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§1. INTRODUCTION

Boundary value problems on the half line arise quite naturally in the study
of radially symmetric solutions of nonlinear elliptic equations, see [1]-[4] for
example. In general, problems of this kind are singular. Up to now, most
known results in this area concern only boundary value problems with sub-
linear nonlinearity, see [1][5]. In [7], the authors discussed multiple solutions
of boundary value problems with finite impulses on finite intervals in Banach
spaces. The purpose of the present paper is to study the existence of multiple
solutions for semi-linear impulsive boundary value on the half line in Banach
spaces. Moreover, the problems have singular nature at the boundary. Our
main technique is a new fixed point index theory established in Section 2
for cone mappings which are not strict set contractions. Finally, we give an
example in Section 4.

Let E be a Banach Space, 0 be its zero element, and P be a solid cone in
E. We introduce in E an order relation by defining z < y if y — 2z € P, for
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z,y € K. Further we suppose P is a normal cone, i.e. there exists a constant
(called normal constant) N > 0 such that ||z|| < N||y|| for all § < z < y.
Fix 0 <t <to <--- <ty < +00, and put

PC(]0,+00), E) = {z| z = z(t) is a function from [0, +o0) into F,
continuous at t # t, left continuous at ¢ = #y,
and z(t]) = limy_y, o 2(t) exist (1 <k < m)}.

Take p € PC([0,4+00), RY) N C1(0,+00), p(t) > 0 for t € R' = (0,+00), and
f € C(R' x E, P).

Now we consider the following impulsive boundary value problem on the
half-line [0, +00): To find z € PC([0, +0), E) such that

(Lz)(t) + f(t,z(t) = 0, t;étk,k—12 g
A$|t,c (Ixz)(tr),0 < tl < t2 e K < <y

Ax(0) — Blim p(t)2'(t) = (1.1)

vz (00 )+5 hmp( )= (¢ )
z(t) is bounded [0,+oo).

in which (Lx)(t) = ﬁ(p(t)x(t))’, a,b € P are given elements,

Az|, = lim [ (tr +¢) —z(ty, — €)]. (1.2)
e—07F
and I, € C(E, P). Further A\, 3, v, 0 > 0 are given constants with 3y + A0 +
Ay > 0. For later use, we define for n € N

PC([%,n],E) = {z| = = z(t) is a function from [, n] into E,
continuous at t # ti, left continuous at ¢ = #y,
and z(t;) = limy_, 10 z(t) exist (1 <k <m)}.

For z,y € PC(]0,+00), E), we define

+00
1 pi(z —y)
d(!L‘,y) = Z 9 )
= 21+ pi(z —y)

where p;(x —y) = sup {||z(t) — y(¢)||}. Clearly PC([0,+0), E) is a locally
t€[0,3]

convex space with the topology defined by the distance d(z,y) defined above.

The following conditions will be assumed throughout.

+o00o
/ LIS (1.3)
0
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Denote 7y(t) = fo (5785 Too(t) = [ ( y ds, p? = By+ A5+ Ay [3° o dt and
p > 0. Define

u(t) = S5+l 0(t) = [+ Ano(0)] (1.4
Then yv + Au = p. Let
) u(t)u(s)p(s), 0<s<t<oo
Glt,s) = { v(t)u(s)p(s), 0<t<s< oo (15)
1
e(t) = 7 [b)n'o( ) + ayTo (t)] + ?(aé + b03) (1.6)

From (1.4), (1.5) and (1.6), there exist t,, < a* < b* < +oo and 1 > ¢* =
c*(a*,b*) > 0 such that

