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Abstract. An Otsuki connection I' is a cross section of the bundle T (M) ®
D?*(M) and they can be undertood as generalized objects of the affine con-
nections. Briefly, the difference between these two theories is that an Otsuki
connection I' is an affine connection if and only if the principal part A(T") of T,
which is a homomorphism of the tangent bundle T'(M), is the identity map. We
consider some special class I'(¥, G) of I'. Using I'(¥, G), this paper presents
universal expansion-like models which are exact solutions of some partial dif-
ferential equations.
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8§1. Basic Concepts and Preliminaries

A cross section I' on the vector bundle T'(M) ® D?(M) is called an Otsuki
connection, where T'(M) and D?(M) are the tangent bundle and the cotan-
gent bundle of order 2 on a smooth manifold M respectively. Using local
coordinates (u*), I' is written as follows:

9 A2 A
I'= 55 ® (Pldu +T),du" © du”).
It is easy to see that the P = (P[L\) tranforms as a tensor field of type (1,1)
under coordinates changes. The tensor field P = (Pﬁ\), which is denoted by
A(I"), is called the principal part of I'. According to Otsuki [6, 7], the covariant

derivative I'xY is defined by

0
_ A\ pi 14 Ay v
LxY = (X(YY)P{ + T4, XY )—8u”’
where X,Y and ['xY are tangent vector fields on M. The operator 'y has

the following properties:
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1. fo+gyZ = fI‘XZ + ngZ,
2. I‘X(Y+Z):FXY+FXZ,
3. TI'xfY=X(f)P(Y)+ fT'xY, where f,g are functions on M.

It is routine work to extend the covariant derivative to arbitrary tensor fields.
For example, if F' is a tensor field of type (0,2), then I'x F' is defined by

I'xF(Y,Z) = X(F(PY,PZ)) — F(xY, PZ) — F(PY,T'x Z).

We put
T(X,Y)=IxY -TyX — P[X,Y].

This element becomes a tensor field of type (0,2) and is called the torsion
tensor field of I'. Any geodesic v in M with an Otsuki connection I' is given
by a solution of the system of the ordinary differential equation of order 2 on
M: )
deut du” du”
P)—— 4T, —— =0

b ods? w ds ds ’
where s is an affine parameter of the connection.

Let P = (Pﬁ\) and G = (g»,) be a regular tensor field of type (1,1) and a

non-singular tensor field of type (0,2) on M. We put

G(X,Y) = G(PX,PY).

Using the terminology of Otsuki connections, the Levi-Civita connection V
with respect to G is written by

V= a%A ® <6ﬁd2u“ + {ﬁy}du" ® du”) :

where {ﬁy} are the Christoffel symbols of G = (Grp)- We define an Otsuki

connection

PV = %A ® (P,jdw + Pg{;{,,}du“ ® du"> :
It is easy to see the following fundamental properties of PV.
1 P=)D).
2 (PV)xG =0.
3 PV is torsion free.

4 v is a geodesic of V if and only if it is a geodesic of PV.
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Conversely I' = PV is uniquely determined by the above 1~3, which we write
=PV =T(P,QG).

The Otsuki connection I', which we will consider in this paper, is a case
P = ¥ and denoted by I'(¥, G), where V¥ is a function on M and I is the
fundamental unit tensor field of type (1,1). I'(¥, G) seems to have a meaning
only where ¥ does not vanish, but any function ¥ on M is available for T'(¥, G)
because it can be written locally as follows:

0

P,G) = 55® (xpdw + T, dut ® du”) :
ov ov ov
F)\ - T A A A 2 ,
1124 {uu} + (8U“ 61/ + auyéu + auo-g gu )?

where we use the apparaties on a Riemannian manifold (M,G). Using an
affine parameter s of I'(¥, G), equations of a geodesic become

d?u? dut du”
1 U it -0
M) ds? t ds ds

We define a set Sing(I') € M and a metric G by

Sing(T) = {x e M | ¥(z) =0}, G =T2G.

