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8§1. Introduction

A cellular automaton consists of a finite-dimensional lattice of sites, each of
which takes an element of a finite set Z, = {0,1,...,¢q — 1} of integers at
each time step and the value of each site at any time step is determined as a
function of the values of the neighbouring sites at the previous time step.

We introduce the set P of all configurations a: Z¢ — Zq with compact
support (i.e., #{i | a(i) # 0} < 0o) and define a linear rule L in P as

(1.1) (La)(z) = aja(z + kj) (mod q).
j=1

The configuration of cellular automata at time step t is represented by oper-
ating L on the initial configuration by ¢ times.

In case of ¢ = 2, S. J. Willson [6] investigated the so-called limit set of
LCA. For n € Z, and a € P, he considered the set

K(n,a) = {(z,t) € Z4 x Zy | 0 < t < 2", (L'a)(z) = 1},

where L! is the ¢-th power of L. He showed that there exists the limit set of
K(n,a)/2" for any nonzero a € P in the sense of Kuratowski limit [1, 4] and
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that the limit set does not depend on an initial configuration. The limit set
of LCA for a certain linear rule is a Sierpinski gasket-like pattern.

Each stage K (n,a)/2" corresponds to a Z,-valued function 1, (a) on R4 x
[0,1], which depends on an initial configuration. However, the function f,
on R4 x [0, 1], which corresponds to the limit set, does not depend on an
initial configuration and is different from the limit function g, of ¥, (a) in
the pointwise topology. In [3], we have defined two metrics Dy, dy and have
investigated the topology with which ), (a) converges to f,. We have also
obtained the relation between f, and g, in case of mod p, where p is a prime
number.

As an extension of the result of Willson, S. Takahashi [5] investigated the
case of mod p” where p is a prime number and r € N and he considered the
set

K(n,0) ={(z,t) €2 x Zy | 0 <t <p" — 1, (L'6)(x) # 0}

for n € Z. By using the set K(n,d), he also defined the limit set as a subset
of R% x [0,1] in the same way as the case of p = 2, and showed the existence
of the limit set Y5 of {K(n,d)/p™}. Takahashi also investigated the limit set
of “b-state” Ky(n,d) = {(z,t) € Z4 x Z, | 0 <t < p"* — 1, (L'0)(z) = b} for
be{l,...,p" —1}.

If we use the functions on R? x [0, 1] defined in [3], we can investigate how
each stage converges to the limit stage and can express all the limit sets of
b-state simultaneously. We can also get the relation between each limit set of
b-state and the limit function of each stage 1, (a) in the pointwise topology.
So in this paper, we extend the result in [3] to the case of mod p”, where
p is prime and r € N. We show that there exists the limit function in the
pointwise topology (Theorem 2.3). In Section 3, we define two metric dy, Dy
in the space USC of Z,r-valued upper semi-continuous functions on RY x [0,1]
and give the result concerning dy and Dy (Theorem 3.1). In Section 4, we
investigate the convergence of {1, ()} in these two metrics in the space USC
with R x [0,1]. We show that {¢,(d)} is a Cauchy sequence in the metric d;
and converges to the function fs in the metric Dy (Theorem 4.1) and that
the similar results hold for any nonzero initial configuration a € P (Theorem
4.14). In Section 5, we consider the relation between the limit function with
respect to Dy and the limit set in the sense of Kuratowski limit. We show
that the limit function of {¢,(d)} in the pointwise topology, which is the
upper envelope of g5, corresponds to the limit sets in the sense of Kuratowski
limit and that f5 is the upper envelope of g5 (Theorem 5.2). For a nonzero
configuration a € P, we show that the upper envelope of g4, which is the limit
function of {1, (a)} in the pointwise topology, corresponds to the limit sets in
the sense of Kuratowski limit (Theorem 5.3) and this implies that the upper
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envelope of g, depends on only the value a(0). We prove the relation between
the upper envelope of g, and the limit function of {¢,(a)} in the metric D
and the limit function depends on the values a(z) of all z € Z (Theorem 5.4).
This theorem implies that the upper envelope of g, is not always equal to
the limit function though both are the same in the case of mod p. While the
limit function always takes two values in the case of mod p, it occurs the limit
function takes more than three values in the case of mod p".

82. Convergence in the pointwise topology

We define a d-dimensional p"-state linear cellular automata (LCA) as follows:
Let p be a prime number and let P be the set of all configurations a :
7 — Zyr with compact support. We define § € P as

1 z=0
oz) = { 0 z#0.
Let L:P — P mod p” be a linear transition rule as follows:
(2.1) (La)(x) = Z aja(z + kj) for a € P,
jeG

where G is a finite subset of Z with §G > 2, k; € Z% (j € G) is a neighbouring
site of origin, ay, € Z,-\{0} and the summation ) is taken as the summation

with mod p" throughout this paper.
Let

t
Xo={(5, ) €RI X [0,1] |z € Zt € Zy,0 <t < p"}
b p

for n € Z and put
(2.2) G; = { ezt | (L5)(t) # 0}

for j € Z.
Define a map 1, from P to the function space on R? x [0,1] for a € P and
n e Z+ by

(2.3)  (¢n(a))(

z t):{ (L'a)(@) if (5, 5) € X,

P’ p" 0 if (5, 5w) € RTx[0,1]) \ Xy
and a map Sy ;: R? x [0,1] — R? x [;—;, 7%1] by
T t £ g
(24) Sé,j(xat) = (_a _) + (_,«a _)'
b p pp
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X,
i 0 v
2 2 1 3 0)
! 1 11 1 1
(a) n=1 (b) n=2

Figure 1: An exapmle of maps Sy ; with La(z) = a(z —2)+a(z —1) +a(x+1)
(mod 3).