G(t,s) > c*G(r,s) for te€[a",b"],r €[0,+00),s € [0,400), (1.7)
e(t) > c'e(s) for te[a*b*],s€0,+00), (1.8)
0+ YToo(t) > [0 + Y70 (8)] for ¢ € [a*,b],s € [0, +00). (1.9)
Write @ = {z € PC([0,+),E),z(t) > 0 with z(t) > c'z

cz(s) for t €
[a*,b*],5 € [0,400)} Qn = {z € PC([L,n), E),z(t) > 0 with 2(t) > c*z(s) for
t € [a*,b*],s € [2,n]} (n > max{b*, % ).
Let us list the following conditions for later use:
(Hy) (a) f € C(RT x E,P), Ik € C(E,P)(k = 1,2,---,m) and for any
n > 0,r > 0, I(B. r)(k = 1,2,---,m) is bounded and f(¢,z) is uniformly
continuous on [1,n] x B,, where B ={z€E |z| <r}k
(b) there exist ¢ € C(R*,[0,400)) and {M}}72, such that for any
bounded D C E and t € Rt

a(f(t,D) < ¢(t)a(D),
a(lx(D)) < Mya(D),k=1,2,---,m

where «(D) denotes the Kuratowski measure of noncompactness of bounded
D in Banach space E[10, p.41] and

+oo

g= sup | G(t,8)p(s)ds + (6 + YToo(t)

1< 1;
t€[0,400) /0 Z 0 + YToo tk)

(c) there exist R > 0,9 € C(R',[0,4)),® € C(E, E) which is
uniformly continuous on any bounded set with ||f (¢, z)|| < ¥(t)||®(x)| for
(t,z) € RT x E. Moreover,

sup |le(t)[| +[ sup / G(t,s)y(s)ds] - sup{||®(z)||, = € Br}
t€[0,4+00) te[0,400)
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Tk (=)]] R
+ sup [0+ YTo(t)] sup —_— < —
tE[O,-i—oo)[ ol )] T€BR |, 0 + YToo (tk) N

where N > 1 is the normal-constant of P;
(H3) there exists a g € P°* such that

g(f (¢ 7))

= +OO
el —+oo  g(x)

uniformly for ¢ € [a*,b*], where P°* = {g € E* : g(z) >0 for =z > 6}.
(Hs) there exist a g € P°* such that

i IU (¢ 2))
lzll=0  g(x)
uniformly for ¢ € [a*,b*], where P°* = {g € E* : g(z) >0 for z > 6}.

:+oo

Remark 1. Condition (H;) is widely applied in [7][11] and can easily be
satisfied.

§2. ESTABLISHMENT OF FIXED POINT INDEX THEORY

First we will establish the degree theory for operators which are not
strict set contractions. Assume that A is an operator from a bounded set
S C PC(I,E) into PC(I,E), where I = [t',t"],t; > t' > 0,t" > b*. For
x € PC(I, E), define ||z||; = sup{||z(¢)|,t € I}, Qr = {z € PC(I, E),z(t) >
6 with z(t) > c*z(s) for te [a*,b*],s € I}. We now give a new defini-
tion.

Definition 2.1. Let A : S — PC(I,E). We will say that A satisfies the
S-r-S condition iff A is a bounded and continuous operator, A(S) is piecewise
equicontinuous, and

a(A(D)) < ra(D)

for any bounded and piecewise equicontinuous D C S, where 0 < r < 1 is a
constant.

If A: PC(I,E) — PC(I,E) and satisfy the S-r-S condition for any
bounded S C PC(I,E), we will say that A satisfies S-r-S condition on
PC(I,E).

Clearly this definition is different from the definition of the strict set con-
tractions(see[10],[12],[15]).

Let Q& C PC(I,E) be open and bounded, and A : Q — PC(I,E),h =
id — A, where id denotes the indentity operator.
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Lemma 2.1. Let A: Q — PC(I, E) satisfy the S-r-S condition, then
1) h is proper, i.e., h~'(D) is compact for any compact set D C PC(I,E);
2) h is closed, i.e., h(S) is closed for any closed set S C €.

The proof of Lemma 2.1 is similar to those of strict set contractions in
[10](Proposition 9.1, p.70).

Lemma 2.2. If D C PC(I, E) is bounded and piecewise equicontinuous, then
co(D) is bounded and piecewise equicontinuous.

The proof of Lemma 2.2 is easy and can be omitted.

Lemma 2.3. Let {S;} C E be bounded, closed and Sy O So D S3 DO --- D
Spn Dy, Sp£0n=1,2,3,---. If a(S,) — 0, then S = (| S; is a nonempty
i=1

and compact set.

The proof is similar to the proof of Theorem 9.1 in [10](P.71).
Now we give the definition of the degree for our operators.