The next lemma is a special case of the above property 4, which says that a
space M\Sing(I") with an Otsuki connection I' = I'(¥, ) and a Riemannian
manifold (M\Sing(I'),G) are geodesically equivalent in the following sense.

Lemma 1. A curve 7y(s) in M\Sing(T") is a geodesic in the sense of Otsuki
geometry of T'(¥, G) if and only if it is a geodesic in the sense of Riemannian
geometry of (M\Sing(T'),G).

Lemma 1 shows that G = ¥2@ has an important meaning in T'(¥, G)
geometry, which we call the essential metric of an Otsuki connection I'(¥, G).

In the paper [4] we define a function Sp(y ) and the condition (A) as
follows:

(A) (5/ SF(\I/,G)dVG = 0.
M
Using local coordinates (u*) and the apparaties on the Riemannian manifold
(M, G), the condition (A) becomes as follows:
1 1
V(R — g"8) = SVaVk(P?) (g9 — g g™)

1
+ 12(VA0)(V,T) (""" — 59“”9“)‘1’ =0,

1 1
(A - §S) + Eguy(vu‘ll)(vvqj) =0,
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where S, A are the scalar curvature, the Laplace-Beltrami operator of (M, G).
It appears very difficult to find non-trivial solutions, which means solutions
with ¥ not being constant, of the above equations. However, using a function
h and a metric G, which are defined by

V3
2

the equations become the following simpler forms [5]:

h=-~"log¥,G = V3G,

DY 1— va — UV — — =V ~ ~
R" — 598+ (7" g — g (Voh)(Vgh) =0,
A(h) =0,

where we use the apparaties on Riemannian manifold (M, G). Rewriting these
equations to the covariant forms, we have

@) Ruv — 505 = 25357 ~ 0™ (Vah) (V).
(3) A(h) =0,

where we use the apparaties on (M\Sing(I'),G) but abbreviate the bar for
convenience, which we do not think causes any confusion and we will use
these notation from now on. (2) and (3) are the Euler-Lagrange equations of
a Lagrange density L(h,G) which is defined as follows [5]:

L(h,G) = ¢" [{55H0a} — {5 His} + 2(Vuh) (Vuh)| /=[G,

where (M\Sing(T'), G) is a 4-dimensional Lorentz manifold and|G| = det(gy,,).
In the same paper [5] we look for solutions I'(¥, G) of the above equations un-
der the condition that I'(¥, G) has the spherical symmetry and find two inter-
esting families of Otsuki connections, one of which is the schwartzshild space-
time and the other is peculiar to the theory of Otsuki connections I'(V, G).

In Section 2 we will find exact solutions I'(¥, G) of the equations, whose
essential metric has the following form:

G = —dw? + R*(w)D(r)(dz? + dy® + dz*).

Taking the results in advance, D(r) becomes:

67’2 -
D(T) = (1 + T) 5

where e = —1, 0, 1. Some elementary properties of the functions R(w) will be
discussed in Section 3.
The following ranges of indices are used throughout this paper:

]-Szajakaé?)a OSO%/J),’)’,"'S?L
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§2. Universal Expansion Models by I'(V, G)

We consider a metric G and a function A of the following forms:

G = gmdw/\dx“
= —B(t,r)dt* + A(t,r)(dz? + dy* + dz*),
h = h(?),

2 1

where r? = z? +y? + 22 and we often use ¢,z,y,z instead of 20,2 z?,23. Using
these forms, the Christoffel symbols {21/} = {ﬁu} of G become as follows:

1B 1 B,
{tt}:{oo}:Ega{oi}:{io}:§§7,
1A ; 1 B,
0y _ g0y _ te iy _ LDraT
{ij}—{ji}—§§5zg,{00}— 54
14,

