the subtree ¢;. From the above definitions, we can
now define the translations of t-PDTT as follows.

Definition 6. (Translations of t-PDTT)

(1) The translation generated by t-PDTT M with final state (abbreviated
by the final state translation) is the set of pairs

My = {{t,#) € Ts x Ta | ({0, Zo(®)] 515)) iy gy (s, ), ),
o, (lgr,w], §')), where q; € F, u; € Tpgpy (1 <4 < 1)}

(2) The translation generated by t-PDTT M with empty stack (abbreviated
by the empty stack translation) is the set of pairs

My = {(t,t") € Ty x Ta | ([90, Zo(B)], ts)) s tagsy(([an, 8], 87),
oy ([q, 8], 9")), where ¢; € Q (1 <7 <)}

In the case of (2), we describe M as (Q, X U{$}, AU{$'}, U {t},d,qo, Zo, D).

Remark. For a t-PDTT M = (Q, X U {$}, AU {$'},I" U {#},0,q0, Zo, F),
we have the following immediate consequences: If any ¢ is of the form
8(a, (w1, 2n), Zo(8)) € Tae{[Q x {Zo(®)}] x Xy) with T' = {Z,}, then
M is a top-down finite state tree transducer (t-FST) [5, 18, 20]. Note that
Zy(#) is a redundant symbol, we can omit Zy(f). If ¥’ = A and any 0 is of
the form 5(q70($17 T 7$n)7 Z(yla T 7ym)) 2 U(([plvul]vxl)v T ([Pnaun]a$n))
where p; € Q and u; € Ty (V) with 1 < i < n, then M is a top-down
pushdown tree automaton (t-PDTA) [12, 23]. We also note that the symbols
$ and §' are introduced for permitting the e-generation after reading a leaf
label and $’ indicates the end of the generation.
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Now, we shall give an example for explaining the above definitions.

Example 1. Consider the following t-PDTT M = (Q,X U {$},
{$'y, " U {t},0,q,Z,0) where Q = {p,q}, % = {a,b} (X, = X, = %),
{o,7,7}(Ao = A A, = {o,7}), = {X,Y,Z} (I, = I, = {Z},
{X,Y}), and ¢ is defined as follows:
(1) (g, alz1,22), Z(1))

= {o(([p, Y (X(#), Y ()], 22)
(P, b(z1,22), Y (y1,92)) = {o
(p,6(3),Y (1) = {r(([p, 2(Z
(P, a($), X (y1,92)) = {o(([p, Z
(p,(8), Z(y)) = {(lp,],9)}, &
(p,e(8), Z(#) = {(la. ], %)}

Then M translates the input tree ¢ = a(b,b(a,b)) into the output tree ¢’ =
o(o(o,v),7(7,7)) by the following procedure. Here the notation - (1 <k <
6) denotes that the k-th translation function is applied.

(lg, Z ()], a(b(3), b(a($),b(3))))

AU
A =
I, =

»7(([p, Y (8], 21), 7(([q, 4, 8)))) },
E([ P, X (y2, 1)}, 21),v(([g, 1], 8")))},

—~
—~~
—

(2) 6
(3) 0
(4) 0
(5) ¢
6) o

F6) oo

Next, we consider the case of b-PDTT. As shown in the definition of b-
PDTT, the translation function is not easy to understand, so we will exhibit
the translation function more concretely.

(1) Forany 0 € X, U{e} (n>1),qi€ Q and Z; € [}, (1 <i<mn),
6(o(z1,,mn), (a1, Z1(y1ts - s yim))s 5 ldns Zn(Yn1s - -
Ynm,)1) 3 (Ip,u], ')
(P € Qyu € Trgy (Y +otmy, ), ¥ € Tagsy(Xn)),
(2) For any 0 € X, U{e}, ¢ € Q and Z € I,
3(c(8), g, Z(y1,- - ym)]) 2 ([p,ul, t')
(p € Q,u € Tpyy(Yim), t' € Targny)-
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Since the notation of the translation function, especially the notation of
the variable, is somewhat complicated, we use the following abbreviations for
making the subsequent arguments simple. (1) For the series of y1,---,ym,
Y1, -+, ym is abbreviated as ¥y if m is known. Therefore, Z(y1,"*,Ym) is ab-
breviated as Z(?) for Z € I, and Zz(@)) means Z; (Y1, -, Yim) for Z; € I,.
2) Z1(Wis Y1k, Zoa(tnts > Y) 10 00 (@1, ), (a1, Z (g1,
Y- [@ns Za(Unts - - Ynk,)])) is abbreviated as Zy(y1),-- -, Zn(7n). (3)
For ﬁ YL s YLk ,?ﬁ SYnls s Ynkns (Y110 Ylkes s Ynds s Ynk, )
is abbreviated as (y{,--,7n). (4) For o € £, U{e} (n>0) and any Z; € I"
(1 <i < n), the notation 5(0(7)7 ([QIa Zl(ﬁ)]v T [Qna Zn(ﬁ)])) 2 ([P, u]vtl)
includes 6(c($), [¢, Z(Y)]) 2 ([p,u], ') if no confusion occurs. Under above ab-
breviations, the translation function is denoted by 6(o(@), ([q1, Z1(y1)],- - -
[4n, Zn(72)]) 2 ([p, u], ') where t' € Tagy(Xp), for o € X, U {e} with n > 0.

Definition 7. For a b-PDTT M = (Q, X U{$}, AU{$'}, 'U{#}, 4, g0, Zo, F),
if {n1,---,m} is an interior frontier node of t5g € Txyg), then for ¢; € Q,
U; € TF(ﬂ)a and ¢; € TA($’> (1 <1 < l),

tZ($>[([Q17 wil, t1), -, (g, w), )]
denotes the tree obtained by substituting ([g;,u;],t;) for t; € Txyg), where t;
is the subtree of gy whose root is n;.

We call t55[([q1,u1], 1), -+, ([@r, w], t1)] an instantaneous description (ID
for short) of M and the set of such trees is denoted by T's:4)[[Q X T (Yim)] X

TA<$/>] .

Definition 8. (Direct Generation of b-PDTT) For a b-PDTT M and
t € Tss)[[Q X Trep] X Tagyl, a tree t is said to (directly) generate a tree t' in
the b-PDTT M (denoted by ¢+, t') whenever the following conditions hold:
Let ¢ be t2<$>[- . ,7?, el

(1) IftA = U(([qau]7$))7 where o € EO U {5}7 qg € Q7 U = Z(ula"'aum)
(Z € Iy, and u; € Tryy with 1 <7 < m), and the translation function
a‘pphed to 1 is 5(U($)7 [qaz(yla T 7ym)]) 2 ([qlaul]vt”)a where q, € Q7
u' € pr) (Yn), and t"e TA($/>, then

=ty (0w (wa/yy, - wm [ym)], 1), -]

(2) It t = o(([q1,u1],t1), - -, ([gn, Un], tn)), where o € X, U {e} with n > 1,
g € Q, uj = Zj(uji, -+, ujm;) (mj 2 1, Zj € Iy and wj; € Tpygy with
1 <i<myj) with 1 <j <n, and the translation function applied to ¢ is
(5(0’((1)1, e axn)a ([QI, Zl(yla e ayml)]a Tty [Qna Zn(ym1+~~~+mn,1+1a Tty
Ymi+-+m,)]) D ([¢'su'],"), where ¢' € Q, u' € Ty (Yin,4-tm,), and
t" e TA<$’>(Xn)a then
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t = tE(EB)[ ) ([qlaul(ull/yla ey Ulmy /ymla o 7un1/
Ymi+-Amp_1+15 """ 7unmn/ym1+-“+mn)]v t”(tl/xlv e ,tn/:L‘n)),

.

Let 3, be the reflexive and transitive closure of |57, and if ¢; generates
to by exactly k steps then we denote this generation by ¢; l—’f\/[ to as usual. If
t5sy[([90, Zo(1)], ), - - -, ([g0, Zo(K)], 8)] 3, t' then ' is called a generation form.
From the above definitions, we can now define the translations of b-PDTT as
follows.

Definition 9. (Translations of b-PDTT)

(1) The translation generated by b-PDTT M with final state (abbreviated
by the final state translation) is the set of pairs

Mp = {(t,t') € T x Ta | tss)[([90, Zo()],$), - -+ ([a0, Zo(H)], )]
'_}‘\/I([Q,u],t’A@,)) where ¢ € F', u € Try }-

(2) The translation generated by b-PDTT M with empty stack (abbreviated
by the empty stack translation) is the set of pairs

My = {(tvtl> €Ty xTa | tZ($>[([Q0a Zﬂ(ﬁ)]v $)v T ([QOa ZO(Ii)]a $)]
i ([a, Ij]’t’A<$,>) where ¢ € Q}.

In the case of (2), we describe M as (Q, X U{$}, AU{$'}, " U{t}, 9, qo, Zo, )
same as t-PDTT.

Remark. For a b-PDTT M = (Q, X U{$}, AU{$'}, " U{t}, 9, q0, Zo,0), we
have the following immediate consequences: If any ¢ is of the form (o (z1,-- -,
w0), (a1, Zo ()] - lans Zo(®)]) 3 [Q X {Zo(H)}] % Tagsny (X,) with I' = {Z,},
then M is a bottom-up finite state tree transducer (b-FST) [5, 18, 20]. Note
that Zp(f) is a redundant symbol, so we can omit Zy(f) the same as t-FST.
If ¥ = A and any § is of the form d(o(z1, -+, zn), ([q1,v1], ", [qn, un]))
(lg;u],0(21,- -+, 2n)) with ¢ € Q and u € Ty (Yss), then M is a bottom-up
pushdown tree automaton (b-PDTA) [25]. We also note that the symbols § and
$’ are not necessary in a b-PDTT since reading a leaf label before e- generation
does not depend on $ and $'. Nevertheless, for the sake of representational
matching of t-PDTT and b-PDTT, we have $ and $’ remaining.

In the same way as the t-PDTT case, we shall give an example for explaining
the above definitions.
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Example 2. Consider the following b-PDTT M = (Q,X
{8}, r u{},d,q,2,0) where Q = {p,q},¥ = {a,b} (%,
{o,7,7}(Ay = A, A, ={o,7}), [ ={X, Y, Z} (I, =TI},
is defined as follows:

(1) 6(a(3),[p, Z(®)]) = {(lg, XY (§), X (#))], ()},

(2) 6(b(8),[a, Z(®)]) = {([p, Y ()], 7(8')},

d(3) 3(b(z1,z2), ([p, X (y1,92)], I, Y (B)])) = {([lp, Y (y2,92)], 0 (z1,7(5)))},

(4) d(a(@1,22), ([p, Y )], [P, Y (v1,92)])) = {([p, ], o (22, 7(z1,7(8))))}.
Then M translates the input tree ¢ = a(b,b(a,b)) into the output tree ¢’ =

o(o(o,v),7(7,7)) by the following procedure. Here the notation - (1 <k <
4) denotes that the k-th translation function is applied.

a(b((lg; Z(#)], 3)), bla(([g, Z(§)],9)), b(([g, Z(#)] 3))))

Fy a(b(([g: Z(1)],9)), b(([p, X (Y (), X (§))], o(8")), b(([a, Z(¥)], 8))))
"%2) a(([p. Y (§)1, 7(8')), b(([p, X (Y (8), X ()], o(8')), ([p, Y ()], 7(8")))
ya(([p, Y ()], 7(8), (Ip, Y (X (#), X (§))], o (0(8"),v(8))))
F()([ il o(o(a(8),v(8)), 7(7(8"), 7(8))).
Therefore, we obtain (t,t') € M.