Definition 2.2. Let Q C PC(I, E) be open and bounded, A : Q — PC(I, E)
satisfies S-r-S condition, 0 < r < 1,h =id — A,

(1) Assume that 6 ¢ h(0S2). Let Dy = co(A(Q)) and D,, = ¢o(A(Dy_1 N
ﬁ)),’l’b = 233a"' .

1) If there exists ng such that D,, = (), then we define deg(h,2,0) = 0.

2) If D,, # 0 for n = 1,2,---, then D, N Q is bounded and closed(n =
1,2,---.). Let D = F]o D,,. Then D is bounded, convex, closed and nonempty.

i=1

Obviously D1 D Ds. If D, 1 D D,,, then D,, = E(A(Dn,1 ﬂﬁ)) D) E(A(Dn N
Q)) = Dpy1. So Dy D Dp,n = 2,3,---. By Lemma 2.2, D is piecewise
equicontinuous and

a(Dy) = a(A(D,-1 NQ)) < ra(Dp-1 NQ) < ra(Dy,-1),

So a(D,) < r"ta(D;). By r < 1 and Lemma 2.3, we know D is nonempty
and compact. Because of D,, 1 NQ D D, NQ and a(D,, N Q) — 0, we know

— o —
DNQ= (N D) NQ is nonempty and compact. On the other hand, from
n=1

A(D, N Q) C e(A(Dn_1 N )

Dy,

we have

ADNQ) C ﬁ A(D, NQ) C ﬁ D, = D. (2.1)

n=1 n=1
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Since D is compact, A : D N Q — D is completely continuous. So by the
extention theorem of completely continuous operator (see propsition 8.3, p.56
in [10]), there exists a completely continuous operator A; :  — D such that
Az = Az for all x € DN Q. Let hy = id — A;. Tt is easy to see that
0 & h1(09)(In fact, if there exists a z € 9Q such that z — A;x = 6, then
x = Aiz, which implies that x € D. Therefore, + = Ajx = Az, which
contradict 8 & (id — A)(09). So degrs(h1,€2,0) is well be defined. Define

deg(h,Q,0) = degrs(h1,,0). (2.2)

It is easy to see that the above definition is independent on hy. In fact, let
Ay : Q — D be another extension of A, and hy = id — A,. Suppose that
H(t,z) =z —tAjx — (1 —t)Agz,z € Q,0 < t < 1. We will prove H(t,z) # 0
for t € [0,1] and z € 99Q. On the other hand, if there exist tp,0 < tp < 1,
and o € 09 such that H(tg,x9) = 6, i.e., 9 = toAi1xo + (1 — to)Aszp.
Since Ai1zg € D,Aszg € D, and D is convex, we know zg € D. So zg =
toA12zo + (1 — tg) Aszzp = Ajxg. This contradicts to 6 ¢ h(02). Thus we have

degLs(hl,Q,H) = degLs(hz,Q,O). (2.3)

So the definition is not related to the choice of h;.
(2) Suppose p € h(0R2). It is easy to see 8 & (h —p)(0€2) and thus we define

Remark 2. If A has a fixed point 2’ € Q, we have D,, NQ # @, n =1,2,---.
So the fixed points set ¥ C D N Q. And the above degree theory has the
similar properties and fixed theorems as those for strict set contractions.

Remark 3. Similar to Definition 2.2, we can define the fixed point index
for cone mappings which satisfy the S-r-S conditions and can obtain similar
properties such as the normaliztion, the additivity, the homotopy invariance,
and the permanence property in fixed point index theory for strict set con-
tractions(see[10], p.238). And moreover, the following theorem is true.

Theorem 2.1. Assume Q@ C PC(I, E) is bounded and open and A : Q — Qg
satifies the S-r-S condition.
(a) If Ax £ ¢ for z € 0(Q2N Qy), then

i(A,Q2NQ,Qr) = 0;
(b) if Az # x for x € (2N Qy), then

Z(A,Q ﬂQ[,Q[) =1.
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Proof. (a) Choose pup € (Qr — Q2N Q). If there exist z € (2N Q) and 0 <
to < 1 such that Az + touo = x, then Az < z. This is a contradiction. Then
(A4 10, 2NQ1, Q1) =i(A,Q2NQr,Qr). On the other hand, A+ o has not a
fixed point in QN Q7. So i(A+ po, 2NQr,Qr) =0, ie. i(4,2NQr,Qr) =0.

