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Abstract. In this paper, we give a method to construct an association scheme
from another association scheme under some assumptions. To make a new
scheme, we construct a skew-symmetric Hadamard matrix.
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§1. Introduction

We know that many association schemes are constructed by finite groups, but
we also know that many association schemes are not. For example, there
exist eighteen association schemes of order 23 and of class 2 with intransitive
automorphisms. We do not know how to construct them theoretically. They
are constructed by a computer.

We consider a non-symmetric association scheme of class 2. Then we can
construct a skew-symmetric Hadamard matrix. By the Hadamard matrix, we
can construct other association schemes. It may be isomorphic to the original
one, but we investigate when they are isomorphic, and later give an example
such that they are non-isomorphic.

Our method is like switching operation in graph theory. But under our
assumptions, switching cannot generate association schemes, except the trivial
cases, switching for no point or all points. Roughly speaking, we add one point
to the association scheme and consider the switching relations.

§2. Association schemes

First we define association schemes. For a matrix M, we use the notation M;;
as the (i,7)-entry, and ‘M as the transposed matrix of M.
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Let X be a finite set of the cardinality n, and let R; be a subset of X x X,
1=20,---,d. Define n x n matrices A; indexed by X as

. _ ]-7 if (IIJ,y) € Ri7
(Al)xy B { 03 if (xay) ¢ Ria

for i =0,---,d. Then (X,{R;}i=o,... ) is called an association scheme if the
following conditions hold :

(1) Ap = I (the identity matrix),
d
(2) Z A; = J (the all one matrix),
=0
(3) tA; = Ay for some ' € {0,---,d},

d
(4) and A;A; = prjAk for some pfj
k=0

We call n the order, d the class, and A; an adjacency matrix of the association
scheme. By the condition (4) in the definition, A; has the same row (column)
sums, and we call it the valency of A;. Actually, the valency of A; is equal to
Py in (4).

To denote an association scheme, we use the relation matriz

For convenience of our notation, we say that the matrix A is an association
scheme.

We define the automorphism group of an association scheme A. Let S,
be the group consisting of all permutation matrices of degree n. Define the
automorphism group of A by

Aut(A) ={P €S, | P 'AP = A}.

It is easy to check that P is in Aut(A) if and only if P~1A;P = A; for all i.
Let A and B be association schemes of same order n. We define that A
and B are isomorphic if there exists a permutation matrix P of degree n and
a permutation p on {0,---,d} such that P~'A?P = B, where A’ is the entry
wise action of p. If p is the identity, we say A and B are strongly isomorphic.
In this paper, we only consider the case that n = 3 (mod 4), d = 2,
and the valency of A; and Ay are equal. In this case, A; must be non-
symmetric matrix, so ‘A; = A. The reason of this assumption is as follows.
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We are concerning to the case that n is a prime. We know some examples
of association schemes of prime order with intransitive automorphism groups,
and all of them satisfying the above conditions, except when n = 1 (mod 4)
and A1 and As are symmetric. We do not know how to construct such schemes
in general, so we want to consider this case.

In our assumption, the valencies are {1,k,k}, where k = (n — 1)/2. For
details about association schemes, we refer to the book of Bannai and Ito [1].

§3. Hadamard matrices

In this section, we define Hadamard matrices. Let H be an m X m matrix
with all entries in {+1}. We call H a Hadamard matriz if

'HH = mlI.

This means that distinct row (column) vectors of H are orthogonal. The next
theorem is well-known.

Theorem 3.1 ([2, Lemma 9.4]). If an m x m matriz H is o Hadamard
matriz, then m = 1,2, or m =0 (mod 4).

It is conjectured that there exists a Hadamard matrix of size 4a for any
integer a, but this is still open.

A Hadamard matrix H is called skew-symmetric if H;; = —Hj; for all 1 # j
and H;; = 1 for all 4.

Now we define the automorphism group of a skew-symmetric Hadamard
matrix, though it is not a standard definition. ;From here, we always assume
that H is a skew-symmetric Hadamard matrix. Let S, be the group consisting
of all permutation matrices of degree m, and let D, be the group consisting
of all diagonal matrices with all diagonal entries in {#1}. Define S be the
group generated by Sy, and D,,. Then S is a semidirect product of S, and
Dy,. If Q € SE, then Q7'HQ is also a skew-symmetric Hadamard matrix.
We define

Aut™(H) ={Q €S, |Q 'HQ = H}.

There exists a natural epimorphism from SE to S,,. We call the image of
Auti(H ) by this epimorphism as the automorphism group of H, and denote
it by Aut(H). In general, it is easy to see that Aut®™(H) = Aut(H).