For a function g on R? x [0, 1], by using maps S ; define a function T'g on
R x [0, 1] by

(2.5) Tyly,q) = Y. (L7 8)(0g(S.} (v,9))

KEGjpr_l

for £ < ¢ < with0<j <p—1and

Tg(y,0) = g(py,0).

Lemma 2.1 ([5]). Let L be a linear cellular automata defined as (2.1) with
mod p". Then for 3,1 € Z, we have

Lplﬂiljé(x) _ iP5 (y) if there exists y such that ply = x,
0 otherwise.

r—1

We have Lemma 2.2 in a similar way to the case of mod p [3, Lemma 2.3].

Lemma 2.2. For a € P and j,n,t € Z,, we have

26) @ e = Y @O @ - g,
LeGr1

Using the above lemmas, we can show the following theorem in a similar
way to the case of mod p [3, Theorem 2.5].

Theorem 2.3. For a € P with a(0) # 0, we have the following assertions:

(1) The sequence {1, (a)} converges to a function on R% x [0, 1] in the point-
wise topology.
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(2) The limit function g, of the sequence {1y (a)} in the pointwise topology
1s T-invariant, that is, Tg, = gq.

(3) As for the limit functions g5 and g, of {¢n(6)} and {1n(a)} respectively,
we have a(0)gs = gq-
Proof. (1) For n € Z, satisfying n > r — 1, let X] = {(I%,j’;;l) | x €
z%j=0,1,...,p" "1}, Then we have U3 X! | =UX, X,. For (y,q) €
R¢ x [07 1] \U?),oleTer‘*la

(¥n(a))(y,q) =0

by the definition of .

For (y,q) € Up2, X, ., _1, we show there exists lim,_,o (¢n(a))(y,q) in the
same way as the case of mod p. So the sequence {i,(a)} converges to a
function on R x [0, 1] in the pointwise topology.

(2) and (3) are proved in the same way as the case of mod p. O

§3. The space of Zyr-valued upper semi-continuous functions

In this section, we shall introduce two metrics dy, Dy in the space of Zyr-
valued upper semi-continuous functions on a compact subset of R¢ x [0,1].
Let USC be the space of Z,r-valued upper semi-continuous functions on R? x
[0,1], where Z,r-valued upper semi-continuous functions mean upper semi-
continuous functions embedded in R-valued function spaces. For functions
fy g € USC, the order f > g is defined by f(y,q) > g(y,q) for any (y,q) €
R? x [0,1] by considering Z,- as a subset of R. For functions {f)}xea C USC
having an upper bound, let

91(y,q) = inf{g(y,q) | g € USC,g > f) for any X € A}

and

92(y,q) = inf{fr(y,q) | X € A}.

Then g; and g, belong to USC and ¢; is the least upper bound function \/ fy
and go is the greatest lower bound function A f) in USC. So the space USC
is an order complete lattice.

Let K be a compact subset of R? x [0,1] and (yo,q0) be a point of (R? x
[0,1]) \ K. Let

USC|k = {g € USC | support of g C K}.
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By using the Hausdorff distance D (A, B) of non-empty compact sets A and
B in R x [0, 1], we shall define the pseudodistance Dg(A, B) of A and B in
R x [0, 1] by

Dy(A,B) = D(AU{(y0,90)}, BU{(y0,q0)})

and metrics dy, Dy in USC|k as follows:

d(g1,92) = maxi<j<pr—1Do(g7" (7). 95" (5)),
Dy(g1,92) = maxi<s<pr1Do(g; '[s+], 95 ' [s+])

for g1,92 € USC|k, where g '[s+] = {(z,t) | g(x,t) > s} and g7'(j) is the
closure of the set g, *(j) = {(z,t) | g(z,t) = j}. It is easy to see that d; and
Dy satisfy the axioms of metric in USC|k. Then we can show the following
theorem in a similar way to Theorem 3.5 in [3].

Theorem 3.1. For {f,} C USC|k, suppose df(fn, fm) — 0 as n,m — oo.
Let g = AyZ1 Vg fn- Then we have

D¢(fn,g9) = 0 as n — oo.

Using the metrics dy and Dy, we consider the convergence to the limit set.

§4. Convergence of ¢, (d) in case of R x [0,1]

In this section, we will consider Z,r-valued upper semi-continuous functions
on R x [0,1] and show 1), (0) converges to the limit function with respect to
the metric D;. We first introduce some notation.

Let oy, be defined in (2.1) and suppose k; < k;(i < j) for ¢,j € G, which is
defined in (2.1). Put

(4.1)
k_ =min{j | a; # 0 for j € G},
ky =max{j | a; #0 for j € G}

and

ko =ky —k_.