{%j} = {;0} = ij‘sijv
; ; 1A, [zF z) z
G =yt =57 <75ij + - 0ik — ?5jk> ,

where A; = %, A, = %, etc.. Components of Ricci tensor and the scalar

curvature S of G are given as follows:

e = —5(3),-3(3) 105 (7
(), (57), (7).
53 ) (1) (3)- () ()
) () ()}

e = (4),05(3) ()

= 5 (0 TG (5 (5)

(), (), (3))
e -
HE G0 6
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e = (42,445, (4) ()
IR GIOROIC!

|
S RN
—N

N = = N =

where we use the following formulas and notations:

RIU’ = VH or ,\{,uu} or y{u/\} + {n)\}{;w} {KV}{;L)\}
S = ¢"R,,
PO U )
! drt 2T 9a2 BT 98 O

Using these equalities, the left side of (2), which are denoted by G/, become
as follows:

1 1
Gy = Ry — 59”8 = Ry + —BS

- z<%>2—§{<f“> (1), (%))
{3
HGIONGIOREIC

1
Grr = Ry — 59191:8 = Ry — 51‘15

_ 4 (é) _§é<é>2+lé<é> (&)
~ B\A), 4B\ A 2B\A/)\B

ANy -
h>|



MODELS OF UNIVERSAL EXPANSION BY OTSUKI CONNECTIONS 153

&G (5. (3))

() () (3)
HE ) GG @)
A @)
T RO s

1 /A, 1 /Bn 1 A\ [Ap
-2 (ﬂk T2 (3),9 1 (%) (%)
1 [Ag\ /B 1 [A,\ (Bx\ 1 /Bp\ (B
=(3) ()3 (%) (5)-3(5) (7).
where k& # m. On the other hand, the right sides of (2), which are denoted by
H,,, become as follows:

Hy = (20068) — 919*?)Va(h)V(h) = (h)?,
A
Hy, = (25?55 — 9kkg®? )V (R)V 5(h) = E(ht)2a

the others = 0,
where hy = %. (2) becomes as follows:
(4) Goo = ()
Ao
(5) Grr = E(ht) ;
(6) Gor, = Gro =0,
(7) ka = Gmk = 03

where k£ # m. Now we assume that A(t,r) has a form of A(¢,r) = C(t)D(r),
then (6) becomes B.Cy; = 0. We assume B, = 0 i.e. B = B(t) and rewrite G
and h using the following new variable 7 such that 7 = [*\/B(s)ds for ¢:. Now
G and h become as follows:

G = —di* + A, r)(dz® + dy? + dz2?),
h(t) h(D),
where A(f,r) = C(t)D(r) = C(¥)D(r). Without loss of generality, we can

assume as follows:

G = —dt’>+ A(t,r)(dz? + dy? + dz?),
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ho= hi),

where A(t,r) = C(t)D(r). Using these forms of G and h, (4), (5) and (7)
become as follows:

S .

4\ C CD? 4D
(9) —{C’ —i(0)2}+i{p +1p —i(D )2}—C’D(h )2
tt 40 t 2D rr r r D r - t)
1 1 3 2|
10 55 {pn-1p - Sy} =0

Equality (6) becomes as follows:

3 _ 1 23] _
(11) htt+%(0tht) = W{(ht) C }t—o-

(8)~(11) are the fundamental equations of this paper.
Using a new function: 5 = f2, (10) becomes as follows:

5 (£ =78) =0

where f, = %, frr = %. Integrating this equality, we have

er?

f(T):].-i—T, 52—1,0,1,

and D(r) becomes as follows:

2

-2
D(r)z(l—i—%) . e=-1,0,1,

where we use a boundary condition such that

lim D(r)=1.

r—-+00

Putting these D(r) into (8),(9) and (11), we have the following:

3/CN\? 3 .
(12) 1 (6) te = (he)*,

Ctt 1 (Ct 2 e 2
1 — - = — = —

(14) {(h,f)Qci*}lt = 0.