Finally we define the equivalency of PDTT M! and M? as follows.

Definition 10. For a t-PDTT or b-PDTT M! and M?, a translation
generated by M! is equivalent to a translation generated by M? if M }1; =M }2;
(or Mj = Mj). In addition, in the case of M}, = M} (or My = M) we say
that M! is F-equivalent (or (-equivalent) to M?, and conversely.

§4. Fundamental Properties of PDTT

In this section we show some fundamental properties of b-PDTT, such that
(1) the final state translation is equivalent to the empty stack translation and
conversely, (2) any b-PDTT can be converted into a single state b-PDTT,
and (3) there exists a symmetric stack form in b-PDTT. Moreover, for any
t-PDTT, we can convert a t-PDTT with a tree structure of stack into a t-
PDTT with a linear structure of a stack, i.e., a stack symbol is monadic (the
stack symbol is monadic if and only if I, = () with n > 2). And, in the case of
b-PDTT, a linear structure of a stack and a single state are concluded. In the
top-down case, the above properties are already shown in [28], so we mainly
discuss about the bottom-up case. First of all, we consider the equivalency of
two translations in b-PDTT.

Theorem 1. For any b-PDTT M, there exists a b-PDTT M’ such that
My = Mp, and conversely.
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Proof. The proof is almost the same as the b-PDTA case[25], so we omit
the proof. O

Before proving the next theorem, we introduce an abbreviation for a single
state b-PDTT. In a single state b-PDTT, we sometimes omit the states since
the information of the state is redundant. That is, a translation function is
denoted by a mapping from (X, (X,) Ue(X,)) X (Lm, (Yim,) XX I, (Yin))
into the finite subsets of T (Y, U -+ U Yy, ) X Tag(Xp). Furthermore
we have the following definition in preparation for the proof. Note that this
definition is slightly different from the definition in [18].

Definition 11.  For the set of states Q@ = {1,2,---,1}, the encode function e’
(i € Q) is a mapping from Tpy (Ym) to Ty (Yin), where I" = {Z) | Z € I,
1 < <1}, which is inductively defined as follows:

(1) () =,

(2) for any Z € Iy, €' (Z(})) = Z(4),

(3) for any y; € Yy, with 1 < j <m, €'(y;) = §),and

(4) for any Z € I, w1thm>1andukETp(>( m)w1th1<k<m
l

#
¢ (Z(ur, - um)) = ZO(e! (), -+ e (), e (wm), - s € (um)).-

Theorem 2. For any b-PDTT M there exists a single state b-PDTT M’
such that My = M.

Proof. For a b-PDTT M = (Q,X U{$},AU{$}, " U{t},0,q0,Z0,0) , we
define a single state b-PDTT M’ = ({x}, X U{$},AU{$'}, NU{4},d, *,S,0)
as follows:
(1) For @ = {1,2,--,1}, N ={Z0 | Z e, 1 <i <1} (rn(Z9) =
[-rp(Z)), and

(2) S =2z,
(3) Forany o € X,U{e} withn > 0,if6(o(T), ([q1, Z1(¥1)] -, [dn Zn(¥2))))
3 ([p,u], 1), where t € Tagy(Xy), then
8 (o (), (™ (Z1(Y1)), -+ €™ (Zn(m)))) 3 (eP(u), 1)
For M' defined above, the following lemma, holds.
Lemma 1. For any t € Ty, ZO(i) = Zp and S(z) =Swithl<i<ry! (ZO(i)
(or S(;)) shows i-th Zg (or S) ),
)]

t2($>[([*78(1)(|i)]7$)7 7([*75(1"’)(]1) ~
*, el (ur)]v tTA($’))]7

Fhr ts ([ e (u1)], £ agsn) - (
if and only if

]
[
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txs)[([90, Zoy ()], 8), -5 ([90, Zogr) (K)], B)]

"lzfvftz( >[([Q1,U1],tm $')),"',([Qraur] tra(s))]
where tinggy € TA<$/>, ¢ € Q, and u; € T['< ) Wlth 1<

Proof of Lemma. We describe only the outline of the proof since the proof
is almost the same as the proof of Lemma 1 in [25].

If part: The proof is an induction on the number & of generation steps.
(1) Basis: We omit the proof since it is trivially clear.
(2) Inductive step: Suppose that the lemma holds for the number £ of gener-
ation steps. For

tss)[([90, Zoay )]:8), -+ -5 ([90, Zog) (1)], 9)]

Fl]ﬁ/[ tZ( )[([QIaul]atlA $’))7 T ([qraur]atrA<$’>)]v 5
without loss of generality, we assume that o((lq1,u1],t1a¢))," ", ([gn, un];
t:nA($/>)), where u; :~ZZ-(UZ) with 1 <4 < n, is the subtree of ¢y [([q1,u1],
tiagy),» ([@r, ur] tragy)] which is generated by the next step. If the trans-
lation function applied next is

(2) 8o (), (la1, Z1(GD)], s lans Zu(G)]) 2 (s 0], 8),
where t € TA($/>(XH), then

txes) [(lq, wl, trag)), - "ag[qr,ur] AS' 2]

SN (um/ym)] t(ta) /th stnasy/on))s ([Gn1s U],

tnrrash) s (e urly Eragsn)],
holds. On the other hand since

t2($>[([*a S(l)(ﬁ)]a $),s ([*v S(r’)(ﬁ)]a $)]
[*

l_lfl/[’ t2($>[([*7 et (ul)]7 7FIA($’>)7 M ( ,elr (UT)]a ET‘A($,>)]
holds by the inductive hypothesis, there exists the translation function

3'(o(T), (e (Z1(1)), -, e® (Zu(Un)))) D (eP(v), 1),
where eql(ZZ(E))) = Zz(ql)(yfll)v U ayg)a o ayz(]il)a o ayz(]lc)l) for E} =
(Yi1, - Yik;) and 1 <4 <mn,in M'. And if
a = tx ([ e (w1l tragn)s - (16 €™ (un)]s tnagsy), ([ €4 (unga)],
tn+1A($’))7 T ([*7 elr (UT)]a trA ))]
= txp[([* 6‘“(Z1(U_>1)) fray)s - ([ e (Zn(@R)), Toagsy)s (¥, e+
(Un+1)]s tnraggy)s - ([, e (Ur)] Ayl
where eql(Z(Uz))) = Zz((h ( (uzl) l(uzl)a 761 (uzki)a : ael(uiki)) for
Z

ul = (wi1, -+, uik;) and 1 < i <mn, then
h

1
a b tse ([ e (v)(e (Uij)/yij N EEragy /21 gy /on), ([+, €0

(tns )]s Enpragsy)s -5 ([, €9 (ur)], B agsn)]-
Therefore, if

txs)[([90, Zogy ()], 8), -+ (g0, Zorr) (# )] 3)]

"k“ ($>[([, (Um/yzg)]af(f $/5E1, - $f)/$n))a([Qn+1,Un+1],
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7?7L-|-1A($’>)7 - (lar, url, ET‘A($’>)]7
then

toes) ([ S) (], 8), - -5 ([, Sy (D], 9)]
Fhir s [(([ ef (v (um/ym))] (tm §)/T1, 7 bnaggy [Ta), ([x, et
(un+1)]7 tn+1A($’>)7 T ([*7 etr ( 7“)]7 trA($’))]
and the lemma holds for the number k41 of generation steps. If the translation
function applied next is
(b) 6o (), a1, Z1(F)]) > (p, 0], ),
then the lemma holds by the same way as (a) case.
Only if part: We can prove the only if part in almost the same way as the
if part.
(End of the proof of Lemma 1)

For any (t,t') € Ty x TA, the following statement holds.
ts@ (90, Zoy )], $), -, ([q0, Zogry (B)], 9)]
l_]]?/[([pv Ii]vtl A($ ))
if and only if
t2($>[([*a S(l)(ﬁ)]’ $)’ R ([*v S(r’)(ﬁ)]a $)]
i (b, e ()], Eagsy)

= ([*aﬁ]atlA<$I))-
Thus the theorem holds. O

Definition 12. For a t-PDTT or b-PDTT M = (Q,XY U {$},AU{$'},I" U
{8}, 9,40, Zo, F (or 0)), if I, = § withn > 2 (i.e., I" is monadic) then M is said
to be a linear stack t-PDTT (for shortly Ist-PDTT) or a linear stack b-PDTT
(for shortly 1sb-PDTT).

For a ranked alphabet X, the element of T's; has the form of oy (o9(:--
(o0m)--+)) when X is monadic. Clearly the notation is similar to the string
of the alphabet X, ie., o109---0, € X7. So we denote the set of trees
o1(oa(-+ (om)--+)) as (X)* to distinguish from the string. We sometimes
abbreviate (X)* to X* if no confusion occurs. For a t-PDTT, the following
theorem is proved in [28].

Theorem 3. For any t-PDTT M there exists a Ist-PDTT M’ such that
My = M.

For a b-PDTT, we have also a similar result. Before proving it, we have one
normal form of a single state b-PDTT. In the case of context-free tree gram-
mar, this normal form corresponds to the symmetric form[23] of the context-
free tree grammar.
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Theorem 4. For any single state b-PDTT M = ({x}, YU{$}, AU{$'}, NU
{ti},9,,S,0) , there exists a single state b-PDTT M’ = ({x},X U {$},A U
{8}, N"U{t},d',%,8,0), with My = My, whose translation function is one of
the following forms, i.e., for any o € X, U {e} (n > 0) and any Z; € N'(1 <
i <n),

(1) &(o(@),(Z1(31)s -+, Zu(Tn)))
(teT <$>(Xn)AEN’ with m > 1 and Bj € N’ with 1 < j <m),

(2) (o(@),(Z1(GD)s -+ Zn(Tn)) 2 (yis 1)
(t e Thgy(Xn) and y;; € {7/} with 1 <i <n), and

(3) 0'(o(@), (Z(5D), -+, Zu())) 2 (Z(8).1)
(t S TA<$ >(Xn) and Z € NO)

Proof. For the single state b-PDTT M, we convert § into ¢’ in M’ as follows.
That is, for any 0 € XY U {¢} and any Z;,---,Z, € N, if

3(o(T), (Z2 (), Zulim))) D (u, ),
then N’ contains Z; with 1 < ¢ < n and the translation function ¢’ in M’ is
obtained as follows.