For j € {0,1,...,p}, put
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For convenience, we define a map Sy: R x [0,1] — R? x [£, 1) which has

PP
the correspondence with some Sy ; of (2.4), by

x t —jp Uk +i—1
4.2 Se(z,t) =(=,-) + , =
(4.2) elw,t) = (2, D) + o o)

with £ =7; +i(j € {0,1,...,p},i € {1,2,...,jp" 1ko + 1}) and put

r—1

co =L §(—jp" Tk +i—1)

and
A={te{l,...,rp} | ce #0}.
Then for (y,q) € R x [0, 1] satisfying ;—; <q< j%l with 0 < 7 <p—1, we have

Tj+1

(4.3) W1 () 0) = D cen(8))(S7 (1)

l:T‘j +1

Let Xy be the smallest convex subset of R x [0,1] containing the support of
11(0), that is,

(4.4) Xo={(y,9) €ERx[0,1]|0< g <1,—gky <y < —qk_}.

Then for any n € Z, the support of ¢, (d) is contained in X, and for £ € A,
Se(Xp) is also contained in Xjy. So we consider the space USC|x, and the
metrics dy, Dy in USC|x, as in Section 3.

An element j € G, which is defined in (2.1), is prime if «;/p ¢ Z. In this
section, we shall show the following theorem.

Theorem 4.1. Let the set G in (2.1) with mod p" have at least two prime
elements. Then we have

(1) df(vn(6),%¥m(6)) = 0 as n,m — oo.

(2) Put f5 = /\ \/z/)n+r,1(5), where /\ and \/ are lattice operations in
k>1n>k
USC. Then we have

Dy(¥n(0),f5) =0 as  n— oo.

The way of the proof is similar to that in the case of mod p [3, Theorem
4.1] as shown in the following.
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4.1. Idea of the proof of Theorem 4.1

In case of mod p, we proved the lemmas and propositions in [3] by using the
property that

(Vn(9) (Y, q) = (Yn+1(9)(y,q)  for (y,q) € X,

holds for any n € Z,. In case of mod p", the equation above does not hold.
Therefore we define a function Hy, as follows. For n € {r,r + 1,7 +2,...} let

X, ={(&,22) |z €Z,j=01,..p" "'} and

(4.5) Hy, = ¢ (6)1x: (see Figure 2).

By Lemma 2.1, we have

H,(y,q) = Hy11(y,q) for (y,q) € X, and for any n € N.
In Section 4.2, we shall show
(4.6) dy(4pn(6), Hp) — 0

as n — oo. Then we shall only show the estimate
1
(4-7) df(Hn+1aHm+1) < Edf(HnaHm)-

The inequality (4.7) can easily be verified if {(S¢(X0))°}eea is mutually dis-
joint, where (Sy(Xj))° is the interior of Sy(X(). However, the equation (4.7)
is not easily obtained if {(S¢(X0))°}een are mutually overlapped. Just as in

the case of mod p, we introduce an auxiliary quantity My " and show the
following estimates:

M-1) dy(Hps1, Huy1) < SM™™ (Proposition 4.11);

M-2) Mgt < L™ (Proposition 4.12).

In order to define M ™ we use functions {hy} and two divisions {E,} and
{Ap s} of Xo.

4.2. Relation between H,, and v,,(d)

We shall prove the following proposition in this section.

Proposition 4.2. For the pseudodistance Dy on R x [0,1] and ¢, € USC|x,,
we have

Do(H; M[s+], (4 (8)) " [s+]) = 0 as n — oo for s € {1,...,p" —1}

and

Do(Hp ' (), (n(6) 7' () = 0 as n — oo for j € {1,...,p" — 1}.
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1
11
121242121
1334 6 4331
14688641 14688641
151636636212636636151
1668661 2337332 1668661
173636363 663636366 363636371
181181 363363 363363 181181
13 3 4 6 4 3 31
11 44 66 77 44 66 66 44 77 66 44 11
121515121484242484636363636484242484121515121
1337 3 2662 3 7331 1337 3 2662 3 7331
14622641 52311325 14622641 14622641 52311325 14622641
151 636 636 212 636 636 151
1662661 6 3 6 6 3 6 2334332 6 3 6 6 3 6 1662661
173 666 347 33 826 333 628 33 743 666 371
181454636181727 363363  818545363545818 363363  727181636454181
16 6 86 6 1 2 337 332 16 6 8 6 6 1
11 77 33 55 55 33 77 11 22 55 66 11 11 66 55 22 11 77 33 55 55 33 77 11
121878121878121878121878121242757242757242757242757242121878121878121878121878121

1331 3 3 3 3 1331
14655641 33 66 33 33 66 33 14655641
151363363151 363 363 363 363 151363363151
1665661 1665661 3 6 3 36 3 3 6 3 36 3 1665661 1665661
1733 6 338833 6 3371 33 66 33 33 66 33 1733 6 338833 6 3371
181727363818818363727181 363363 636636 363363 363363 636636 363363 181727363818818363727181
1 3 3 4 6 4 3 3 1

(a) ¥3(0)

1334 6 4331

1668661 2337332 1668661

1337 3 2662 3 7331 1337 3 2662 3 7331

1662661 6 3 6 6 3 6 2334332 6 3 6 6 3 6 1662661

1 6 6 8 6 6 1 2 3 3 7 3 3 2 1 6 6 8 6 6 1
1331 3 3 3 3 1331
1665661 1665661 3 6 3 3 6 3 3 6 3 3 6 3 1665661 1665661
(b) H3