MODELS OF UNIVERSAL EXPANSION BY OTSUKI CONNECTIONS 155

Differentiating (12) by ¢, we have

19 ()38 -5 (8)-wmm

Using (14) to the right side of the above equality, we have as follows:
3/C\ [3 /C\? 3¢ 5
5 (e) {1 (3) +G-m
3 Ct Ctt 1 (Ct>2 e 2l _
+2<C>{C’ i\ +C+(ht) =0.

This equality shows that (12) and (14) imply (13). Integrating (14), we have

3n?

(ht)2 = ﬁa n=z

Substituting this equality into (12), we have

1 Ct 2 € 172_
1(6) toT =0

Summerizing the preceding results of this section, we have

Lemma 2. Let T'(V,G) be an Otsuki connection with the condition (A) and
G and h have forms such that

G = —B(t,r)dt* + A(t,r)(dz? + dy? + d2?),
= h(?),

where By # 0 and A(t,r) = C(t)D(r). Then G becomes
G = —dt* + C(t)D(r)(dz® + dy? + d=?)

and h(t), C(t) and D(r) satisfy the following equalities:

3 2
(15) ()’ = Z5: 120,
2\ —2
(16) D(r)=<1+%> . e=-L0.1,
2
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A case n = 0 in Lemma 2 is easy to treat. Then, (15) implies & = 0, which
means that T'(¥,G) is the Levi-Civita connection of Riemannian manifold
(M, G), where M C R%. (17) implies that C(t) = ¢* for e = —1, C(t) = 1 for
¢ = 0 and no solution for e = 1. Now we have

Lemma 3. For a case n = 0 in Lemma 2, I'(¥, G) becomes the Levi-Civita
connection of Riemannian manifold (M,G), M C R*, such that G is either
of the following two:
r2\ 2
G = —dt*++t (1 — Z) (dz? + dy® + dz?),

G = —dt? +dz* + dy* + d°.

From now on we suppose 1 > 0 and we define a function ((¢) by

C(t) = n*¢*(b).

It is tedious to display every detail of calculations for all the cases e = —1,0, 1,
but we give details of calculations for one case e = —1 and only the results for
other two. Using ((t), (17) is written as follows:

1 [14¢4
(Ct)2:F< Cf >

Defining a non-negative function 9(t) by

¢2(t) = sinh(9(t))

and inserting it into the above equality, we have

4
cosh2(9) (0)% = % (%) .

This equality is rewritten as follows:
1
(18) dt = PY sinh(9)d.

(18) shows that 9(¢) is the inverse function of
1 9
t(9) = 5/0 \/sinh(s)ds.

C(t) = n*¢*(t) = n” sinh(9(t))

Using
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and (18) in (15), we have

3
h 2
(7o) n? sinh?(¢9)
dt V3 1
hy = hy— =+~ [ ———
) 2 <sinh(q9)>’

where hy = %. Integrating the second equality of the aboves, we have

V3 [®  ds
M=y /mt) sinh(s)’

Now we find G and h, i.e. Otsuki connections T'(¥, G), as follows:

’f'2

—2
G = —dt? +n*sinh(d(t)) (1 — Z) (dz? + dy? + d2?),
© d
e = +Y3 / %
2 Jy() sinh(s)

The other cases are similar to the above calculations.
Theorem 1. Under the same conditions as Lemma 2, G and h(t) are given
as follows:

(Riemannian Type)

1. e=0
G = —dt’> + da® + dy® + d2°.

2

G = —dt’ +# (1_%

—2
> (dz? + dy? + d2?).
(Otsuki Type)

1. e=-1

2 -2
G = —dt* +n*sinh(9(t)) (1 — T—) (dz? + dy® + dz?),

4
_ V3 [®  ds
Al) = iT/ﬁ(t) sinh(s)’
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2.6=0 (t>0)
> r2\ ?
G = —dt’+ u*ts <1 — Z) (dz? 4 dy? + d2*), u® = 3n?,
h(t) = j:L log(t)
= 5 g(t).