(b) Similarly, if there exist a x € (2N Q) and a 0 < ty < 1 such that
toAxz = z, then Az > z. This is a contradiction. Then i(4,Q2 N Q7, Q1) =

i0,2NQr,Qr) =1. O

§3. EXISTENCE OF MULTIPLE SOLUTIONS

In this section, we will give two existence theorems. Similar to [7][9], we
can prove that for z € PC([0,400), F) is bounded and satisfies

z(t) = e(t) + (Az)(t) + (Bz)(1), (3.1)

then z is a solution of equation (1.1), where

(4n)(®) = [ Glt. )7, ),
(L) (tx)
Bt =+ elt) 3
For z € @, let
(Jz)(t) = e(t) + (Az)(t) + (Bz)(1), (3.2)
/ G(t,s)f(s,z(s))ds,
(Jnz)(t) = e(t) + (Anx)(t) + (Bx)(t),n > max{b*, %} (3.3)

Let I be a is bounded closed interval. First we need the following lemmas.

Lemma 3.1(see [14]). If S C PC(I, E) is bounded and equicontinuous, then

a({ / s(t)dt,z € SY) < / a(S(t))dt. (3.4)
I

I

Lemma 3.2(see [13]). If S C PC(I, E) is bounded and piecewise equicontin-
uous, then

a(S) = sup{a(S(t)),t € I}.
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Lemma 3.3. Assume (Hy) is true and D = {z € PC([0,+00),E),

sup ||z(¢)|| < R}. Then
te[0,+00)

(1) J: D — @ is continuous.

1
(2) Jp : Qn — Qn(n > max{b", t_}) are continuous and the S-q-S condition
1

1
for J, : Qn — Qy is satisfied for all n > max{b*, t_}
1

Proof. For z € @, we have (Jz)(t) > 0. And from (1.7),(1.8) and (1.9), for
t € [a*,b*] we have

(Jz)(?)

_ +oo o~ (lg)(tr)
= et)+ | Glt9)f(s,2(s))ds + [0 + yroolt ]ZéJrvToo(tk)
> le(u) + 0+°° G, ) (s,2(5))ds + [§ + y70(u Z 5Jf’“$7:’“tk)

— U)W
for any u € [0, +00). Therefore JQ C Q. If z,, — xo,zy,, 9 € D, by virtue of
the domimated convergence theorem, we have
+00 +oo
lim G(t,s)f(s,zn(s))ds = G(t,s)f(s,zo(s))ds.
n—+oo Jq 0
So J : D — @ is continuous and bounded. Similarly, we have J, : @, — Qn
1
continuous and bounded for all n > max{b*, t_}
1
For any bounded D C PC([%,n],E), if D is piecewise equicontinuous,
{y,y(t) = f(t,z(t)),z € D} is piecewise equicontinuous on [%,n]. By Lemma
3.1, we have
a(J,D(t))

= al{e(t) + (Anz)(t) + (Bz)(t),z € D})

< a({(4nz)(t),z € D}) + a({(Bz)(t),z € D})

< /;G(ts D(s))ds + (5 + oo (t) Z(H%otkg
< /jG(t,s D(s))ds + (6 + yrao(t) zmj 5142?& o
< / G(t,s)p(s)dsa(D) + (8 + Tso(t) Z(HWOO o) a(D)
< [0 G(t 8)p(s)ds + (6 + YToo(t) Z(HWOO ™ Ja(D).
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So by Lemma 3.2 and (H)
a(J, D) < qa(D).

1
Thus J, : Qn — @, satisfies S-¢-S condition for all n > max{b*, t_} The
1

proof is complete.O

Theorem 3.1. Let D = {z € PC([0,+),E), sup |z(t)| < R} and
te[0,+00)
Dy ={zlj1 ), € D}. Assume the condition (Hy) holds and =, € Dy, and

([0, +00)nzn) (£) = Tn(t), £ € [1 nl,n > max{b*, tll}.
Then there exists * € D such that (Jz*)(t) = e(t) + (Az*)(t) + (Bx*)(t).