Figure 2: An example ¢3(0) and Hs for (La)(z) = a(z —2)+a(z — 1)+ a(z +
1)+ a(z +2) (mod 3?).
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In order to show Proposition 4.2, we need the following

Proposition 4.3. For a prime number p and r € N, let L be defined as (2.1)

"1 and

and the set G have at least two prime elements. Put t(r,j) = j(p" —p
i(r,7) = —(t(r,5) — p"~Ykj, — p""'kj,, where j is mazimum prime in G ,js
is the mazimum prime element next to j1 in G and k; is defined in (2.1).
When, j ranges from 1 to p", L'"1)§(i(r, §)) ranges from 0 to p" — 1.
Proof. By using the following Lemma 4.4, we can prove in a similar way to
that of Theorem 2.7 in [2]. O

Lemma 4.4. Suppose r > 2 and the set G has at least two prime elements.
Then

LXD5(i(r, 5)) = L™ 6(i(r,m)) + sLOP D6 (i(r,p"1))  (mod p")
holds for j = sp" ' +m with s € {0,1,...,p— 1} and m € {1,2,...,p" " '}.

We have already proved a similar result to Lemma 4.4 and Proposition 4.3
when we supposed condition (A) in [2]. In this paper, we suppose that the set
G has at least two prime elements instead of condition (A).

In order to verify Lemma 4.4, we need Lemmas 4.5, 4.6 and 4.7.

Lemma 4.5 ([2], Lemma 2.2). Suppose ¢ € N with q/p ¢ N, t = jp" !
with j € N v = plq with 1 € {0,1,... ,r —2} and v < t.
Then there exists ¢ € N with ¢'/p ¢ N such that t — v = plq'.

Lemma 4.6. Put ,,C, = (a+)!/(albl). Then
pr_prflCipi =0 (modp")

forie{1,2,...,p" —p '}

Proof. Suppose i = gp’ with ¢ € {1,2,...,p —1} and £ € {0,1,2,...,r — 1}.
There exists b € N such that b/p ¢ Nand ,pr_lCipi = bp’"_l_epqp[ by Lemma
4.5. Since r — 1 — £ + gp® > r holds, we obtain the conclusion. O

Put mo = §G. In order to show the following lemmas, we first note that the
value (L'9)(x) is expressed by

(48) (L8)(w) = 3 oot ol (mod p7),
where the summation is taken over (uy,...,Um,) such that u; +--- 4+ up, =1
and —kj u1 — -+ — ki, Um, = —2. We also recall the relation

t!

and an element j € G is prime if a;;/p ¢ N.
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—kj, s(p” _pr_l) —kj, s(p” _pr_l) +kj —k,—-1 =

S(PT =PI [ 1 0 e 0]

Figure 3: The values in the squared region are all 0.

Lemma 4.7. Let the set G in (2.1) have at least two prime elements. Suppose
that j1 is maximum prime in G and that jo is the maximum prime element
next to j1 in G and kj —kj, > 2. Then

r__r—1

(4.9) v )6(—kj13(pT —p" H+0) =0 (modp")
forse{1,2,...,p—1} and £ € {1,2,...,kj, — kj, — 1} (see Figure 3).

Proof. We note kj, is not expressed as a convex linear combination of other
k;, where j € G is prime. If there exists the path from —kj s(p” —p" 1) + £ to
the origin with s(p” —p"~') time steps, then there exist ny € Z., {i; € N}?il
and {m; € G}, such that

no
(4.10) Y oig=sp"—p"
j=1

and
no

(4.11) ks — ) = =3 ik
7=1

Suppose m; is prime for all j € {1,...,np}. From (4.10) and (4.11), ¢ =
121 i5(Kj, — ki) holds and there exists j' € {1,...,no} such that ki, < kj,.
By ij > 1, we obtain £ > kj, —k;,, which contradicts £ € {1,2,...,k;, —kj,—1}.
Therefore there exists 7 € {1,2,...,n0} such that m; is not prime. The
equation (4.9) holds by Lemma 4.6 and (4.8). O

When the set G in (2.1) has at least two prime elements, suppose that j;
is maximum prime in G and that jo is the maximum prime element next to
J1 in G. Using k;, and kj,, put

(4.12) t(r.g) =j(" —p" ")
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Figure 4: The relation among #(r, §),i(r,7) and L*m)§(i(r, 5)).

and

(4.13) i(r,§) = —(t(r,5) —p" kj, — " kj,

for j € N( see Figure 4).

Proof of Lemma 4.4.