3.e=1 (0<9<7)

9\ 2
G = —dt’ +n*sin(d(t)) (1 + %) (dz? + dy? + dz?),
W) = iﬁf s
2 Jo@) sin(s)

where 9(t) is the inverse function of

1) = % /0 " Jsinh(s)ds.

§3. The Essential Metrics, the Variable w and the Function R(w)

As discussed in Section 1, neither a metric G nor G but G = ¥2G = UG,
which is called the essential metric of I'(¥, G), has an important meaning on
a manifold M with an Otsuki connection I'(¥,G). Lemma 1 says that any
geodesic in M\Sing(I') with Otsuki connection I'(V,G) is a geodesic in a

Riemannian manifold (M\Sing(T'), G) and vice versa, where Sing(I') C M is
defined as follows:

Sing(T') ={z e M | ¥(z) =0}.

Using a new variable w, which is defined by
t 1
w(t) = / U3 (s5)ds,
0

the essential metric G i.e.

er?

—2
G=U0"'G=-U"1t)dt’* + T (t)C(t) (1 + T) (dz? + dy? + d2?),
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becomes as follows:

er?

-2
G = —dw? + R*(w) (1 + T) (dz? + dy* + dz?),

where R?(w) = U~1(t)C(t). The induced metric of G on a hyperplane Hy, C
M C R* such that

HW:{(W,fE,y,Z) eEM | w:CO’I’LSt.} ‘—>ZM
is given as follows:

i*(G) = R? (1 + %) (dz? + dy® + d2?)

er? ?
~2 ~2 52
= <1+4 2) (dz* + dy* + dz%),

where R = R(w), Z = Rz, j = Ry, 2 = Rz, 7% = 2 +¢%+22. Since this metric
is just that of a sphere with a radius R = R(w) for ¢ = 1, R = R(w), which
can be understood as the radius of the model at w. Rewriting Theorem 1
using the variable w, we have

Theorem 2. Let I'(¥, G) be a Otsuki connection with the condition (A) which
has the forms as follows:

G = —dt* +C(t)D(r)(dz® + dy?® + dz?),

h = h(t)

and F(\I/J G) be an Otsuki type i.e. h # const., then the coresponding essential
metric G and the function R(w) become as follows:

1
r2\
G = —dt* +n*sinh(d(t)) (1 — Z) (da? + dy? + d2?),
o
h(t) = ﬁ/ ‘ ds |
2 Jo@) sinh(s)

~ r2 2
G = —dw®+ R*(w) <1 - Z) (dz? + dy* + d2?),

2 = nex e _ds sin
Rw) = 7 p(+ L Smh(s)> h(d(1),

where w(t) = [7 \I/_%(s)ds = [J dsexp (— fgffs) sm‘fl%) and 9(t) is the inverse
function of t(9) = %n foﬁ sinh%(s)ds.
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17
G = —dt* +n*sinh(d(2t)) (1 — Z) (dz? + dy® + dz?),
ey = [T
2 Jy() sinh(s)
~ ”"2 _2
G = —dw®+ R*(w) (1 - Z) (dz? + dy® + d2?),

2 = 7’ (" ds sin
RX(w) = neXp< /ﬁ > h(9(2)),

(t) sinh(s)

where w(t) = [7 \I/_%(s)ds = [J dsexp (—i— Jots)
function of t(9) = %n foﬁ sinh%(s)ds.