(1) fu = yij (yi5 € {Yl,--,un}) or Z(§) (Z € Ny), then the translation
function

8'(o(T), (Zu(1), -~ Zu(G))) > (u,?)
is contained in M', and Z is added to N if u = Z(f).

(2) Tfu= A(uy, -, up) (A € Ny, with m > 1), then we have the translation
function

8" (o(T), (Z1(91)s -+ Zn(Un)))

> (A(Bl(maam)aaBm(wa 7%)) E)
in M', and By,---, By, are added to N and the ranks of By,---, B,, are
the cardinal numbers of {H, e yn} And for 1 < k < m,

(a) Tfup =y (yij € {yi,---,yn}) or Z(#) (Z € Ny), then the transla-
tion function

51(5(17)7 Bk(wa H ﬁ)) 3 (Uk,J?)
is contained in M’ and Z is added to N} if up = Z(f).
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(b) If up, = B(vi,---,vp) (B € Npy with m’ > 1), we repeat this
procedure for 6(c(Z), (Z1 (Y1), -+ Zn(yn))) D (u,) with any o €
Y U{e} and Zy,---,Z, € N, and u = uy (ie., A(u1, -, upy) =
B(Ula T 7vm’))-
For the translation function §’ obtained by the above procedure, §’ is one

of the forms of (1), (2), or (3). My = My can be proved easily. This completes
the proof. O

We call a single state b-PDTT M symmetric stack form in b-PDTT if the
translation function is one of the forms of (1), (2), or (3) in Theorem 4.

Definition 13. Given a ranked alphabet X, let X’ be the ranked alphabet,
where X' = ¥, 0 € X! if 0 € ¥y and o € X’ otherwise. For ¢ € T, the set
P(t), the set of paths through ¢, is the subset of Ty defined inductively by

(1) P(o) ={o} for any o € X, and

(2) P(o(ty,---,t U{O’ ) | w € P(t;)}, where 0 € ¥, and tq,---,t, €
Ts.
If T C Ty then P(T U P(t) and P is called a path function. Furthermore
teT

an element of P(T') is called a path.

Theorem 5. For any single state b-PDTT M = ({*}, YU{$}, AU{$'}, NU
{#},6,%,5,0), there exists a single state Isb-PDTT M’ such that My = Mj.

Proof. We can assume that M is in the symmetric stack form by Theorem
4. For such M, we construct a single state Isb-PDTT M' = ({x}, X U{$}, AU
{$'}, N' U {t},0', %,5,0) as follows:
(1) N' = NjUN}, where N| = {ZU) | for any Z € Ny,(m > 1),1 < j < m},
and Nj ={Z | for any Z € Ny}.

(2) ¢ is defined as follows:

(a) I 6(o(F), (Z1(T1), - Zu(B))) 3 (ABLTL, -, Tn)s -+ B (U1,
), t )wheretETA$/>( n), then
8 (o(T), (27 (1), -, 2™ () 3 (AP (B (2,)), ),

where 1 <p; <mand 1 < py <k +---+ k, with k, = rv(Z3)
(1 < h < n), however, for fixed py if po =k1 +---+ k1 +s (1 <
r <n,1 < s <k) then we define p3 = r and j, = s, moreover the
indexes j, (1 <h <n and h # r) , but not j,., take the value from
1 to kh.
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(b) If 5(0(?)7(Z1(w)7azﬂl(%}))) (yT‘Sa )7 where t € TA<$ >(X )7
1<r<n,and 1< s <k, then
5 (o(T), (20 (1), -+, 25 (20)) 3 (20, 1),
where j, = s and 1 < j < Ky with k&, = rv(Z,) (1 < h < n

h#r).
(¢) I 6(o (), (Z1(91), -+~ Zn(Un))) > (Z(}),1), where Z € Ny and
tETA >( Xp,), then

5 (o (), (217 (1), () 2 (2(8),9),

(#
where 1 < jj, <khW1thkh—T‘N( n) (1 <h<n).

For the single state I1sb-PDTT M’ defined above, we have the following two
lemmas.

Lemma 2. Let P be a path function from Ty, to the subset of Ty y,. For
any (t,t') € Tx, X T, if

t2($>[([*7 S(l)(ﬁ)]a $)7 N ([*7 S(lo)(lj)]a $)] I_]X/[([*a ’LL], tlA<$'>)a
then for any v € P(u),

- tss)[([x Sy (8)],8), -+, (%, o) D] I 5 ([, 0], sy

Proof of Lemma. The proofis an induction on the number k of generation
steps.

(1) Basis: We omit the proof since it is trivially clear.

(2) Inductive step: Suppose that the lemma holds for the number £ of gener-
ation steps If

(

MtE $>[([* Ul],fm<$'>), o ([ un]y Eaagsy)]s
where tm< g1y € Targry with 1 <4 <n, then there exists the generation

@ (L6 Sy (0)],8), -+, (%, Sy (B)], 8)]

(
Fk to ([ 01],Ea $'>) s ([ vnl tuags)y
where v; € P(u;) with 1 < 7 < n by the inductive hypothesis. Now let

w; = Zi(u}) = Zi(ui1,- -, uz,) with 1 < i < n and we denote v; = Zi(ji)(viji)
(Uiji S P(UZJZ) with 1 < 7; < k‘z) since v; € P(ul) = P(Zi(uil,---,uiki)).
Moreover let

an = toy[([xul, tragy), 5 (B unls thagn)]

1 = t2<$)[([*a Zl(u—>1)]a £1A<$’))v ) ([*a Zn, (U—TL))]a ZnA<$’>)]a

arr =ty (s vl fiagy), s (05 on] fnag))]
= ty(sy (6, 27 (1)) Fraggy)s o ([ 2507 )(Umn)] thag)))-
Under above descriptions and #xg >[([* u1] tm( >) - ([*, un]atnA<$’>)] =0
(B ], traggy), oo (B unls tnagsy))s
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(a) If the translation function applied next is 8(a (), (Z1(y1),- - -, Zn(Un)))

> (A(Bl(y_{a R %)a T aBm(y_{a R %))35)5 where ¢ € TA($’)(Xn) and
A, B; € N with 1 <14 < m, then there exists the generation ays as([*, A
(By(wf,--- ), Bm(ui, -, uy))],1). On the other hand, for any p;
(1 <pi <m)andps (1 <py <ki+---+ky), there exists the translation

function

O (o(), (20 (1), -+, 257 () 3 (AP (B (2,)), ),
where ifpo = k1 +-+-+kr—1+s (1 <r<nand1<s<k,) then p3 =,
jr=sand 1 < j, <k, (1 <h<mnandh #r)in M'. Therefore, for
1<r<nand]l1<s<k,, there exists the generation

anrr (1, 8) = s (% 29 (0], Fragn)s - s ([ 28 (0rs)]s

Frasy)s- s (1% 25" (0n)]s Fnagsy)]

Fae (B AP (B (0r)L E G aggy 21, By /70),
where a(r, s) is the notation to distinguish from appyr, ie., app(r,s)
to fix the indexes ¢ and j* of 79

;7 in app to v and s, respectively. That
is, if

l_I]c\}_ ([*aA(Bl(u—>1a au—n>)a aBm(u—>la au’—7l>))]v£(~1A<$’>/xla )
tnasy/Tn))
= ([*7A(B1(u—>17 e 7'LTTL>)7 e 7Bm(u—>la e 7'LTTL>))]7t,A<$/>)7

then there exists the generation

sy [([%, Sy @] 8), -+, ([, Sy ()], 8)]
A (T, AP (B (0 )], E(Fragey /210 s By /2n)

— ([*,A(pl)(BI(,Il’z)(Urs))],t’A<$,
where 1 <p; <m, 1 <r<n,1<
ki1 + .-+ 4+ ky. Therefore, clearly

{APY(BED (v,)) | 1<p1 <m, 1 <7 <, 1< 5 <k, and any
vrs € Plups)}

= P(A(Bl(u_{? 77“TTL>)77 Bm(u—>17 7,LTTL>)))
and the lemma holds for the number k + 1 of generation steps.

>)7
5 < ky ,ups € P(urs), and 1 < py <

If the translation function applied next is §(o( @), (Z1(y1),- - - » Zn(yn)))
> (yrs,t), where t € TA<$/>(Xn), 1< r~§~ n, and 1 < 3~§ ky, then there
exists the generation ans bar([x, urs], t(t1agy/®1, -+ s thagy/Tn)). On
the other hand there exists the translation function
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O (o(Z), (20 (1), 287 (20))) 3 (D),
where j, = s, 1 < j, < kp with 1 < h <n, and h # r in M’'. Therefore,
we obtain

cnrr(r,8) =t (15, 28 (025,)], Fragn)s -+ (15 28 (0rs)],

Fra)s -+ (00 250 (0, )]s s

Far (06, vrs), E(Eragsy /21, - 5 Enagsy /20)
and the lemma holds for the number k£ + 1 of generation steps since any
Vs € P(Ups).

(c) If the translation function applied next is §(a(Z), (Zy (D), Zn(m)))
> (Z(#),t), where t € TA<$/2(Xn), and Z € Ny, then there exists the
generation ans Far([*, Z(#)], t(tiagy /71, ,an<$/>/xn)). On the other
hand there exists the translation functlon

8(0(@), (2" (), 27" () 2 (2(8), ),

where 1 < j, < kj, with 1 < h <n in M'. Therefore, we obtain

anr =t (% 29 (0,5)] Fragn)s - (15 Z85" (0n.)]s Fnags)]

Farr ([, Z(0), EEragy /21, Taagy/Tn))
and the lemma holds for the number k + 1 of generation steps since
P(Z() =4{Z()}. (End of the proof of Lemma 2)

Lemma 3. Let P be a path function from Ty to the subset of Ty gy,. For
any (t,t') € TE x Taif
tssy (16 Sy (D1, 8), -, (1%, Sao) )], )] Fip ([, 0], Ea gy,

$
then there ex1sts u such that v € P( ) and
$

txsy [ Sy (B)],8), -5 (1% Sip) (0], $)] s (T, ul, Ey )
holds.

Proof of Lemma. This lemma can be proved almost the same as the pre-
vious Lemma 2. (End of the proof of Lemma 3)

Under Lemma 2 and Lemma 3, for any (t,') € T's x T and u € Ty,

tss)[(6 Sy )], 8), -+, (%, Stio) 0], $)] R ([, ul, a5y

if and only if

s L5 S (1 9),- (15 Sy B0, 9 o (15, 0], )
where any v € P(u).

Thus My = My holds since P(f) = {f} and this completes the proof. O

We have the following corollary immediately from Theorem 2 and Theo-
rem 5.
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Corollary. The class of translations generated by b-PDTT is equal to the
class of translations generated by a single state Isb-PDTT.

Example 3. Based on the b-PDTT M in Example 2, we have a single state
Isb-PDTT M? which is equivalent to M as follows.