When we compute LX7)5(i(r, ) from the values at time #(r,j — 1), we need
the values LX™I-D§(z) with z € {i(r,j) + k_(p" —p" 1), ... i(r,j) + ks (p" —
p"~1)} (see Figure 5). We note that the value L™ =1§(z) with z € {i(r, j) +
k_(p" —p"1),...,—kjt(r,j7 — 1) — 1} is a multiple of p by (4.8) and that
the path from i(r,j — 1) + £ to i(r,5) for any £ € {1,...,k (p" — p"~ 1)}
with p” — p"~! time steps needs at least one k;, where 5 € G is not prime.
Therefore by Lemma 4.6, the values L{™=D§(z) with z € {i(r,§) + k_(p" —
P Y, =k t(r i — 1) =10 {i(r, i — 1) +1,...,i(r,5) + k4 (p" —p" 1)} do
not effect L") (i(r, 7)). So we have

(4.14)  L'OD6(i(r, ) = o1 Cprorads 20l
P (kg —kjy)—1
+ B(r, £)b(r,j —1,¢)
=1
T r—1

+af L6 (i(r,j — 1)) (mod p'),
where b(r, j, £) = LX) §(—t(r, j)k;, +¢) and B(r,£) € N. B(r,) is the number
of the path from —t(r, j)kj, + £ to i(r,j) with p” — p"~! time steps, and the

number of the path from —t(r, j)k;, + £ to i(r,j) with p" —p" ! time steps is
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o —kjt(r,j -1 o
i(r,j) +k—(p" —p" ") i(r,j—1) i(r,j) + ki (p" —p" 1)
- [ 3 1 0 cc— R
=G -DE" -p"H|
pr _ prfl
t(r, j) CEDS(ir ) ke
ap = LXmI=D§(i(r,j — 1))

Figure 5: A region which effects the value L") §(i(r, j)). However we can
ignore the squared regions by Lemma 4.6.

the same as that from —t(r,5')kj, + ¢ to i(r,j') with p" — p"~! time steps for
any 4,5 € Z. So B(r,£) does not depend on j.

Using (4.14) and Lemma 4.7, we can show the conclusion in the same way
as the case that L satisfies the condition (A). O

Proof of Proposition 4.2.
Suppose n € {r,r + 1,7+ 2,...}. We have

Do(H, s+, (6a(0)) s+ < _max Do(Hz (), (9a(0)) ')

So we prove Do(Hy'(5), (¥n(6)) 7 (5)) — 0 for all j € {1,2,...,p" — 1} as
n — oo. Put

Do(A,B) = sup{d(AU{(yo,20)},y) |y € BU{(y0,9)}},
Doe(A,B) = sup{d(z,BU{(y0,9)}) | = € AU{(v0,90)}}

for compact sets A and B. Then we have
Do(Hy ' (7), (4a(8)) 7' () =
max{Do,e(Hy ' (), (n(8)) ™ (1), Do (Ha* (7), (¥n(8)) ™ ()}




212 M. MATSUTO

and

Do (Hy' (5), ($a(9) 7' (7)) = 0

for all n by the definition of H,,. So we will show for any ¢ > 0 and any
j€{1,2,...,p" — 1} there exists N € Z, such that

Do, (Hn ' (5), (4 (0)) () < e

for n > N.
Put

to=p"(p" —p"" ") +1,
lo=min{l € Z, | to(ky —k_) < p* — 1} (see Figure 6 (a))

and
K(i)={zeZ|L? ""5(x) # 0} fori € Z,.

Forn >r —1+4 4y and ¢ = (z/p",t/p") € X, N X, there exists ip € N such
that 0 < t — jop"~ 1+l < pr—1+fo Pyt

Ky = {z' € K(ig) | =ky(t —igp"'70) <z — a2’ < —k_(t —igp" ' +) 1.

Then we have

(4 (0))(z/p",t/p")
(415) B { Zm’EK,, Liopr—1+l’0 5(x/)Lt_i0pr—1+l’0 (:IS i $/) K, ;é @,
B 0 Ky =10

forn>r—1+/4,. Put
(4.16) m, = max{{Kg | ¢ = (z/p",t/p") € X, N Xo}

for n > r — 14 ¥¢y. By the definition of K, it is easy to show that there exists
mg € Z4 such that m, < mg for all n > r — 1+ ¥£y3. Put

M = max{kop" ' + mop® + 1,

\/(|k.+ |pr71+lo + moplo + 1)2 + pQ(T—l—I—ZO)’

\/(|k, [pr—1+to + mgpfo + 1)2 + p2(r—1+6o)} (see Figure 6 (b)),

where kg, ky and k_ are defined as (4.1). For any € > 0, we choose N >
r — 1 4 ¢y satisfying
€> M/pNJrrfl‘
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Z-pr— 1+4g

Y

(a) €1 = p'© — 1, €s = |k—_to| and 3 = |k+to|. The regions A and B is disjoint by
the definition of ¢g.

(i+ 1)pr—tto

(b) €5 = mop"® + 1, €5 = |kyp" ™' 70| and £r = [k_p"~'T0).

Figure 6: The sketch of space-time pattern of LCA.
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Put Uc(z) = {y € X, N Xy | d(z,y) < €}. Suppose n > N and x =
(x/p",t/p") € Xp N Xy. If t =0, then Hy(x) = (¢ ())(x). So we consider
the case of t > 0.

For i € 7, satisfying ip" 170 < t < (i4+1)p" 1+, suppose L~ "°5(z') =
0 for all (z'/p",ip"~ 0 /p™) € Uc(z). Then (¢4, (8))(z) = 0.

Suppose LP" ™ §(20) /p ¢ N for some (zo/p™, ip"~ 4 /p") € Uc(z). Then
we have H, '(k) NU(z) # 0 for all k € {0,1,...,p" — 1} by Proposition 4.3.