I
G =
Mo = = log(o),
V3
G =
R*(w) = (3172)%20071515.,

1

where w(t) = [{ U2 (s)ds = %t%

du
sinh(u)

) and 9(t) is the inverse

—dt? +V3nt3 (da? + dy?® + dz?),

—dw? + (37]2)%(d£ﬁ2 + dy? + dz?),

v
G = —d? + (3n))3t3(da? + dy?® + d2?),
1
h(t) = ——=log(t),
(t) 7 g(t)
- 4
G = —dw’+ §(3n2)%w(dm2 + dy? + dz?),
4
Rw) = 3Gir)w,

2
G = —dt* +n’sin(d(t)) (1 +

4
V3 % ds
h(t) — 7/19@)

sin(s)’

-2
) (dz? + dy? + d2?),
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G = —dw’+ R*(w) <1 + %) (dz? + dy® + dz?),

s

2 = 7’ 5isin
R2(w) —-77exp<+34 > (9()),

(¢) sin(s)

where w(t) = fg \I/_%(s)ds = fg ds exp (— ff(s) du ) and 9(t) is the inverse

sin(u)

function of t(9) = in foﬁ sin%(s)ds.

VI
7'2 -
G = —di* +n*sin(d(t)) (1 + Z) (dz? + dy® + d2?),
Bt = —ﬁ/i iy
2 Jy() sin(s)
~ ’]"2 _2
G = —dw?+ R*(w) (1 + Z) (dz? + dy® + dz?),

s

2 = n? —5isin
Rum-—nem< A > h(9(2)),

() sin(s)

where w(t) = [ \I/_%(s)ds = [Jdsexp (+ ff(s) dy ) and 9(t) is the inverse

sin(u)

function of t(9) = %n foﬁ sin%(s)ds.

The functions R(w) in Theorem 2, which are measured by the variables w,
have some elementary properties. Especially for type I in Theorem 2, we have

Lemma 4. The range of w becomes 0 < w < 400 and there exists positive
constants «, B such that

1.
wgrfoo R(w) = a.
2.
1 . R(w)
5= uie Tz <P
3.
dR(w)
du >0

for any 0 < w < +o00.
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/.
e d}jh(uw) =0
Proof. Since
(19) s < sinh(s) < (e 4+ e 1)s,
(20) (1 _26_1> ¢® < sinh(s) < %es

for any 0 < s <1, 1 < s < 400 respectively, we have

21) (%) o = oxp </191t) sinf(s)) = ﬂ(lt)

for any 0 < 9(¢t) <1 and

> ds 2
O <en( [ i) < <<7> M)
(22) exp(2e ) < exp < ” sinh(s)> <exp((y—=7)¢

for any 1 < 9(t) < +o0. By (19), (20) and an explicit form of w(¢):

(23) w(t)=gn [ " e sinb (€) exp (3 /6 - Srf%) ,

there exist 0 < Ay < ;1 such that

ey et ) Cunbex 3 | 1 Sin‘f(s)) <4

for any 0 < ¢ <1 and by (20) and (22), there exist 0 < Ao < do such that

ds
sinh(s)

1

(25) Aoed < sinh3 (€) exp <_ /°°
¢

2 > < 526%

for any 1 < ¢ < +o00. Using (23) ~ (25) and

dw 1 1 [® ds
T _gs(t) = - %
dt *(t) = exp < 2 /19(,5) sinh(s)) ’

we have ‘fi—’f > 0 for any 0 < t < +o0, lim—,ow(t) = 0 and lim;—4ow(t) =
+00. Under these preparations, we will prove 1 ~ 4. By (24), (25) and the
explicit form such that

(26) R2(w) — n2 smh(ﬁ(t)) exp <+ /19:) Jﬁ) s
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there exist A3,03 > 0 such that
(27) 7’ ((A2)’e” + A3) < R*(w) < n*((d2)€” + 3)

for any 1 < 9 < +00. On the other hand by (23) ~ (25), there exist A4, 04 > 0
such that

(28) n (Age% n /\4) <w(t) <7 (52e§ + 54)

for any 0 <t < 4o00. By (26) ~ (28), we have

lim R(w) = 0/, %g lim 2

<
w—r+00 2 w——+00 w2 -

)

s

where pp = limy_, 1o sinh(¢J) exp (fgo ﬁs(s)) Using an equality:

dR(w) 1 (1 /°° ds >
= h(9) — 1 - _—
dw sinh(®) {cosh(®) — 1} exp 2 Jy sinh(s)/’
we have %S)”) > 0 for any 0 < w < 400 and l#my— 40 d’gg}“’) =0.