Proof. Let

Then {z}} € D. And from Lemma 3.1, for any ¢ € (0,+00), there exists a
k > 0 such that ¢ € [1, k]. Hence

a({ay(1)})

= a({zp )}k
Tk (@5 (t))

)
= alfeld) + [ Glt)f (v o))ds + (64 mm(8) 3 122 s heo)

« " s)f(s,zX(s))ds - ¢ a(Ik({ﬁfz(tk)}nzk)
( / G,9) (0,50 sze) + 5+ () 3 2 L2

" ) 2 ol (fon(t)})
< o( / Gt ) (s, (o) ds) + (0 + 9m(®) 3 =m0 T

IN

Now for any 7' > 0



176 B. YAN AND X. LIU

+/ G(t,s) $))ds}tn>T)
< {L G(t,s)f s,xn(s))ds}nZT)Jra({/; G(t,s)f (s, m,(s))ds}tn>T)
+a({l"G(t,s>f(s,x:(s>>ds}nzT)
< o) s ds}+/;Gts [ (5,25 (5)) s
a({ / G(t, ) $))ds})

By virtue of condition (¢) in (Hy), we have
; ;
T * *
I/} G, zi@)dsl < [7 Gts)lf (s, (5) s

1

<[] Gt )lds < [ 6t syis)dssup{@(@). la] < R}

1

< |7 Gl ) (s)ds sup{@ (), 2] < R}
and
||/”Gts 2(6)ds] < [ Glts)] (s, 35)) s
< /Gts oz )lds < [ Glt,9)p(s)ds sup{®(a), o] < R)
< [ Glt.9p(o)ds sup(D(a), o] < R).
So
{/ Glt,5)f (5,27 (s))ds})
< 2/ G(t, s\ dssup{@()|m|<R}+/l G(t, s)a({f (5,75 (5)) s

+2 G(t s)i(s)dssup{®(z), |z| < R}
= 2/ G(t,s)(s)dssup{®(z), |z| < 1%}4—/1 G(t, s)p(s)a({z; (s)})ds

+2 s G(t s)i(s)dssup{®(x), |z| < R}.



IMPULSIVE BOUNDARY VALUE PROBLEMS 177

Letting T' — +o00, we get

a({z,(t)})
+o0
< [ Glt9)d(s)ds + (0 + 770 (t) Z 6+Woo ) te[?)l,lfoo)a({xn(t)}).
Thus

sup a({z,(1)}) <g¢ sup a({z,()}).

t€[0,+00) te[0,+00)

Consequently sup «a({z}(t)}) =0. Since {z}} is piecewise equicontinuous,
te[0,+00)

for any T' > 0, a({a7},| ;g 77}) = 0. Thus {a7,} is relatively compact.
So there exists a subsequence {,,"} such that
Ty, " — 2", j — +o0. (3.5)
By virtue of (Hy), we get
Bxp,* — Ba*,j — +oo. (3.6)

And the domimated covergence theorem implies

i [ G 5) 1 (5,50, (5)) = Fls,*(5)) s = 0. (3.7)

Jj—=+o0 Jo

From (3.5), (3.7) and the domimated convergence theorem, we have

lim [(Ay2a,)(t) — (A2")(8)]

Jj—+oo
= lim [(Au,2n,")(8) — (A2")(0)]
J—+oo
. +oo . +oo .
= tim [ G950, () — / Gt ) (5, 20, (5))ds
[ Gl 10, Nds — [ Gl 5) (5,07 ()]

= i ([ Gt ) (s, 2m, () — (527 (5))ds]

J—+00 Jo
“+00

— lim | G(t,s)f(s,2n;"(s))ds + /On_j G(t,s)f(s,zn;"(s))ds]

J—to0 )n;

= 0. (3.8)
In virtue of the continuity of J, we have

lim (Jzn,)(£) = (Ja*) (1)t € (0, +00). (3.9)

j—4o0
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From (3.6) and (3.8), we have

lim [(J, @) (8) = (J2, ") (6] = Hm [(An,an,)(£) — (A2, *)(£)] = 0. (3.10)

Jj—400 Jj—+o0
Consequently
i (o )(0) = i (Jon, )0 = T (Ja)®). (311
On the other hand, since
lerEOO(Jnjxnj)(t) = jggloo T, (t) = jEIJPoo Ty, (1) = (). (3.12)

Thus by (3.11) and (3.12), we have
z*(t) = (Jz*)(t) = e(t) + (Az")(t) + (Bz™) ().
The proof is complete.O

The following theorem is based on Theorem 3.1 and Theorem 2.1.