We fix 7. We say H is normalized at i if H;; = 1 for all j and Hj; = —1 for
all j # 1. For any H and any 7, we can normalize H at i as follows. Consider
the diagonal matrix D with

1, ifH; =1,
Dﬂ_{ —1, if Hj = —1.
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Then D~'HD is normalized at i.

84. Construction of new association schemes

Let A be an association scheme. Recall our assumption. The order is n = 3
(mod 4), the class is d = 2, the valencies are {1,k,k} where k = (n — 1)/2,
and YA} = Ay. Then we can conclude that

k—1 k+1

A2 = FToa 4P 4
1 B 2 . 1 +k 9 , 2y
A1Ay = AAy = KAy + T Ay +T As,
1 —1
Ay? = k% Ay +kT Ay

by [1, II. Proposition 2.2].
Now we define a skew-symmetric Hadamard matrix. Put

1‘1 1
-1

H=
Ao+ A — Ay
-1

Proposition 4.1. The matriz H defined above is a skew-symmetric Hadamard
matriz.

Proof. By the direct calculation, 'HH = (n + 1)I. Since ‘A; = Ay, H is
skew-symmetric. O

We consider the normalization of H at some ¢, and remove i-th row and
column of it. We write this matrix as H®. Define an n x n matrix A® by

0, if j =k,
, ifj;ékandH@ijL
2, ifj#Fkand HDj = —1.

A(i)jk —

—_

Then we have the following.
Proposition 4.2. The matriz A" is an association scheme.

Proof. Let A}, A}, A} be adjacency matrices of A®). We consider that A’ is
indexed by {1,---,n+ 1} \ {i}. It is enough to check the condition (4) in the
definition.
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We consider the a-th and b-th rows of H, where a # i, b # i, and a # b.
Put

8 {j| Hoj =1, Hyy=1}, pB
8 {7 | Hoj =1, Hyj =1}, ¢

8 {7 | Hoj =1, Hypj = —1},
8 {j| Hoyj =—1, Hyj = —1}.

o
Y

Since the a-th row is orthogonal to the i-th row (1,- -, 1), we have a4+ = v+,
and similarly o +v = #+ §. Also the a-th and b-th rows are orthogonal, so
a+ 0 = B+ . These equations imply that « = f = v = §, and obviously
a+f+v+06=n+1, so they equal (n+ 1)/4.

Now we consider the (a, b)-entry of A}2, where a # i and b # i. We have

(A% = ${j|Hoyj=1 Hjp=1, j#i,a,b}
8 {j| Hoj =1, Hy; = —1, j #1,a,b}.
If @ = b, then (A}2),, = 0. Suppose a # b. For j =i, a,b,
(HaiaHbi) = (_]-7 _1)7 (HaaaHba) = (175)7 (Hababe) = (_57 ]-)7

where e = 1 or —1. Thus

(AIZ) — (n_3)/47 ifHab: 17
1 Jab (n+1)/4, if Hy = —1.

This means that A}? is a linear combination of Af,, A}, and A). Similarly A}?
is also a linear combination of them.

Next we consider the (a,b)-entry of A} Af, where a # i and b # i, by the
similar argument above. We have

(AIIAIZ)ab = ﬁ {] | Haj =1, Hjb: -1, j#iaa’ab}
= §{j| Hoj =1, Hyj =1, j #4,a,b}.

If @ = b, then (A1A4%)4 =8 {j | Hyj =1, j # i,a} = (n —1)/2. Suppose
a # b. Then, considering the case j = i, a, b, we have

Ay _ (n+1)/4, ifHab:].,

Thus A} A) is a linear combination of Af, A, and Af, and similarly so is A5A).
The result follows. O

Next we consider when A® and AU) are isomorphic.

Proposition 4.3. If there exists o € Aut(H) such that i = j, then A" and
AY) are strongly isomorphic.
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Proof. We may assume that H is normalized at i. Then the permutation
matrix P defined by o gives an isomorphism from A® to AY) U

Also, we have the following.

Proposition 4.4. If AW and AY) are strongly isomorphic, then there exists
o € Aut(H) such that i = j.

Proof. We may assume that H is normalized at ¢. There exists a permuta-
tion matrix P such that P~'A®OP = AU). We can regard P as a bijection
{1,---,n+ 13\ {i} = {1,---,n+1}\ {j}. We define P’ € S, by k" = k"
if k # i and i” = j. Then P’ € Aut™(H), and the result holds. O

By this proposition, if H has a transitive automorphism group, then we can
get only one association scheme by this method. Actually, in the next section,
we will show that the Hadamard matrix obtained by a cyclotomic scheme has
a transitive automorphism group.