First of all, we obtain a single state b-PDTT M! = ({x},X¥ U {$},A U
{$Y, NU{Hi}, 8, %, 2D (), where N = {X®), X(@ y®) y@) z@) z@) (N, =
N,Ny = {X (”),Y(p)}) which is equivalent to M according to the proof of
Theorem 2. Then the translatlon functlons are

(1-1) 6(a($), 20 (4)) = (XD (Y @) (), Y @ (1), XP) (), XD (1)), 0(3'))},
(1-2) 6(b($), Z ()) (Y ), (5))
(1-3) 6(b(7 )( ><‘> g2, yP y$0), Yy ) (1))
= (YO (yP), 557,y %y“) o(z1,7(5)))}, and
(1-4) 5(a(@), (YO 1), YO, @ 4P 4 9))) = {8, 0 (s 7ar, 7S}

Next, we obtain a single state b-PDTT with a symmetric stack form M? =
({x}, ZU{$}, AU{$'}, N2U{H}, ., *, S,0), where N2 = {X (@) X (@) y @) y(a)
wt, W2,W3,W4,Z(‘1)} (Ng = {X(P),X(q),Y(P),Y(‘I),Z(‘I)},N2 = {X(p)’y(p)’
W w2 W3, W*}) which is equivalent to M' according to the proof of The-
orem 4. Therefore the translation functions are as follows:
(21) 62(6(8), 20(6)) = (X0 (V.Y 05, X0 (1), X0 )5,
(2-2) 62(b(8), 2\ (4 )) {(Y® ), r(8")},
(2-3)1 62(0(7), (XP)(Y),Y )(Ii))

= (YO W' (7)), W (), W3 (), W' (7)), o (z1,7(8))},
(2-3)2 02(e(2), W' (¥)) = {(ys, 2},
(2-3)3 Ga(e(2), W2(7)) = {(ys, )},
(2-3)4 Ga(e(2), W (7)) = {(ys, )},
(2-3)5 02 6(96),W4(7)) = {(y4,w)}, an
(2-4) 62(a(@), (Y P (), YP)

( )))—{(ﬂa (w2, 7(z1,7(8'))))}-
Moreover, We obtain a single state Isb-PDTT M? = ({x},X U {$},A U

{8'}, N3 U {#},5,%,5,0), N> = N} UNG (N} = {2V | for any Z € N,1 <
j <4}, N3 ={Z | for any Z € NZ}) which is equivalent to M? according to
the proof of Theorem 5. Therefore the translation functions are as follows:

(3-1) 85(a(8), 29 (1) = {(XPO(YP)(H)),0(8)), (XPI (VD (), 0(8")),

(X(”)(3)(X(”)(li)),0($ )) (X (X (1)), 0(8)))},

(3-2) 33(b(8), 2 (K)) = {(Y P (§),7(8")},

(3-3)1 for 1 < i <4, &3((F), (XPO (1), Y1) = {(Y PO WO (yy)), 0
(z1,7(8))) | 1 <j <4},

(3-3)2 03(e(2), W' (Y)) = {(ys, 2},

(3-3)3 d3(e(2), W>D(Y)) = {(ya, )},

(3-3)a G3(e(2), WD () = {(y1, )},
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(38-3)5 03(e(), W' (¥)) = {(v2,2)}, and

(3-4) for 1 < < 4, d5(a(@), (VP (£), YOO () = {(8, 02, 7(31, 7(§))}-
This M? also translates ¢t = a(b, b(a, b)) into t' =o(o(o,7),7(1,7)). Therefore,
(t,t') € M and My = M} holds.

§5. Extended Ist-PDTT and G-type Normal Form b-PDTT

In this section we introduce an extended lst-PDTT for the sake of comparing
the translational capability of t-PDTT with that of b-PDTT. Moreover, we
introduce a G-type normal form in b-PDTT which corresponds to the Greibach
normal form in context-free grammar, to simplify the following argument.

Definition 14. A lst-PDTT M = (Q, X U{$}, AU{$'}, I"U{8},0,90, Zo, F)
is called an extended lst-PDTT when the translation function is defined as a
mapping from (i) for n # 0, a mapping from Q x (X, (X,)Ue(X,)) x (I")™(Y)
with m > 0 into the finite subsets of {t g (([q1,u1], 1), -+, ([q, w], 7)) | for
any [ > 1, ¢ € Qand u; € (I'%(Y) (I; > 0) with 1 < <[, and {2}, -+, 2]} C
X, }, and (ii) for n = 0, a mapping from @ x (X,($) Ue(8)) x (I")™(Y) with
m > 0 into the finite subsets of {t (g (([q1,u1],87),- -, ([, w], $))) | for any
I >1,¢ € Qandu; € (I)i(Y) (I; >0) with 1 <4 <1, and $! € {$,$'}},
where for any k& > 0, (I)*(Y) = {Z,(Z,(--- (Z(Y))---)) | forany Z; € T’
with 1 <7 <nandy =y or §}.

As is easily seen by this definition, we extend the domain of the translation
function in Ist-PDTT from @Q x (X, (X,,)Ue(X,))x I'(Y) (or @x (X, ($)Ue($)) x
(V) 10 Q X (Sn(Xn) Ue(X.)) x (T)(Y) (or @ x (Ea($) Ue($)) x (I)™(Y))
with m > 0. Note that 0(q,0(z1, -, z,),8) (¢ € Q and o € X)) is defined
in extended 1st-PDTT since § € (I")"™(Y) with m > 0. And we also note that
the definitions of extended Ist-PDTT, such as generation, translation and so
on, are the same as those of t-PDTT.

Theorem 6. For any extended Ist-PDTT M, there exists an extended Ist-
PDTT M’ such that My = Mp, and conversely.

Proof. The proof is similar to the proof of Lemma 2.22 and 2.23 in [2], so
we omit the proof. O

Theorem 7. For any extended Ist-PDTT M, there exists a Ist-PDTT M’
such that M}, = Mp.

Proof. The proof is similar to the proof of Lemma 2.21 in [2], so we omit
the proof. O



A COMPARIZON OF B-PDTT AND T-PDTT 63

Next, we consider a C-type normal form and a G-type normal form in
b-PDTT which correspond to the Chomsky normal form and the Greibach
normal form in context-free grammar (CFG). That is, the symmetric stack
form in b-PDTT can be made more simple since the structure of the stack is
linear.

Definition 15. Let M be a single state b-PDTT such that M = ({*}, X U
{$}, AU{$'}, "U{H}, 6, %, S, 0). If the translation function is one of the following
forms:

(a) for Z € I,

do(e(z), (Z(y)) 3 (A(B(y)),1),
where A€ I',,Z,B € I', and

(b) foroce X, (n>0)and Z; € I' (1 <i<m),
So(o (), (Zr (1), -+, Znlyn))) 3 (yr,1),

where 1 < r <n,

then M is called C-type normal form in b-PDTT. And if the translation func-
tions are only of the following form, i.e., for 0 € X, (n > 0) and Z; € I
(1 <i<n),

5(0(7)7 (Zl(yl)a e aZn(yn))) = (XI(X2(' o (Xm(yr) o ))7 E)a
where X; € I' (1 <i<m), m>0,and 1 <r < n, then M is called G-type
normal form in b-PDTT.

Before proving the next theorem, we have some definitions. For any o €
YnU{e} (n >0)and Z; € I' (1 < i < n), we call the translation function
8(o(T), (Z1 (1) Zn(yn))) 3 (alyr),f) with @ € (I)* and 1 < 7 < n,
Zy-translation function. And for A € I', we call the translation function
d(e(z), A(y)) > (A(aly)),z) with a € (I')*, left recursive.

Theorem 8. For any b-PDTT M, there exists a G-type normal form b-
PDTT M’ such that My = My, and conversely.

Proof. The proof is simple, but somewhat long, so we describe only the
outline of the proof. The detailed proof is shown in Lemma 1,2,3 and Theorem
2 of [29]. From Theorem 4, we can suppose that M is a symmetric stack form
b-PDTT. For M = ({x}, Y U{$}, AU{$'}, I"U{t},d,*,S,0), we can prove that
there exists a C-type normal form b-PDTT M° = ({x}, Y U{$}, Au{$'},I°u
{1}, 00, %, S,0) with M§ = My, and the following two lemmas hold without
proofs.
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Lemma 4. For a single state Isb-PDTT M = ({x}, X U{$},AU{$},I" U
{ti}, 9, ,S,0), suppose that a translation function

5(e(2), AW)) 3 (Bla(y)), o),
where A,B € I' and a € (I')*, exists in M and let Rp be the set of B-
translation functions in M. And for any translation function

5(0(?% (Z1(y1)s -+ BWyr), -+ Zulyn))) 2 (Byr), 1),
where 0 € ¥ U {e} and § € (I')*, in Rp, let R}z be the set of translation
functions

5(0(7)a (Zi(y1)s- s Alyr)s =+ Zulyn))) 2 (Balyr)), 1)
Now we convert M into a single state Isb-PDTT M’ = ({x}, X U {$},A U
{$'}, r U {t}, ¢, %, S,0) by removing the translation function d(e(z), A(y)) >
(B(a(y)),z) and adding the set of the translation functions Rp. Then Mj =
Mj holds.

Lemma 5. For a single state Isb-PDTT M = ({x}, X U {$}, AU {$'},I" U
{ﬂ}a 6? *, Sa @), let

5(e(@), Aly)) 3 (Alaily)), o),
where 1 < ¢ < r, be the set of left recursive translation functions in A-
translation functions of M and let

5(01(?% (Zil (yl)a T ,A(y,«i), T Zini (ynl))) > (ﬁi(yri)v f)a
where 0, € Y U {e} and f; € (I')* with 1 < i < s, be the set of non-left
recursive A-translation functions in M. Now, we convert M into a single state
Isb-PDTT M’ = ({x}, X U{$}, AU{$'}, TU{W}U{t},d,x,S,0) by replacing
all A-translation function by one of the following translation functions:

(a') 61(01'(?)’ (Zil (?/1), e vA(yri)a e aZini (ynl))) > (ﬁi(yri)a f) or (BZ(W

(yr;)),t) with 1 <7 <'s, and
(b) ¢'(e(z), W(y)) 3 (ai(y),x) or (a;(W(y)),z) with 1 <14 <r.
Then M) = M holds.