Suppose L?"°§(z') /p € N for all (z' /p", ip" 1+ /p) € U,(z). Then for
(z' /p™),ip— o /p") € U (zx), there exists hy € Zy and k € {1,2,...,p" "}
such that Lipr_l+l05(:13') = kp"+" and k/p ¢ N. Put

ho = min{h, |(ac'/p”,ip’"*1+l°/p") eUc(x)}.

We have H,, ' (kp™)NU(z) # 0 for all k € {0,1,...,p" " —1} by Proposition
4.3. In this case, (¢,(0))(z) = kp™ with some k € {0,1,...,p" "0 — 1} holds
by (4.15).

So we obtain Dg,(Hy(4), (¥n(6))7'(j)) < € for n > N for any j €
(1,2,....p" — 1}. O

4.3. The definitions of {E,} and {A;; .}

We shall divide X into subsets {E£,} and {4, ; s} as follows (see Figure 7 and
8). Let

I' =
{(l,j,S) | 1 S S Sprkﬂal S] S S}U{(2aja3) | 2 S S Sprkﬂal S] S s = 1}
We define {E]}(y € I') as follows:
In case of vy = (1,7,5) € T, let
s—1 s
<g= ;
p"ko p"ko
in case of v = (2,4,8) € T

J—1 s—17

r

s—17 J
—k_q——= Syé—k+q+l7}-

pT‘

S
E’ = <g< —
v ={(y,9) | o <9 e

Let for 1 <s<kjand 1 <j<s,

J—1 s—17

s — s
<g< ——
pr—lko 9= pr—lko’ pr—l
and for 2<s<kpand 1 <j<s—1,
s—J J
—k-q———F <y < —kig+ )
prt T }

r—1

_—_— s — s
Ay s =1y, 9) | 1k <g< .
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Figure 7: {E,}, for (La)(z) = a(z —2) + a(z — 1) + a(z + 1) + a(z + 2) (mod 3?)




M. MATSUTO

216

(z€ Pow) (z+ )0+ (1+2)0+ (1= 2)p+ (g — 2)p = (z)(v7) 10§ “FU Iy} g omBryg

WLCLEET L TEE LTS

..vaxu; 9 TGIESE
R © 5 DS

195 € €

BEEE KD EEEE
& ) 2%

RIACICEEEEEEEE
.ﬂ- EE EE




CONVERGENCE OF LINEAR CELLULAR AUTOMATA, II 217

Then we have the following properties.
Proposition 4.8. (1) The sets {E]} have the following properties.

E-1) Fory = (b,j,8),y = (b,j',s) €T, EY is the shift of EI, in the first
coordinate direction in R x [0,1] for any s and b € {1,2}.

B2) (B)° ()0 =0 if v £

E-3) If (S¢(X0))° N (Se(Xo))° # 0, then S¢(Xo) NSy (Xo) is the union of
some EI’s.

E-4) Xo=U,er B

(2) The sets {A} ; },j,s have the following properties.
A-1) For any Aj . ., there existy €T and ¢ € {1,...,rp} such that A} . . =

b,j,s’ b7j75
Sy H(ED).
2 k
A-2) Xo = Ub:l U50:1 ;:1 Ai,j,s-
A_3) ( Z,j,s)o N ( Z’,j’,s’)o =0 Zf (baja S) 7é (blajlasl)'
Proof. By the definition, we can easily get the result. O

4.4. The definition of {h?'} and their fundamental properties

We shall define the function A} as follows. Put

V:{U: (713--'3777!) |mEZ+’71 € ' with #A’yl > 137]6 el
with #A, > 1 and S, (E})C E} | forany k€ {2,...,m}}.

Tk—1

For v = (y1,...,vm) € V and n € Z,, define

hZ(y,q): Z Z Cop .- Cyp,

(4.17) Gehy bm€hym
X Hn(Se_m1 .. Sé_llsz““ S, (Y, q))lsal (Erm)(y’ q)

for (y,q) € R x [0,1].
When v = (v), h]! satisfies

hﬁ(?/aQ) = Z CKHn(SZISLY(yaQ))]'SI_WI(E};)(yaq)a
LeA

and
for n € Z. Since the length of v is one, h] has the relation with Hy, ;.

If the length of v is m, then A7 has the relation with H,,,, and this is

useful in estimating the metric d;(hZ, A ) as shown in the following lemma.
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Lemma 4.9. For v = (y1,72,---,7m) € V, k € {1,...,m} and (y,q) €
R x [0,1], put
Fi(y,q) = Se,, (Se,, (- (Se,, (¥,9)) ---))-
Then we have
(1) for (y,) € Fr 1(EL,,),
h?(Fﬁl(yaQ)) = Hnm(y, Q)lFm_l(ETYm)(ya q)

and

(2) if the sets {§ € {1,....p 1} | (h2)"'(G) = 0} and {j € {1,...,p — 1} |
(h¥')=1(j) = 0} are the same, then

df(h’gv h’gl) = pmdf (HnerlFm,l(E;m)a Hn’+m1Fm,1(E§m))
for anyn, n' € Z,.
Proof. The proof is similar to that of Lemma 4.3 in [3]. O

In a similar way to Proposition 4.4 in [3], we can show the following propo-
sition, which means that the sets {j € {1,...,p — 1} | (h?)"1(j) = 0} and
{je{l,....,p—1} | (h")~'(j) = 0} are the same for sufficiently large n, n'.