Next we discuss the functions R(w) of type V in Theorem 2.

Lemma 5. For the type V in Theorem 2, there exist 6, v > 0 such that

1. dlz—g))<0f0rany0<w<l/,
2. limy, 4o B0 _ o
3. limy,, o W) _

5. limy, 5, o R(w) = 0.
Proof. Since

2

(29) 8 < sin(s) < s,
(30) %(W — ) <sinh(s) <7 —s

for any 0 < s < 5, 5 < s < 7 respectively, we have

31 e ([T ams) < ()
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for any 0 <4 < § and

2 3 5 d 2
e <o ([T o) < 2ee0)
v 9 sin(s) v
for any § <9 < 7. By (29), (31) and an explicit form of w(t) such that
1 0 L1 1 (2 ds
(33) w(t) = 50 [ d¢sind(¢) exp (5 /6 Sm(s)> ,
we have

o smiom (31 3) (5 ()

for any 0 < ¢ < 7 and by (30) and (32), we have

Ssin%(g)exp<1/: ds )s 2 —¢)

2 sin(s) v

w42
4

@) {3-90]

for any § < & < 7. Using the explicit form of ¥(t), (33) ~ (35) and

dw 1 1 /3 ds
P (f) = _z
dt *(t) = exp < 2 /19 Sin(s)> ’

we have % >0 for any 0 < ¥ < =, limy_, o w(t) =0 and
limy_,, gw(t) = v < 400, where

1 T et 3 ds
Vzin/() clfsm2(§)exp</5 sm—(s)>

Under these preparations we will prove 1 ~ 5. By (33) ~ (35) and the formula:

R2(w) =1n? sin(¥) exp (/; i) ,

sin(s)

we have

dR(w)  (cos(d) —1 1 /% ds
(36) dw ( sin(d) ) P9 9 sin(s)
The right side of (36) is negative on 0 < w < v and tends to zero when ¢ — +0
i,e. w — +0, so is a bounded function on 0 < w < vy, where v; is a small

positive number. Thus R(w) is a bounded function on 0 < w < v and has the
following properties:
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dR(w)

<0 for any 0 < w < v,

limy, o R(w) = nv/A1 = § < +o0,

dR(w)

limgy—yy—o R(w) = 0, limy_, 40 =0,

li dR(w) _
My —sv—0 ~guw . —

where

s

A1 = limy_, 4o sin(?) exp ( i sm(5)> < oo

Regarding properties of the functions R(w), the other cases in Theorem 2
are trivial or almost the same as Lemma 4 or Lemma 5. Now we have the
following

Theorem 3. The functions R(w) in Theorem 2, which are measured by the
variables w, have the following properties:

I The range of w becomes 0 < w < +oo and there exist o, B > 0 such that
1. limy 49 R(w) = a,
2. 3 < hmw_)_,_oo w2 < 0,
3. —(>0f0rany0<w<+oo,
4

limy,— 40 dlzfu w) .

II The range of w becomes 0 < w < 400 and there exists 6 > 0 such that

1
2. 1 <limy, o B
3

oz <0,
; dR( >0 for any 0 < w < 400,
d
4. hmw_,_,_g I;q(uw) = +00.

III R(w) = const. . Thus, this case is trivial.
IV R(w) = const.\/w. Thus, this case is trivial.
V' There exist 6, v > 0 such that

1. R(w) is defined on 0 < w < v,

2. dR( )<0f0rany0<w<1/

3. limy 40 B0 — o,
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li dR(w) _
My —v—0 g —

6. limy_sy_o R(w) = 0.

VI The functions R(w) of these models are the same as R(v —w) in V.

[1]
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