We have the G-type normal form in b-PDTT by the following proce-
dures. First, Let a b-PDTT M°% = ({x}, XU {$}, AU {$'}, I U{#}, 6o, *,5,0)
with I = {A,,A,,---, Ay} be a C-type normal form in b-PDTT satisfy-
ing Mé’ = My. Second, we convert M? into a single state Isb-PDTT M! =
({x}, ZU{8}, AU{S'}, I U{t}, 0., %, S, 0) by replacing the set of left recursive-
translation functions in A;-translation functions of M according to Lemma
5. Then M(Dl = Mq? holds. Third, we convert M' into a single state Isb-PDTT
M? = ({x}, X U{8}, AU{S'}, "2 U{t}, 0., *,5,0) by the following procedures:
(1) the translation functions, whose forms are 61 (g(z), A2(y)) 3 (A1(B(y)), 1),
in As-translation functions of M are replaced according to Lemma 4, and (2)
the set of left recursive-translation functions in As-translation functions of M!
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is replaced according to Lemma 5. Then M(g = Mq} holds. After that we define
single state Isb-PDTTs M3, ---, M™ same as M?, then Mg == M(g holds.
Moreover, we convert M™ into a single state Isb-PDTT M' = ({x}, XU{$}, AU
{$'}, " u{t}, ¢, *,5,0) according to Lemma 4, then the translation function
of M’ consists only of the form: & (o(Z),(Z1(41), - Zn(yn))) > (a(yy), 1),
where 0 2 ¢, 1 <r < mn,and Z; € I' with 1 < i < n. Thus we have the
theorem since My = My" = --- = My = Mj holds. O

66. A Comparison of b-PDTT and t-PDTT

We have introduced a b-PDTT which is considered as a dual concept of
t-PDTT and shown some fundamental properties in the previous sections.
Based on these facts, we now compare the translational capability of t-PDTT
with that of b-PDTT in this section.

Definition 16. For a t-PDTT (or b-PDTT) M = (Q, X U{$}, Au{$'}, I"U
{8}, 6,40, Zo, F) with a translation function 6(o(z1,---,2n),p, Z(Y)) 3 t’A($,>

(([QD U1], xl’)a B ([QZv ul]v xl’)> (OI“ (5(0(:51, e ,(L‘n), ([pla Zl(m))]a B [pnv Zin
(7)) ([ ul, tg gy (@1rs -+, z))) where {@1r,--- 2y} C Xy, the transla-
tion function is said to be variable linear (or simply linear) if no variables in
X, occurs more than once in {zy/,---,zp}. A PDTT is variable linear (or
simply linear) if any translation function of the PDTT is linear. The transla-
tion function is said to be wvariable nondeleting (or simply nondeleting) if each
variable in X, occurs at least once in {z1/,---,zy}. And a PDTT is variable
nondeleting (or simply nondeleting) if any translation function of the PDTT
is nondeleting.

Remark. The previous theorems (from Theorem 1 to Theorem 8) also hold
in the case of linear or nondeleting linear t-PDTT (b-PDTT), since their proofs
do not depend on whether a translation function is linear, nondeleting linear or
not. We also note that the output tree of the translation function in b-PDTT
is denoted by t’A<$,>(x1/, -+, xy) instead of the notation t' € Ty(g)(Xy) for the
sake of comparing the translational capability of t-PDTT and b-PDTT.

We henceforth assume that all t-PDTT and b-PDTT have a linear stack
structure. Therefore a linear Ist-PDTT (linear 1sb-PDTT) is abbreviated as
a 1t-PDTT (Ib-PDTT). Furthermore the class of translations generated by
a transducer C (for example C=t-PDTT, 1b-PDTT) is denoted by C (for
example t-PDTT, 1b-PDTT). As indicated in [5], translations of t-PDTT
and b-PDTT differ in the following points. That is,
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(1) t-PDTT can copy a subtree of the input tree before nondeterministic
generation. And decides whether to delete a subtree or not before gen-
erating it.

(2) b-PDTT can copy (or delete) a subtree of the input tree after nondeter-
ministic generation.

It will be anticipated that the translational capability of t-PDTT is different
from that of b-PDTT from the above mentioned facts. In fact, we can show
the next theorem.

Theorem 9. b-PDTT and t-PDTT are incomparable.

Proof. Consider the t-PDTT M*! = ({x}, ZU{$}, ZU{$'}, TU{t}, 0., *, Zo, B),
where X' = {a,b,0},I' = {Z, Z,}, and §; is defined as follows:

51(* a(x), Zo(#)) = {a(([+, Z(W)], =)},
01(x, a(x), Z(y)) = {a(([*, Z(Z(y))], z))},
01(%, 0 (21, 72), Z(y)) = {o(([x, Z()], 21), ([+, Z(y)], 22))},
01(%,b(z), Z(y)) = {b(([*,], 7))}, and
01(%,0(8), Z(#)) = {b(([*,4],8))}-

This M generates the translation MQ)1 = {{(a"(a(b",b™)),a™(a(b™,b"))) | n
1}. Here, suppose that there exists a G-type normal form b-PDTT M
{1, X U {8}, X U{$}, I U{f},6,%5,0) with My = Mj. And for t =
a™(o(b™,b™)), there exists a generation

txes)[([+, SW)], ), ([, SH)], 9)]

Fr sy [ Xo(an(ED], 0 (8), (15, Ya (Bu(§)], 67 (8))]

Far Easy L[5 T (B (B)], o (07 (81, " (8))]

Fia([6, B, an (07 (8), B7(5)))),
where the applied translation function is one of the following forms: (1)
(o (@1,22), (Xn(y1), Ya(y2))) 3 (m(y1),0(z1,32)) with O,(H) = an(t), (2)
0(o(z1,22), (Xn(y1), Yn(y2))) 3 (m(y2),0(z1,22)) with O,(f) = Bu(f), and
(3) d(o(z1,22), (Xn(y1), Yu(y2))) 2 (m(H), o(x1,22)) with 6,(f) = #. That
is, 0,(8)=an(t), Bn(f), or §. On the other hand, we pay attention to a se-
ries of the pair (X;,Y;) with 1 < i < n. If n > |I'|*+1 then there exist
ny and ng, where 1 < ny < ng < n, such that (X,,,Y,,) = (Xn,,Ys,) for
(X1,11),(X2,Y3), -+, (X,,Y,). Thus for ¢ = a™ (o(b",0™)), if the genera-
tion

Iy

thsgs) (b, S 9), (1, S, 9)]
i s [0 Xy ey (D)1, 70 (81, ([, Yoy (B ()], 57 (81)]
-t o (41 (O (D)), 07 (8), 571 ()]

Far (e gl a™ (o (7 (8), 57 ()

exists in M, then there exist the following generations:
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(1) If 0,,, = v, then, for " = a™ (o(b™,b"2)), the generation
5[ S(®)],9), ([, S(#)], $)]
= 850y L[ Xy (amy (1)1, 67 (87)), ([%, Yoy (Brs (1))], 072 (8))]
= 155y [([%, Xy (s (§))], 071 (8), ([, Yo, (B (8))], 67 (87))]
e t" S (% 11 (On, (1))], 0 (67 (), 6™ (87)))]
= ([ ], ™ (o (6™ (87), 6™ (7))

exists in M.

(2) If 0,,, = By, then, for t" = a"(o(b™2,b™)), the generation
5 ([ S(®)],9), ([, S(#)], $)]
= ([ ], ™ (o (6™ (87), 6™ (87))))

exists in M by the same way as (1).

(3) If 0, =t then, for t" = a™ (o (b"2,b"2)), the generation
5 ([ S, 8), ([, S(B)], 9)]
([, ], ™ (o (6™ (87), 6™ (87))))

exists in M by the same way as (1).

However, M does not contain the translations (a™ (c/(b",b"2)), a" (o(b™,
")), (a" (a(b™,b™)),a" (a(b™,6™))), and (a" (o(b™,0")),a™ (o (0™,
b"2))) since ny # ny, i.e., Mj # My holds and this contradicts the assumption.
Thus t-PDTT¢Zb-PDTT holds.

Next, Consider the b-PDTT M? = ({*}, YU{$}, XU{$'}, {Z}U{}}, 6., %, Z,
0) where X = {a, b}, and &2 is defined as follows:

52(0(8), Z(1)) = {(Z(2), b))},
52(0(x), Z(2)) = {(Z(), b{e))}, and
d2(a(z1,z2), (Z(H), Z())) = {(, a(z1))}-

This M? generates the translation My = {{a(b",b™),a(b”)) | n > 1,m >
1}. Here, suppose that there exists a t-PDTT M = ({«},X U {$}, XY U
{$'}, T U{t},6,%,5,0) with My = M. And for t = a(b",b™) (n > 1,m > 1),
since there must exist a translation function such that d(x, a(z1,z2), X (y)) =
a([*,Y(y)],z1) (X € I Y € I' U {e}), we have the generation

(b, S Exsy) Far (B, X ()]s Ex(s))
Far ol Y (al8))], 0 (5))
Hpa(b (1,1, 8)).
where o € (I')*. On the other hand for ¢ = a(b",¢") (n > 1, any " € Ty),
the generation
(15, B tisy) i (15, X (a

], sy
Fara(fs, Y (o

)
()1, 6"(8))
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a(b” [+, 4], %))
exists. However, M does not contain the translations (a(b",t"),a(b")) where
n>1and any t” € Ty, i.e., Mj # My holds and this contradicts the assump-
tion. Thus b-PDTTZt-PDTT holds and this completes the proof. a

Before proving the similar results for 1t-PDTT (Ib-PDTT) and nondeleting
1t-PDTT (nondeleting 1b-PDTT), we have the following theorem.

Theorem 10.
(1) nondeleting 1t-PDTTCIt-PDTTCt-PDTT,

(2) nondeleting Ib-PDTTClb-PDTTCb-PDTT.

Proof. We pay attention to the translation 7 = {{(a(b"),a(b™,b")) | n > 1}.
Clearly there exists a t-PDTT M' with MQ)1 = 71, but no It-PDTT M with
My = 7, exists. Contrary to this, for the translation 7 = {(a(b"),a) | n > 1},
there exists a 1t-PDTT M? with Mq% = 79, but no nondeleting 1t-PDTT M with
My = 75 exists. On the other hand nondeleting 1t-PDTTCIlt-PDTTCt-
PDTT holds. Thus we have nondeleting 1t-PDTTClt-PDTTCt-PDTT.
Furthermore, we have nondeleting 1b-PDTTClb-PDTTCb-PDTT by al-
most a similar procedure to t-PDTT case, and this completes the proof. O

Theorem 11.
(1) b-PDTT is incomparable with 1t-PDTT and nondeleting 1t-PDTT.

2) 1b-PDTT is incomparable with t-PDTT, I1t-PDTT, and nondeletin
g
1t-PDTT.

Proof. Let M! be as in the Theorem 9. Clearly this M! is a non-
deleting 1t-PDTT and nondeleting 1t-PDTT ¢ b-PDTT holds. More-
over, we have the inclusion properties It-PDTT ¢ b-PDTT, t-PDTT ¢
b-PDTT, nondeleting 1t-PDTT ¢ 1b — PDTT, 1t-PDTT ¢ 1b-PDTT,
and t-PDTT ¢ 1b-PDTT since nondeleting 1t-PDTT C 1t-PDTT C
t-PDTT and 1b-PDTT C b-PDTT hold from Theorem 10. Next,
let M? be as in the Theorem 9. Clearly this M? is the Ib-PDTT and
Ib-PDTT ¢ t-PDTT holds. Moreover, we have the inclusion properties
Ib-PDTT ¢ 1t-PDTT, 1b-PDTT ¢ nondeleting 1t-PDTT, b-PDTT ¢
t-PDTT, b-PDTT ¢ It-PDTT, and b-PDTT ¢ nondeleting 1t-PDTT
since nondeleting 1t-PDTT C 1t-PDTT C t-PDTT and 1b-PDTT C
b-PDTT hold from Theorem 10. This completes the proof. O
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We prove the next theorem, which is the main subject of this paper, before
ending this section.