Proposition 4.10. For sufficiently large n € Z, the following assertions are
equivalent for any v = (y1,...,%Ym,) €V, £ € Zyr\{0}.

(1) (Flngma) " 0) ) (Fony 1 (BT, ) 0.
(2) (Hn-l-mv-l-l)il(e) N (Fmv_1(E,7;mv ))° # 0.

4.5. The definition of {Mg""’} and their properties
By using h", we shall define M by
M = sup{d;(h?, k") | v € V}.

Then we have the following

Proposition 4.11. (1) sup{Mg’”, |n,n' € Z;} < .

(2) df(Hpt1, Hpry1) < %M[qf’n’ holds for sufficiently large n,n' € Z .

Proof. By using Lemma 4.9 and Proposition 4.10, we get the conclusion in a
similar way to [3, Proposition 4.5]. O

Proposition 4.12. For sufficiently large n,n’, we have
’ 1 ’
M6L+1,n +1 S _MSL,n )
p

Proof. The proof is similar to that of Proposition 4.6 in [3].
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4.6. Proof of Theorem 4.1

By using above propositions, we shall prove Theorem 4.1.
(1) By Propositions 4.11 (2) and 4.12, we have

lim  MJ"™ = 0.

n,m—00

By Proposition 4.11 (1) , we have
1
df(Hn—l—la Hm—l—l) < Z_)M(;L’m

Since we have d¢(Hy,,¥,(0)) — 0 as n — oo by Proposition 4.2, we obtain the
conclusion.

(2) Since {y,(6)} C USC|x,, we get the result from (1) and Theorem
3.1. ]

4.7. Convergence of 1,(a)(a € P) in case of R x [0, 1]

We consider convergence of 1, (a)(a € P) in a similar way to ¢, (5). We define
a function Hy, as follows. For n € {r,r + 1,r +2,...} let X;, = {(;F, ‘7’;:,;1) |
r€Z,5=0,1,...,p" "} and

(4.18) HY, = a(a)1x,.

Then we can show the following theorem in a similar way to the proof of
Proposition 4.2.

Proposition 4.13. For the pseudodistance Dy on R x [0, 1], we have
Do(H! '[s+], (n(a)) " [s+]) = 0 asn — oo for s € {1,...,p" — 1}

and

Do(Hy, (3): (¥n(a) ™ (7)) = 0 as n— 00 for j € {1,....p" — 1},
So we can show the following theorem in a similar way to Theorem 4.1.

Theorem 4.14. Let the set G in (2.1) with mod p" have at least two prime
elements. For a nonzero a € P, we have

(1) d¢(¥n(a), Ym(a)) = 0 as n,m — oo.

(2) Put f, = /\ \/d)n_H«_l(a), where /\ and \/ are lattice operations in
E>1n>k
USC. Then we have

D¢(n(a), fo) =0  as  n— oo
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Proof. (1) For H),, we can show the following relation in a similar way to the
proof of ¢, (a) in case of mod p.

d¢(H,, Hy) —0

as n,m — 00. So by Proposition 4.13, we have (1).
(2)We get the result from (1) and Theorem 3.1. O

85. The relation between the limit function and the limit set

In this section, we investigate the relation between the limit function and the
limit set of {K/(n,d)/p"}n, which Takahashi defined in [5]. Put

K (n,8) = {(,8) €Zx Ty |0< 1< p" — 1, L6(x)£0 (mod ')}
for f € {1,2,...,r} and
Ky(n,0) = {(z,t) EZxZ, |0<t<p"—1, L'6(z) =b (mod p")}

forbe {1,2,...,p" —1}.
Then the following lemma holds.

Lemma 5.1. [5] Let L be defined as (2.1) with mod p" and suppose that
at least two elements of G is prime and f € {1,...,r}. Then for b € Zy
satisfying b/p’~' € N and b/p/ ¢ N, we have

UﬂKbn5 ﬂUKbn5 UﬂKfn5 ﬁw

pn
k=1n>k k=1n>k k=1n>k k=1n>k

We first show the relation between Yy = N2, U,,>; K/ (n,8)/p” (Theorem

5.2) and limy,_, o ¥y, (0).
Let g be the upper envelope of g, that is,

9(z,t) = inf{¢(z,1)|p € USC, §(x,t) > g(,t)}.

Then the limit function g, in the pointwise topology (Theorem 2.3) has the
relation with a limit set in the sense of Kuratowski limit.

Theorem 5.2. Suppose the set G in (2.1) has at least two prime elements.

Let the function gs be defined by g5(y,q) = limy, o0 (1¥n(6))(y, q).
Then

N +1-f f—1
(5.1) a5 = 1<Zf< (" NPyt
SJIsr
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and

(5.2) 576 = /\ \/ 1/)n+r—1(6)'

k=1n>k

Proof. For f € {1,2,...,r}, let (y,q) € Y} \ Ulfz_llYi. Then there exists
a sequence {(Yn;,qn;) € K/ (nj,6)/p"i }321 such that limj ,oon; = oo and
hm]_,oo(ynj,qn]) = (y,q). Since g(g(ynj,qnj) # 0, there exists a sequence
{(vn,-qn,) € K'(nj,8)/p"7} such that gs(y, ,q;,,) = ("'~ = 1)p/~" and
o0 (Y5 ) = (45@)- S0 §a(y,q) = (p"H 7 = 1)p/ 1 1f (y, ) ¢ Yy for all
f€{1,2,...,r}, then there exists a neighborhood U of (y, ¢) and k such that
UnK/(n,s)/p™ =0 for any n > k. So §5(y,q) = 0. Therefore we obtain the
equation (5.1).
In order to verify (5.2), we will show

(5.3)
o0
/\ 1/)n+r 1 ))(y,Q) =
k=1n>k
(- —Dp! ™t for (y,q) € Yy \ULY; with f € {1,...,r},
0 otherwise.