Theorem 3.2. Assume conditions (Hy),(Hs) are satisfied and a(y + §) +
b(a 4+ B) > 6, then equation (1.1) has at least two positive solutions.

Proof. Since a(y + 6) + b(a + 3) > 6, we have e(t) > 0 all t > 0. It is easy to

te %,n

1
see that inf |[le(¢)|| > 0 for any n > max{b*, —}. Let r, = — inf |le(?)]|
} tl 2N te[%vn}

2R
and r = sup|[le(t)]|. In virtue of (Hy), we can choose R’ > max{—,r} > 0
c

teJ
such that
g9(f(t,2)) = N*g(x) (3.13)
for [|z|| > R, where
b*
N* >2( inf G(t,s)ds)!
tefa*,b*] Ja*

1
and c*, a*, b*, R are defined in Section 1. Write B, , = {z € PC([—,n], E),
n

“:EH[%,n} < ’rn}aBQ,n = {(II € PC([%,’I’L],E), “:EH[%,n] < R}’ and B3,n = {(I; S
NR
C*
e(t), we have inf |(Jnz)(t)| > E inf |le(t)|| > sup |lz(¢)||. Hence
t€E ] N e[ n] te[L n]

PC([%,n], B). 21y < ). For o € (QuNBua). in virtue of (J,z)(1) >

Jnz £ . (3.14)
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Now we will prove that
Jnz F x,x € 0(Qn N Bay). (3.15)
In fact, if J,z > x, then from (H;) we have

(t) < ( x)(t)
= e(t) + (Auz)(t) + (Bu)(t)

- t+/ G(t,s)f(s,z(s))ds + (Bz)(t).

So
(0l < NIl + [ Gt )15l + 15+ et 3 SN
Moreover, (Hy) yields
el g < Nlsup )] + sup [ Gt 9)p(s)ds] sup ()
z€[0,R]
+sup(d + 770 (t))  sup 3 M] <R.

tet €(QnNB2) k=1 0 + Yoo (tk)

This contradicts z € (Qp, N Ba,,) because ||z|| = R for all z € 0(Q, N Ba,,).
Therefore (3.15) is true.
Next we will show that

Jnz L x,x € 0(Qn N Bsy). (3.16)

In fact, if there exists a z € J(B3,, N Q) with J,z < z, then for ¢ € [a*, b*],
* NRI

1
z(t) > c¢*x(s) for all s € [—,n], which implies that [mf lz(®)|| >
n

R'. Because of g € P°*, we get infycq- 41 g(2(t)) > 0. Now for t € [a ,b*], if
Jpz <z, then from (3.13) we have

(Jnz)(t) > (A /Gts f(s,2(s))ds.

So for t € [a*,b*] we get
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Hence

inf > 2 inf
te[lar}‘,b*]g(x(t)) B te[lﬁ,b*]g(x(t)),

which implies infycy- 4+ g(x(t)) = 0. This is a contradiction. So (3.16) is true.
By (3.14),(3.15),(3.16) and Theorem 2.1, we have
i(Jna Qn N Bl,na Qn) = 0,

Z(JnaQn N B?,na Qn) = 13
'L(Jna Qn N B3,n7 Qn) =0.

Therefore
i(Jna Qn N (B2,n - Bl,n)7 Qn) = 17
i(Jna Qn N (B3,n - B2,n)a Qn) = -1
Consequently there exist ), € (Ba,, — B1,) N Qy and 2 € (B3, — B2) NQy,

"

such that Jz!, = 2!, J,zll = z! for all n > max{b", t_} From Theorem 3.1,
1

we have z* € Q, z™* € Q such that

Jr* =", Jx* = ™.