Theorem 12. Let M be a nondeleting Ib-PDTT. And for any (¢,t') € My,
there exists a nondeleting 1t-PDTT M" such that (t,%') € M;".

Proof. Suppose that M = ({*}, X U{$},AU{$'}, " U{4},4,%,S5,0) is a G-
type normal form in nondeleting 1b-PDTT. From M, we have the extended
nondeleting 1t-PDTT M' = (Q', X U {$}, AU {$'}, " U {t},d,q0, Wo,0) as
follows:

(1) @' = {+} U{qo} U{ax | for any X € I'},

(2) I"=TU{W,} U{Wx | for any X € I'}, where Il = I',,I}) = I, U
{Wo} U{Wx | for any X € I'}, and

(3) ¢’ is defined as follows:

(a‘) For 6(0’((1)1, T axn)? (Zl(yl)a T aZn(yn))) > (a(yr)a tlA<$’><x1’a Tt
Tp)), where o € X, and {z1/,- -,z } = Xy,
(i) if a(y,) = Yi(Ya(- -+ Yin(yr) --+)) with m > 1, then
8 (+,0(7 ), Y1(Ya(- - Yin(y) ---))
> tlA<$/><([QZ1/ ) WZ1/ (Ii)]’ xl’)a Tt ([*a Zyr (y)]a xr’)a Tt
([anl ’ WZn/ (H)]a xn’)>7
where Zj = Z; for zj = z; with 1 <i<nand 1< j <n,
(ii) if a(y,) = y,, then for any W € I},
&' (+,0(7), W (y))
> tlA<$/><([QZ1/ ) WZ1/ (Ii)]a xl’)a Ty ([*a ZT’ (W(y))]? xr’)a
) ([an/ ) WZn/ (Ii)]a $n’)>7
where Zj = Z; for zj; = z; with 1 <i<nand 1< j <n,
(iii) if a(y,) = Y1(Ya(--- Y (f) --+)) with m > 1, then
8 (4,0 (), Yi(Ya(- - Yin(t) -+ -))
e tlA<$’><([qzll ) WZI/ (Ii)]a 171’)7 M ([qzn/ ) Wan (Ii)]a $n’)>7
where Zj = Z; for £y = z; with 1 <i <nand 1 < j' <n,and
(iv) if a(y,) =4, then
&' (g0, (), Wo(t))
>t ((laz, Wz, @) 21), -+ (laz,,» Wz, (B)], zw)),
where Zj = Z; for zjy = z; with 1 <i<mnand 1 <j <n.
In the case of (i) or (ii), we assume that Z,(y,) # Z,(f) and in the
case of (iii) or (iv), we permit that Z,.(y,) = Z. ().
(b) &' which is independent of ¢ is as follows:
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(i) for any X € I', 0'(qx, e(z), Wx (#)) 2 ([gx, Z(#)], z) with any
Z € I,
(ii) for any X, Z € I', §'(qx, £(=), Z(y)) 3 ([gx, W(Z(y))], =) with
any W € I'" and including Z(y) = Z(f),
(iii) for any X € I', ¢'(qx,e(x), X (v)) > ([*, X (y)], #) with includ-
ing X(y) = X(#), and
(iv) &'(x, (), S() 3 ([« 4], ).

For the extended nondeleting 1t-PDTT M’ defined above, we have the follow-
ing two lemmas.

Lemma 6. For any (t,t') € Ty x Ta and vy € (I') T,

([*v 7(1:1)]’ t2<$)) I_7\/[’ tlA<$'><([*v S(l) (ﬁ)]v $I)’ T ([*v S(lo)(ﬁ)]a $,)>a
if and only if

t2($>[([*a S(l)(ﬁ)]a $)’ R ([*v S(lo)(ﬁ)]v $)] F?\/[([*a’}/(ﬁ)]’ tlA($’>)'

Proof of Lemma. If part: The proof is an induction on the number k of
generation steps.
(1) Basis: If
ts) ([, Sy (D], 8), -+, (b, Sig) (D], $)] = ar (L, ¥ ()], a1y
then there exists the translation function
80 (S +S10))s (Scay (B =+ Sy () 3 (), P
in M and tyg = o(8(1), -+, 8(,)) holds. On the other hand there exists the
translation function
(5, (S (1),+  $(10)) Y (B))
2 tlA($’) (([qsu)’ WS(l) (], %),---, ([qs(zo)’ WS(IO) (#)1,8))
in M’ since 7y # €. Therefore,

(b vy t5s)) = ([, (li)] o($a 3(10)))
Fnmr tA $’><([q5(1)7 WS(l (H)] $I) ([qs(lo)’WS(lo)( ]?$,)>
l_M’ tA $'><([q5(1)v ( )]a ,)v ([QS(lO)a ( )]v )>
Fhr tagsy ([, S ( )],$') - ([%, Soy ()], $)>

holds.
(2) Inductive step: Suppose that the lemma holds for the number & of gener-
ation steps. For the generation
te (b6 Sy @] 8), -+, ([x, S (Ii)],$)] i
Hir tees ([ Zu (o (8)], tm<$f) o (6 Zn (vn ()] tnas )]
I—M([*a’Y(ﬁ)]atlA($f>)a
if the translation function applied last is
80 (TN, (Z1 (1), Za(ya))) 3 (@), Uy ),
where o € X, then t'y gy = tA<$,><(II1/( iy /%)y T (G Ay /i) and
t2< g) = U(t12< g)s " 2($) where tzg( $) € TE( $) with 1 < 7 < n. And the
following facts hold
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(i) Ifa(y,) = Y1 (Yo(--- Yiu(yy) - --))with m > 1, then y(§) = Y1(Ya(- - - Yin (v
(#))---)) holds. And there exists the translation function

8 (4,0 (), Yi(Ya(-- Yin(y) ---)))
2 tlA<$’><([qzlr ) WZ1/ (Ii)]a xl’)v B ([*a Zr’ (y)]v x?")v B ([QZn/ s WZn/
®], zn))

in M'. Therefore we have the generation
(b, 7], ts))
= ([x, Yi(Ya(- - Yu(vr (§) - D] o(tims), - tnss)
VAN ><([€/Z1 Wz, Oz (issy /i), ([, Ze (vr ()], 200
(tizey/®i), - (92, Wz, )]zw (tiss) /i)
= tlA<$’><([qzlr s Zi (v (B)], v (Lisesy /i), - -5 ([%, Ze (0r ()], 20
(tissy /)5 (a2, Zw (Vn ()]s Tor (Lissy /20)))
Fhar tagsy (B Zo (0r ()]s v (tisgsy /3)), -+ 5 ([, Zi (0r ()], 2
(tizesy /i), s ([, Zn (v ()]s 2 (tiss) /)

(ii) If a(y,) = yr, then y(f) = v, () with v, # € holds. And for any W € I,
there exists the translation function

8 (+,0(T), W (y))
>t (([az, Wz, D], z1), -+, (b Zo W ()] 20), -+ (92,
Wz, )], zw))
in M'. Therefore, for v,(f) = W (v,~(f)), we have the generation
(B v ()] txsy)

= ([*, W (v (0], o(t1508), s tnzisy))
Far tpgsn ((laz,, Wz, ()], zv ( s /2i)s e (B Zo (W (0r ()],
Ty (tisy/Ti)s - (laz,, ,WZ )] 2w (tizsy /i)
Fae tagsy (e Ze (1 (B)], 2 (Gissy /22))5 -+ (%, Zyr (00 (B))], 20
(tisesy/zi))s o ([x, Zw (v n(ﬁ))]axn’(ti2<$)/$i))>'

(iii) If o(yy) = Yi(Ya (- Yin(#) - ) with m > 1, then y(f) = Y1 (Ya(- - Yin(H)
--+)) holds. And there exists the translation function

0'(+,0(T), Y1 (Ya(--- Yin(8) --))

>ty ((laz, Wz, D] 2v), -+ (az,,, Wz, ()], 2n))
in M'. Therefore we have the generation

(e, v ()]s txsy)
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= ([ Yi(Ya(- - Yo () - ) otiss),  taxs))

Faa tagy ((laz, s Wz, @] o (tissy /73), -+ 5 (az,,, Wz, ()], 2w
(tixs) /i)

Fhar Eagsny (0 Z (01 ()], 2 (Bissy /73)) -+ (B, Zye (00 ()], 2
(tixs) /i)

(iv) If a(y,) = f then v = ¢ holds. However this is not the case since y # .

For any i (1 <i <n), if there exists a generation

tissy (%, Sy (1), ), -+, (1% Sy D], )] -5 ([, Zi (wi ()], T agsry)

in M, then there exists the generation

([, Zi (i) tissy) Faar fian (B Sy DL 8), -5 (15 Sy (1)), 81)

in M’ by the inductive hypothesis since k; < k. Thus we have the generation
(s Y1) Egs))
Fhr Eagn (0 Zr (e (8)] 2o (Bissy /24), -+ 5 (B Z (0 ()], 2 (Biss) /

i)
e Eagsn (B Sy W] 8), -+ ([, Sao) (1)), 8))
since tA<$,> = tA<$,>(:1:1/( iA(S /%) “yZo (tiaggy /i), i-e., the lemma holds

for the number £ 4+ 1 of generatlon steps.

Only if part: Before proving the only if part, we define a relation l—g\lz),

as follows. For a = ta)[(lqr, us()],tise)), - ([gs, us(B)], tsxsy)] in M,
we define S; as a mapping from « to a subset of states in M’ with Sy(a) =
{q1,"-",qs}. And for a series of generation ay by o Fpgr -+ g Q-1 by Qo
in M, where we assume that none of the translation function is applied to the
node whose state is * in a; Fpp ;1 with 1 < i <m—1,if Si(aq) = S(am) =
{x} and Si(a;) # {*} with 2 < i < m — 1 then we denote a; I—S&[), o, When
061 l—s\}[), o l—s\}[), - By I—S\}[), Bk+1, we denote [ I—S\If[), Or+1- Under this definition,
the proof is an induction on the number & of l—g\?,
(1) Basis: For the generation

(b, Y ()], E(s) 5 tagsy (5, Sy 18-+ ([ Sy (9,810,
let tz($> be O’(tlz($>, e ,tn2<$>) where o € X}, and ti2‘<$) S T2<$> with 1 <
1 < n. We consider the following cases according to the translation function
applied to this generation.