The equation AR, Vs e(#nsr—1(8))(:0) = (77 — 1)p/ 1 holds if and
only if B

(i) for any k € Z4 and € > 0 there exist (y/,¢') € R x [0,1] and n’ > k such
that [(y',¢') = (y,9)| < € and (41 (0) (¥, ¢) > ("7 = 1)p/ " —e

and

(ii) for any € > O there exists & € N and a neighborhood U of (y,q) such
that (Ynir—1(0)) (' ¢") < (Pt F —1)pf~1 4 € for all n > k and all

(v',q') €U.

For f € {1,2,...,r} and b € N satisfying b/p/~" € N and b/p/ ¢ N, let
(y,q9) € Yy. Then for any € > 0 there exists {(yn,qn) € Kp(n, (5)/10”}%%r
such that |(yn,qn) — (y,q)| < € by the definition of Y; and Lemma 5.1. If
(y,q) ¢ UZ’;_IIYi, then for each ¢ € {1,..., f}, there does not exist a sequence
{(yn,qn) € Kp(n,8)/p"}2, converging to (y,q), where b/p/~'=" € N and
b/p’~" ¢ N. By using the fact above, we obtain (5.3). O

Theorem 5.3. Suppose that the set G in (2.1) has at least two prime ele-
ments. For a € P with a(0) = kp! for k/p & Z, and 1 € {0,1,...,7r —1}. Put
90y, q) = limy, 00 (¢ (a)) (y, q)-
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Then

(5.4) o= ), (pr_pfilJrl)lYf\u{";fn‘
I<f<r—l

Proof. For (y,q) € Y5\ U{:_IIYZ-, there exists a sequence {(yn;,qn;) €
K/ (nj,0)/p" 721 such that lim; oo nj = 00, lim;00(yn;, gn;) = (¥, ¢) and
Ya (ynj ) an) = a(0)95 (ynj ; an)
— kbpl+f71
for 1 <b<p ' —1and b/p ¢ Z, by Lemma 5.1 and Theorem 2.3 (3). We
have
{bkp? =1 (mod p") |1 < b < pr=IHY
— {bpl+f71 (mod pr) | 1<b Sprflferl}

by k/p € Z. So there exists b € {1,... ,p/*"~1} such that
kbpl+f71 =p _pf+lfl (mod pr).

Therefore there exists a sequence {(y;lj,q;lj) € K/(nj,0)/p" 22, such that

lim n; = oo,
j—o0
lim (yp,,q5,) = (¥, 9)
j—00
and

14
9o, an,) =p" —p! .

There exists a neighborhood U of (y,q) such that g,(v',q') < p" — p/*=1 for

all (y/,q') € U by (y,q) ¢ U2 Yi. So galy,q) =p" — p/ =1+

If (y,q) ¢ Yy for all f € {1,2,...,r}, then there exists a neighborhood U
of (y,q) and k such that U N K7/ (n,a)/p™ = 0 for any n > k. So §a(y,q) = 0.
Therefore we obtain the conclusion. O

For a = a(x) € P, put
Go ={z € Z| a(x) # 0}.
Let 7,: P — P be a shift operator such that

Tza(y) = a(y — ).
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The following theorem shows the relation between Ay, \/,,>x ¥n+r—1(a) and
ga in Theorem 2.3. While the upper envelope of g, depends on only the value

a(0), Apey Visk ¥nir—1(a) depends on all values a(z)(z € Z). So g, is not
necessarily equal to Ap° ; Visk ntr—1(a).

Theorem 5.4. Suppose that the set G in (2.1) has at least two prime ele-
ments. Suppose that a € P is nonzero and put gq(y, q) = limy, o0 (V0 () (y, ).

Then
/\ \/ ¢n+r 1 \/ ng (a)
k=1n>k zEG,

Proof. Let I, € Z, satisfy 7,(a)(0) = kple(k/p ¢ Z) and xy € 7Z satisfy
lgo <y for all z € Z. Since we have

14,
@ = V =Y @ —p/ )
2€Ga 1< f <oy
by §r,(a Z1<f<r L (0" —p/ 1)1 yuo vy We shall show
oo
AV b= T 00— ot
k=1n>k 1< f<r—lag

In order to verify it, we show

00 r_ o f 1+, f-1y-
(5.5) /\\/d)w_l(a):{p Pl (y,q) €VF\ UL Y

k=1n>k 0 otherwise.

For any n € Z; and (y,q) € R x [0,1], the equation ¢, 1(7:(a))(y,q) =
Ynar—1(a)(y —z/p" "1 ¢) holds. Using the relation above, we can show the

equation (5.5) in a similar way to the proof of the equation (5.2) in Theorem
5.2. U
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