/

> sup [[z**(2)]| >

1
And moreover R > [|z*(¢)|| > = ||e(¢)|| for ¢ € [a*,b*] and
N teJ

c*

min{||z**(t)||,t € [a*,b*]} > 2R. The proof is complete. O

Theorem 3.3. Assume conditions (H;),(Hs), (Hs) are satisfied and a(y +
d) + b(a + B) = 6, then equation (1.1) has at least two positive solutions.

Proof. By (Hs) we can choose r' > 0 such that

g(f(t,2)) = N'g(x) (3.17)
for ||z|| < 7', where
b*
N’ >2( inf G(t,s)ds)™".
tea* b*] Ja*

1
Let B1p = {z € PC([—,n], E), ||x||[l n] < r'}. Now we have
n n’

Jnx L z,x € O(B1, N Q). (3.18)

In fact, if there exists a € (B, N Q) with Jyz < z, then for t €

1
[a*,b*], z(t) > c*z(s) for all s € [—,n], which implies that . [in " z(t)|| >
n €la*,b*
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*

sup |lz(s)]| = Cﬁr'. From g € P°*, we get inf g(z(t)) > 0. Now for
SE[%,R] tela*,b*]

t € [a*,b*], we have

21

b*

(Jnz)(t) > (Apz)(t) = /ln G(t,s)f(s,z(s))ds > ) G(t,s)f(s,z(s))ds.

a

So (3.17) implies

b* b*

9(x(t) 2 [ G(ts)g(f(s,2(s))ds 2 | Gt s)N'g(a(s))ds
b
> . G(t’S)dSN,te[iar}‘fb*}g(x(t))'

Hence

inf t)) > 2 inf t
L o(e() 22 it g(a(t)

which implies that inf;c(q- y+1 g(z()) = 0. This is a contradiction. So

i(JnaBl,n N Qna Qn) =0.

And we can choose B3, and B3, as those in the proof in Theorem 3.2. The
proof is complete.O

§4. AN EXAMPLE

In this section, we will give an example illustrating Theorem 3.3.

Example 4.1. Consider the following problem
" it ! ’ P $) — ()
o (t) + 7@ (t) + 6O ([on (O +|zn1 (1)) =0,
te(0,00), t#tr,k=12,---.m

A$n|t:tk - W$n(tk), k= ]‘727' o 7m (41)

#0(0) = 0, Tin (1+ )2/, () = 0,

[ (n=1,2,---,m)

where Tp1p = p(n=1,2,---,m) and
1 1
—tiga te (07 1];
p(t) =< 200
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1<3,0<p<1<s,0<t; <ty <ityg<--- <ty <--- <t m is the number
of impulse points.

Conclusion: problem (4.1) has at least two positive solutions.

Proof. Let E be the Euclidean space R™ = {z = (z1,z2, -, %y)} and P =
{z = (z1,22,--,Zm) : T, > 0 for n > 1}. Then P is a normal cone in
E, P* = P and problem (4.1) can be regarded as equation (1.1) with z =

(xlaan' e ,(I,‘m),f(t,x) = (fl(tvx)an(tvx)a' e vfm(tax)) and
fat,z) = ¢@) (|zn (B + 2011 (D)[%),

A=1,8=0vy=0,6 =1,a =b=(0,0,---,0). Then (a)(b) of condition

(Hp) in Theorem 3.3 are satisfied automaticaly. Let R = 1, we can see (c)
m

of condition (H;) is true. Let ¢ = (1,1,---,1), then g(z) = an > 0 for

n=1
x = (z1,T2,*,ZTm) > 0 and

> fulti)  HOCE foal? + L lanial)

g(x) - % Tn % Tn
It is easy to see
lim M = +o00 and
[l >+00  g(w)
g(f(t,z))

lim = 400
le[|—+0  g(z)

uniformly for any ¢ € [t/,t"], where ¢ > 0,t" < 4o00. So (Hz),(Hs) are
satisfied. By virtue of Theorem 3.3 equation (4.1) has at least two positive
solutions. The proof is complete.O
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