(i) Suppose that a translation function &' (x,0(Z), Vi (Ya(--- Yin(y)---))) 2
tlA<$'> (([qzll ’ WZU (Ii)]a xl’)a T ([*7 Lyt (y)]a xr’)a T ([qzn/ ) Wan (Ii)]’ xn’))
is applied. If y(#) = Y1 (Ya(--- Y (7' (#)) - --)) with v' # ¢, then there
exists the generation

([*aV(ﬁ)]atZ‘(&)
= ([, Y1(Ya(--- Y (V' (8) - D] o (tisqsy - tnsisy)
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Faar ta gy (92, Wz, (D], 20 (Biss) [70)), - ([ Zo (Y (1)), 2 (
tis)/2i), -5 (92, Wz, 0], 2w (tiss) /i)
Far tagn (lazy  Zv (n )] 21 (tiss /xz)) 5 ([ Zer (Y ()]s
Ty (i) /%), (92,5 Zw (W ()]s e (Biss) /24)))
Az <$I><([*,Z1f( ()] 2y (tisis) /i), ([ Ze (v ()], e
iz /i), (% Zw ()], 2 (Bizs) /240))),

([*a'Y(Ii)]aU(tlx‘() tn2($>))
i s 0 Z (@D @ (s /), (B, Zo (o (8)], 2

(tixes)/@i))s -5 (% Zo (Y ()], e (Fis) [ 70)))
= ) (06 Sy (D], 87)5 -5 ([, Sy (B)], $’)>

However, we obtain Z (') # S since Z,» # ¢ and ' # ¢, and this is not
the case.

Suppose that a translation function & (x,o(2), W (y)) 3 t' A( ,>(([qzl,,

$
Wz, W) zv), -, (%, Zo (W (Y)] z), -+, (laz,, Wz, ()], znr)) is ap-
plied. If y(f) = '(#)) then there exists the generation

W (y
(e v txsy)
=[x, WO W) o(tizg), s taxs))
Faer oy (([az, W, ()], 20 ( 28y /%i)s s ([ky Ze (W (' (1)))],

oy (tiss)[7i))s -5 (2,0, Wz, D] 2w (i) /24)))-
However, we obtam Zp (W (7 )) # S since Z, # ¢ and W # ¢, and this
is also not the case.

Suppose that a translation function & (x, o (2), Y1 (Ya(- - Yin(#) --+))) 3

)
tlA<$'> (([qzll ) Wzll (Ii)]’ ZElI), T ([qzn/ ) WZn/ (Ii)] Lp! )> 18 a‘pphed If’}/(ﬁ)
Yi(Ya(--- Y (f) - -+)) with m > 1 then there exists the generation

([, v ()]s txsy)

= ([, Yi(Ya(- - Y (8) - N] o (bisggy, s tass)

e t'A<$I><([QZ1HWZﬂ( )],z (tiss /fL'z)) - (laz,,, Wz, ()], 2w
(tizsy/zi)))

Fhr tagy (B Zo ] v (i) /73) -5 ([ Znr (B)], 2 (i sy /
i)

)
=t ([, Sy (D], ), -+, (b, Sy ()], 8))-
Thus x5 = o($(1),*,8(,)) holds since n = lp, t; = § and Z; = S with
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1 <4 < n. On the other hand, since there exists the translation function
8o (), (Z1(y1)s-- > Zulyn))) 3 (Vi(Ya(--- Yiul#) -+ )y tlagge (@rr, -,
Zy)) in M, we have the generation

tesy [([%, Sy (B)],8), -+, ([%, S0y (B)], $)]

= o(([+, Say®)], 8), - - ([, Sy ()], )

mar ([, (VL (Y - Yin() - )] t' INENCRTITN)

= (57 )] Eaey)

and the lemma holds.

(iv) Suppose that a translation function & (go, o (@), Wo(#)) > t’A<$,>(([qZ1,,
Wz, M), z1), -+, ([az,,, Wz, (#)], zn)) is applied. However this is not

the case since v € (I') ™.
(2) Inductive step: Suppose that the lemma holds for the number & of I—S\If[),
For the generation

(e V)]s Esssy) F D 2y (D Sy (01,8, - (D, S (), 81),
let tz($> be O’(tlz($>, e ,tn2<$>) where o € X, and ti2‘<$) S T2<$> with 1 <
1 < n. We consider the following cases according to the translation function
applied to this generation.

(i) Suppose that a translation function & (x, (@), Y1 (Ya(- - Yin(y) - -+))) 3
tlA<$’> (([qzll ) WZU (Ii)]a 171’)7 M) ([*7 Ly (y)]? 177”')7 T ([qzn/ ) Wan (Ii)]v xn'))
is applied. If y(#) = Y1(Ya(--- Yo (7 (#)) - - -)), then there exists the gen-
eration

(B v (®)] txsy)

= ([ Yi(Ya(- - Yo (v (8) - N o (tissys - s tnss))

Faa taggy ((laz, Wz, )] v (tisgsy /i), -+ 5 ([ Ze (e ()], 2
(tisesy/i), - (laz, Wz, ()], Tw (tiss) /i)

Fae tagsn (0 Zu ()]s 2v (Bisgs) /20)), -+ ,([ s Zye (v ()], 0
(tizy/zi)), s (% Zw (i (@)], 20 (Bimsy /i)

where v; € (I')* with 1 <1i < n.

(ii) Suppose that a translation function &(x,o(Z), W (y)) > ' <$,>(([qzl,,
Wz, 0], z1), -, (I, Zeo W ()], 2), -+ (92, Wz, )], 2w)) is - ap-
plied. If y(#) = W(+'(f)), then there exists the generation

(ERIUIRSEY)
= ([*,W(y ( Nho(tissy, s tnss))
Faar gy gz, Wz, (D], 20 Gz /i), -+ (b, Zo (W (Y (1)),
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Ty (Lissy/Ti))s s (

Fhar tagsn (D Z (1 ()

(tizs) /i), (%, Zn

where v, () = W (¥'(#)) = v(#).

(iii) Suppose that a translation function &' (x,0(Z), Vi (Ya(--- Yin(#) --+))) 2

)
tlA<$’> (([qzll ’ WZU (Ii)]a 171’)7 M) ([an/ ’ WZn/ (Ii)] L/ )) is a‘pphed If’Y(Ii)
Yi(Ya(---Y(8)---)), then there exists the generation

92,1, Wz, ()], 2w (tises)/2i))
L (s /i), - (1%, Ze (e (B)], 200
(o ()], 2 (Eiz(sy /7)),

(e, v txsy)

= (5, Yi(Ya(-- Y (§) - D) o (tissy, s tnsis))

Far e ((laz,, Wz, (B)], 20 (tis /ﬂﬂz)) -, (lgz,, Wz, ()],
T (tiss)/Ti)))

Far $><([* Zy(n)] v (s /xi)s -5 (% Zw (1 ()],
T (tix(s)/i)))-

(iv) Suppose that a translation function & (go,o (@), Wo(#)) > t’A<$,>(([qZ1,,
Wz, ), z1),---,(laz,, Wz, (§)], z,)) is applied. However this is not
the case since y € (I')7.

For any j with 1 < j < n, there exists a generation
([*aZj(Vj(ﬁ))]ij(&)FS\]Z}) IE]'A<$'><([* Saoy@l, $') - ([ S0, (B1,8))
in M" and 1€’A<$,> = t’A<$,>(:1:1/ (i) /i), T (Eia /$l)> since
gy (0 Z ()]s 21 (tissy [0), - - ([*, an (%(ﬁ))],wn' (tixes) /i)
0 s (5 Sy (18, ([ Sy (8)), 81)).

Thus there exists the generatlon .
sl Sy B18), -5 (T Sy 0] )]y (b Z5 (v ()] £ acsy),
ie.,

to) ([ Sy (B)]1,9), -+, ([*, S(zo)(li)], 3)]

Firtee (s Z0n @) fiasy)s s (5 Za(m ()] Enags:))]
by the inductive hypothesis since k; € k. Here, in the case of (i), since there ex-
ists a translation function 8(c(Z), (Z1(y1), - Zn(yn))) > (Y1 (Ya(--- Yin(yr)
o '))vtlA<$')<x1’a Tt ,:Enl>) in M,

tr (b6 21 ()] frasy)s - (5 Zn ()] Tnags )] i

Far ([, (YL (Y2 (- Yin(y (1)) - D] sy (v (Fiags / ) T (Liagsy/

i)
= (5B )
holds. In the case of (ii), since there exists a translation function é(o (),
(Z11), > Zulyn)) 3 (s Eagg (s o)) in M and 7,(£) = 4(8),
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tsgsy [+, Zu ()] frag)s - ,([* Zn ()] taas)]
(%, 9 ()] ta ey (o GBiagsy /22), - s e (Fiagsry /24)))
= ([ v )], yeg)
holds. And in the case of (iii), since there exists a translation function
B(o(), (a0, Znlon)) 3 AR Yo+t i
tssy [([* Zl(%( ))] tagy) e (6 Za(m @) Eragy)]
Far ([, Y (Yo (- Yin () - )]s ta gy (1 (Biagsy /i), - - o (B agsry [70)))
= ([, M1, tA<$’))
holds. Thus the lemma holds for the number & + 1 of {5
(End of the proof of Lemma 6)

Lemma 7. For any (t,t') € Ty x Th and subtrees t12< b tisggy of Exgy,

$
([g0, Wo ()], £¢s)) Fhar Bagsry ([, war ()]s v sy, -+ ([, Uz'( )]t ss)))s
if and only if

txs [T+, wa (B)],

tragn)s o (B w B Eag)] i (] tagn),
whor o (4,50 O Shee by 0Nl ) and (1]
<>>wu<,<([ ), $) (b Sayh ), up = i € (1)
tyogs) = tings), and tA<$’) tagy >< ays s trag) (tpag) = tias) for

i
tjlz' —t12$>) w1th1<z<land1§ Sl
Proof of Lemma. If part: The proof is an induction on the number k of
generation steps.
(1) Basis: For t2<$)[([*7 ul(li)]a t1A<$’))7 Ty ([*7 Ul(lj)], tlA($’))] l_M([*a lj]a tlA($’))
and u; = Z;j(v;) with 1 < ¢ < [, without loss of generality we as-
sume that the applied translation function is 6(o(Z), (Z1(y1), - - -, Zi(y1))) >
(# thgn @,y ar)) and tog = oltisg), - tsg) (0 € X and
tisesy, >tz € Txygy). Therefore, since there exists the translation func-
tion &' (qo, (@), Wo(t)) 3ty (a2 Way @)y 010), -+ (a0 Wy (§), )
in M', we obtain

([q0, Wo ()], t(5))

Faa Up gy (([qszzlf Wz iz /i), 9z, Wz, O],z (Liss) /i)
Fhar tany (06 Zu (o ()]s v (isqsy /74)), -+ 5 ([, Z (ow (B)], @ (i sy [ 4))
= U (b ur (0], v (timgs) ), - 5 (e (8], 2o (s /20)),
where v]/ = vy for z = =z with 1<j<land1 < h <, and the lemma
holds.