Of course, our construction is applicable for an arbitrary skew-symmetric
Hadamard matrix.

§5. Examples

In this section, we introduce the cyclotomic scheme of class 2 with a prime
power order. We shall show that the Hadamard matrix obtained by it has
a transitive automorphism group. So we can not construct new association
schemes from it. Later we will give an example of a skew-symmetric Hadamard
matrix with an intransitive automorphism group.

Let F' be the finite field of order ¢ = p°, ¢ = 3 (mod 4). Put F* the
multiplicative group of F, and (F*)? the set of squares in F'X. Since ¢ = 3
(mod 4), z € (F*)? if and only if z has an odd order in F*. We define
r: F* — {£1} by r(z) = 1 if z € (F*)? and otherwise r(z) = —1. Then we
have r(z)r(y) = r(zy), r(—z) = —r(z), and r(z) = r(z7!).

We define an association scheme. Define relations on F' by (z,z) € Ry,
(z,y) € Ry if u(z —y) = 1, and otherwise (z,y) € Ry. Then it is well known
that this is an association scheme, which is called the cyclotomic scheme of
clags 2. This satisfies all our assumptions, and it is easy to see that this
association scheme has a transitive automorphism group.

We define the skew-symmetric Hadamard matrix H by the cyclotomic
scheme of class 2. For convenience, we consider the matrix is indexed by
F U {o0}. To show that the automorphism group of H is transitive, it is
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enough to show that oo is not a fixed point. So we shall give an automor-
phism of H which moves co. Now

1, ifz=yorz=o0,
Hyy = —1, ifz € F and y = o0,
’)”(IL‘—y), lfl‘?éya IE,yGF.

We consider the normalization at 0. Define a diagonal matrix D by

—r(z), ifzeF~*,
Dyw = 1, ifz=0,
-1, ifz=o0c.

Then K = D 1HD is a Hadamard matrix normalized at 0. Now

Kooy = DooooDyyHooy:'r(y)a

= —'f'((II),

&
:
I
!
g
S
2
:
&
5
|

for x,y € F*, z #y.
We define a permutation o on F U {oo}. Let 27 = —z~! for x € FX,

0 = oo, and o0’ = 0. Put P the permutation matrix given by o, and
L =P 'D'HDP. Then L is normalized at oo and

LOy = Koo(fy—l) = T(_y 1) = —’)"(y),
Lyo = K(_g-1)o0 = —r(—z7!) = r(z),
Ly, = K(,m—l)( y=1) = r(x I)T(yfl)’l“(—l‘il + yil)

This means L = H, so 0 € Aut(H) and o moves oco.

Proposition 5.1. The skew-symmetric Hadamard matriz defined by a cyclo-
tomic scheme of class 2 has a transitive automorphism group.

Now we give an example of a skew-symmetric Hadamard matrix H of degree
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24 with intransitive automorphism group.

I T e Y Y O B B

[ e I B O B e R T O R R

T T T T e S ey e T T B SRS
[ e I oy o I RSO S

[T T O (S S B U P I ISP
e T S T Sy [ [ SO
el mm s Rl mree]| Reee
[ T T O G S [y R Y IS S
[T O T S B e T Sy R S
[ T B R R I N T R e R
[ N I = T I S R Sy Ry i e
[T O S L S e B T I e N I I
e Ny e T I = e
melmrl Il r,rrrl iRl lrlmrr] =] =
[T T S S e e ety L e T
I T S e L (R N Sy Ry
N T T I I Sy e
[T T [ S L e L T T
T T e B U L T B S S R R
mlmrrl lr,rrl lrerlrer]l lrl R, | =
[T S S e [y T R I A
[ B = I I =iy i e e

[ -

Here we write “—” instead of —1. The automorphism group of H is not

transitive, it is not even half-transitive. It has eight orbits, so we can get eight
strongly isomorphism classes of association schemes. To get them, consider
AW AW AG) - A6) - A00) - AL - A(12) and A13). But some of them are
isomorphic : A1) 22 A10) - g4 = 4(13) A() 2= A and A6) = 402 So we
can get four isomorphism classes of association schemes from H.

By the computer classification, there exist exactly eight equivalence classes
of skew-symmetric Hadamard matrices of degree 24 (here we say that two
Hadamard matrices H and H' are equivalent if there exists QQ € S;fl such that
Q 'HQ = H or Q 'HQ = 'H'), and exactly nineteen isomorphism classes
of association scheme of order 23 which satisfies our assumption.
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