(2) Inductive step: Suppose that the lemma holds for the number & of gener-
ation steps. Without loss of generality we assume that

B = t2($>[([*v U1 (ﬁ)]v flA($’>)v T ([*a Un (ﬁ)]v an($’>)v T ([*a ul(ﬁ)]v tlA($’>)]
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= tZ [([* Zl( ( ))]7 £1A<$~’))7 T ([*7 Zn, (Un(lj))]a an<$’>)7 ([*7 un+1(lj)]a
tn+1A($’>) 5 ([ w(B)], trag)]
|_k+1([ aﬁ]atlA<$’>) ~
is generated by the next step. If o(([x, Z; (vl(li))],tm<$/>), o ([, Zn (vn ()],
t, A(§y)) is the subtree of 3 and the applied translation function is

() 8(o(). (Z1(wn). - Zu(un)
: > (Vi(Ya(- - Yi(yr) -+ ))s tyag (. -+ zw)),
then
Bt ([ Yi(Ya( - Yin(vr () - D] Enyags)s (6 tngr () Ensragsr)),
5 (B w(®)]s tragy)]
(0, ], thgg)
holds. Without loss of generality, there exists the generation
(lgo, Wo(§)], tssy)
Fhar Ean (06 Yi (Y2 (- Yo (0r (B) - )] o (Bisgsy -+ s tnsgsy))s ([ tnar (B)];
tn+1’2<$))7 T ([*7 uy (H)]v tl’2($>)>
in M’ by the inductive hypothesis and t’A<$,> = tlA<$,><£(1)A($/>,Zn+1A<$I>, e
tiagy)- On the other hand there exists the translation function &' (x, o(7), 11
(Ya(-- - Youlyr) =) 2 tyaw)((az, Wz, @) zv),- -, (1%, Ze ()], 200, - -,
(lgz,,, Wz, (#)], zn)) in M', we obtain

(lg0, Wo ()], txsy)

Far g By ags >(([QZ1”WZI,( sz (s /T5))s 5 (%, Ze (Y)], 2
tiss)/75)s -5 (az, Wz, W], 2w (E505)/25)))s ([ tngr (B)];
tn+1'2<§>)a' s (Beur ()]st sesy))

Far tagsn Gy ags (e Zir (o ((8))] 20 ( ]2<$>/5Ej)),"',([*,an (v ()],
T (i 508)/%)))s ([ untr ()], tn+1’2($)) = ([ ur ()]t ssy)

=t (b urr D], 20 (o) /@), (B ur D] e (tisgsy /24)))-

where v, = vy, for z,,,y = z), w1th 1<m<nand1<h<n. Thus the lemma,
holds. If the applied translation function is

(11) 6(0—(?)? (ZI (yl)a T aZn(yn))) 3 (yra t~(1)A($’><(I;1" e axn'>)a and
(i) 8(o(T), (Z1 (). ()
> (Yi(Ya(--- Yo () ) tyagy (@, -+ ),
then we obtain the lemma by a similar way to (i). Thus the lemma holds for
the number k + 1 of generation steps.

Only if part: the proof is an induction on the number & of I—S\]f[),

(1) Basis: For ([QO7 Wﬂ(ﬂ)]a t2<$)) l_S\}[)’ tlA($’)<([*a ul'(li)]a t1’2($>)a T ([*7 uy (Ii)]a
tyss))), the applied translation function is ¢'(qo, o(T), Wo(t)) > t’A<$,>(([qZ1,,

WZ1/ (Ii)]a 171’)7 Tt ([QZn, ) WZn/ (Ii)]a $n’)> That is, for tZ($> = U(t12<$)7 Tt
tn2<$>), where o € X, and lix) € TE($> with 1 <1¢ < n,
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(lg0, Wo ()], txsy)

Faer Eaggn (([az, Wz, D],z (tissy /7)), -+ (a2, Wz, D], 2w (Fiss) /
z;)))

I_7\/[’ tlA($')<([*v Zy (1)1( ))] xl’( iX($) /xl)) ) ([*a L (Un(li))]v Ly (ti2‘<$)/
z;)))

=t (B ur (D], 21 (tisgs) /20)), - (6w ()], 2 (tisgs) /24))s
where v = vy, for z; =z, w1th1§] <land1<h <l ie. l—nandui/ =
Zi(v;) with 1 <4 <[ is concluded. On the other hand, since there exists the
translation function 6(o(Z), (Z1(¥1), -+, Zn(ya))) > (4, t’A<$,>(x1/, Ce ) In
M, we obtain

t<$>[([* ut ()] fragn)s - (s w®)] fagy)]
o(([x, Z1 (1 (§)]; trags ),---,([*, n(0n ()] tnags))
FM([ s tagsny)
since t’A( = tA >(:Jc '(tiay /@), T (fa¢87y/2i)) and the lemma holds.

(2) Inductive step: Suppose that the lemma holds for the number & of I—S\If[),

For ([g0, Wo(#)], ts)) i Eagsry (B (], Barsgs)), - (B (B)), sy i
the translation function applied next is
(i) 0' (%, 0 (), Y1 (Ya(- -~ Yiu(y) --)))
e t1A§§,><([qzll ) WZU (H)]a xl’)a T ([*7 Zyt (y)]a ]77"’)7 ) ([an/ ) Wan (Ii)]a
Tn')),
then for uy = Y1(Ya(- -+ Yip(v1) - -+)) with vy # § and tyx) = o(tiss).
t1n2<$>), there exists a generation
tlA<$'><([*7 Uy (H)]a t1’2($>)7 Tt ([*7 wyr (Ii)]a tl’2($>)>
Faar g (Fragsy ((laz, Wz, (D) 21 (trzs) /25))s -+ ([ Zor (01 (8))), 2
(t1j2<$)/$j))7 T ([qzn/ ) Wan (Ii)]a L/ (t1j2($>/$j))>7 ([*7 U (H)]a t2’2($>)7
5 (b ur ()] trss)))
Fhar tagsy (Brag (B, Zu (wi ()], 21 (Bysesy /25)), -5 ([ Ze (01 (8))], 2
(t1j2<$)/$j))7 T ([*7 Zp (wn(lj)]a Ly (t1j2<$)/xj))>7 ([*7 uo/ (H)]a t2’2($>)7
) ([*7 uy (Ii)]a tl’2<$))>7
where w; € (I')" with 1 <7 <n and i # r in M'. On the other hand, there
exists the translation function
(o (), (Z1 (1), s Zn(yn)))
> (V1(Ya(- - Youlyr) -+ ))s by (- 2r))
in M and supposing ¢ > = tlr s(g) and tlm<$/> € Txrgy which satisfies
tragy [ (B Sy ()], 8), -+, (%, Sy ] $) 3 (s wil Eriagsy) with 1 <7 <n, we

obtain
[U(([ s 21 (wl( ))] tllA $ 2? ’ ([ ( ( ))]vfer($’)) "a([*vZn

( ( N tinash)s ([* Uz( )],tm 5)), - (s w ()], fmgw)i
Far sy [([6 Y1 (Ya (- - Vi (v1) - ))]at1A$ )5 (ks w2 ()]s taagsry), - -5 (k5w
] tiasn)]
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= t2($>[([*7 u1 (H)]a 7?lA($’))7 T ([*7 ul(li)]a EZA($’))]
el tag) ~
since t1A< gy = tiagy(Tr (Fagy/Ti)s - o (biiagy/2i)). Moreover we have
a similar result when we suppose that ;5 = t1/x) with 2 < j <[ and the
lemma, holds. If the translation function applied next is

(ii) &' (x, 0 (F), W(y)) 2 brags (([az, Wz, )], 1), -+, ([, Zo (W (1)),
xr’)v T ([an/ s WZn/ (ﬁ)]v xn’)>a and
(iii) o' (+, 0 (7 ), Vi (Ya(- -~ You(#) --))) 2 Fragsy ((laz,, Wz, ()], 210, -,

(92, Wz, §)], 2n)),

then we obtain the lemma by a similar way to (i). Thus the lemma holds for

the number £ + 1 of l—(k+1). (End of the proof of Lemma 7)

Under these lemmas and any (t,t') € Ty X Ta, u; € (I')" with 1 <4 <1,
t2($>[([*7 S(l)(ﬁ)]v $)7 T ([*7 S(lo)(lj)]v $)]
ity (e ()] B agsn) o (e i (D) Frasey)]
Far ([ 8] tagny)
if and only if
(lg0, Wo(§)], t¢sy)
i g (B (B by )+ (b (B )

= Eagsny (B Sy (8], 1), - ",([ (1) (1)), 8)),
where for the subtree tl2< $) (1 <i<lof tx(gy, Ui = uj for ¢, I Lis($)
with 1 <j <1, tixs) [([ 1 #)],9),- ',( » Sy ], 8)] =2 (%, il tiasy) and
(b, wal i) = iagsyy (([ 1y 8), -+, ([, Sy (1)1, 8)). Thus we obtain
|

)8 X
My = {(t,t') € Tx x TA tx(s) [([ SayW18), -+, (%, So) )], )] Far ([,
ﬁ]atlA($’ )}
={(t,t") € ToxTa | ([q0, Wo()]: tx28)) Ehr Eagsny (1%, Sy ()], 8), -+,
(b5 Sio) D], 8)) Fagr tagsn (s By 1, 875+ (B, Baoy 1 8003
= Mj.
Moreover, for the extended Ist-PDTT M’, the extended 1st-PDTT M” such
that My = M always exists from Theorem 6. Also the Ist-PDTT M" such
that My = M}, always exists from Theorem 7. Thus the theorem holds. O

On the other hand, we have the next corollary immediately since nondelet-
ing 1t-PDTT¢Zb-PDTT and nondeleting lb-PDTTCb-PDTT hold from
Theorem 10 and Theorem 11.

Corollary. nondeleting lb-PDTTCnondeleting 1t-PDTT.
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§7. Conclusions

We have introduced a bottom-up pushdown tree transducer (b-PDTT)
which results from generalizing a bottom-up tree transducer by adding a push-
down storage (where the pushdown storage have the form of trees, i.e., a tree-
pushdown storage) and may be considered as a dual concept of the top-down
pushdown tree transducer (t-PDTT). For such a b-PDTT we have shown some
fundamental properties such that, the final state translation is equivalent to
the empty stack translation, and we can always convert a b-PDTT M into
a single state b-PDTT M’ which is equivalent to M. Based on the above
properties, we have shown that any b-PDTT can always be converted into a
linear stack (i.e., a stack symbol is monadic) b-PDTT with single state, and
converted into a G-type normal form which corresponds to the Greibach nor-
mal form in a context-free grammar (for t-PDTT, no normal form exists which
corresponds to the Greibach normal form in a context-free grammar). Finally
we have compared b-PDTT with t-PDTT and it is shown that the class of
translations generated by nondeleting linear t-PDTTs properly contains the
class of translations generated by nondeleting linear b-PDTTs.
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