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Abstract. A graph G is said to be (k,n)-factor-critical if G — S has a k-
factor for any S C V(G) with |S| = n. In [7], the author, Ota and Saito

conjectured that if G is a 2-connected (k,n)-factor-critical graph of order p

with 03(G) > 2(p — n — k), then G is hamiltonian with some exceptions. In

[7], the author, Ota and Saito also characterized all those graphs which satisfy
the assumption of the conjecture, but are not 1-tough and, by using this, they
verified the conjecture for £k = 1 and 2. In this paper, we verify the conjecture
for k = 3 and 4.
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81. Introduction

In this paper, all graphs considered are finite, undirected and without loops
or multiple edges. For graph theoretic notation, we refer the reader to [4]. In
particular, we denote by «(G) and ¢(G) the independence number and the
minimum degree of a graph G, respectively.

For an integer k with £ < a(G), we define o (G) by

ok(G) = min {Z degg z: S is an independent set of order k in G’} .
z€S

For k > «a(G), we define o;(G) = +00. We call 04(G) the minimum degree
sum of k vertices in G.

Starting with Ore’s classical theorem [8] on degree sums and hamilton cy-
cles, there are a lot of papers about degree sums and hamilton cycles. Ore’s
theorem is best-possible in the sense that the lower bound p = |G| of 02(G)
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cannot be replaced by p — 1. Let G = Ky, 41 (m > 2). Then p = 2m + 1,
02(G) = 2m =p—1 and G is not hamiltonian. However, if we put additional
assumptions on G, the lower bound of o3(G) in Ore’s theorem may be relaxed.
In fact, Faudree and van den Heuvel [5] proved that the existence of a k-factor
relaxes the degree sum condition.

Theorem 1 ([5]) Let G be a 2-connected graph of order p. If G has a k-factor
and 03(G) > p — k, then G is hamiltonian.

A graph G is said to be n-factor-critical if |G| > n+2 and G — S has a 1-factor
for each S C V(@) with |S| = n. Motivated by this theorem, the author, Ota
and Saito studied degree sum conditions for an n-factor-critical graph to be
hamiltonian, and proved the following theorem.

Theorem 2 ([7]) Let n be a nonnegative integer and let G be a 2-connected
n-factor-critical graph of order p. Suppose o3(G) > %(p —mn —1). Then

(1) G is hamiltonian,

(2) Kn+(n+ 1)Ky CGC Ky, + (n+ 1)Ky,

(3) G is a spanning subgraph of K11 + (K1 U (n + 1)K3), or
(4) n=2 and Ky + (K4 U2K3) C G C Ko + (K4 U2K3).

They also studied the possibility of extending their results to a wider class.
For a positive integer k and a nonnegative integer n, a graph G is said to
be (k,n)-factor-critical if |G| > k+ n + 1 and G — S has a k-factor for each
S C V(G) with |S| = n. Under this definition, a graph is n-factor-critical if
and only if it is (1, n)-factor-critical, and a graph has a k-factor if and only if
it is (k,0)-factor-critical.

They proved the following lemma.

Lemma 3 ([7]) Let k and n be integers with k > 1 and n > 0, and let G be
a 2-connected (k,n)-factor-critical graph of order p. If o3(G) > 2(p — n — k)
and G is not 1-tough, then one of the following holds.

(1) k=1,n>3 and K, + (n+ 1)K3 C G C K, + (n + 1) K>

(2) k=1,n>2and G is a spanning subgraph of K, 11+ ((n+ 1)K UK).
(3) (k,n) = (2,3) and K3 + 4K3 C G C K3 + 4K3

(4) k=1 (mod 2), n =2 and Ky + 3K} ;1 C G C Ky + 3K}

(5) k=1 (mod 2), n =2 and E-{- (2Kg41 UKg13) CG C Ko+ (2Kp4q U
Ki+3)
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(6) k=1 (mod 2),n=1and Ky + (K, U2Ky 1) C G C Ko+ (Kx U2K 1)

(7) k =0 (mod 2) and G is a spanning subgraph of Ky + (G1 U G2 U G3),
where 0(G;) >n+k—2 (1 <i<3)and|Gi|+ |Go| + |Gs| < 3(n + k).

They also conjectured the following.

Conjecture 1 Let k and n be integers with k > 1 and n > 0, and let G be a
2-connected (k,n)-factor-critical graph of order p with o3(G) > 3(p — k — n).
Then G is hamiltonian or one of the graphs described in Lemma 3 (1)—(7).

They verified the conjecture for k¥ =1 and 2 in [7].
The purpose of this paper is to prove the conjecture for £ = 3 and 4.

Theorem 4 Conjecture 1 is true for k = 3 and 4.

When we consider a cycle C, we always associate with C' an orientation
C'. Then we denote the reverse orientation of C' by T.Ifue V(C), then u™
denotes the successor of w on € and u~ denotes its predecessor. If A C V(C),
then AT = {vt|v € A} and A~ = {v~|v € A}. For u,v € V(C), wC'v denotes
the set of consecutive vertices of C' from u to v in the direction specified by

In the subsequent arguments, we adopt one notation introduced in [5]. Let
G be a graph and let S, T C V(G) (possibly SN T # ). Furthermore, let
F C E(G). Then we define er(S,T) by
er(S,T) = {(z,y): z € S,y € T,zy € F}|.
Note that if zy € F with z, y € SNT, then this edge is counted twice as (z,y)

and (y, ).
First, we give basic properties of (k,n)-factor-critical graphs.

Lemma 5 ([7] ) Let k and n be integers with k > 1 and n > 0, and let G be
a (k,n)-factor-critical graph of order p with 03(G) > 3(p — k —n). Then

(1) 6(G) > n+k,
(2) o3(G) > p, and

(3) if k is odd, then G is n-connected.
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82. Proof of Theorem 4

In this section, we prove Theorem 4. In the rest of the proof, we assume
3 <k < 4. Also, we assume n > 1. In fact, in [5], they proved that if
03(G) > 2(p — k), then G is hamiltonian except for the graphs described in
Lemma 3(7) with & = 2, where p,k,G are as in Conjecture 1 with n = 0.
Hence we may assume n # 0.

By Lemma 3, we have already listed up all exceptions of Theorem 4. In
order to establish Theorem 4, we have only to prove the following theorem.

Theorem 6 Let k < 4 and n be a nonnegative integer, and let G be a (k,n)-
factor-critical graph of order p. If o3(G) > 3(p—n—k) and G is 1-tough, then
G is hamiltonian.

By Lemma 5, we can apply the following theorem in which, the first part was
proved by Bauer, Morgana, Schmeichel and Veldman [2], and the second part
was proved by Bauer, Broersma and Veldman [1].

Theorem A ([1], [2]) Let G be a 1-tough graph on p > 3 vertices with
o3(G) > p. Then every longest cycle of G has the property that V(G) — V(C)
is an independent set. Moreover, if G is nonhamiltonian, then G contains a
Iongest cycle C such that max{d(v)|v € V(G) — V(C)} > 203(G).

By Theorem A, we can choose a longest cycle C' in G and a vertex a €
V(G) — V(C) such that N(a) C V(C) and degg(a) > 203(G). We assume

that C' and a are chosen so that degg(a) is as large as possible. In the rest
of our proof, we use several ideas of the proof of the result of Bondy and
Kouider[3], and Faudree and van den Heuvel [5].

Set Yy = {a} and define, for i > 1,

X;=N(Y; 1), Yi={a}U{ve V()| ,v" € X;}.

Then, N(a) =X;CXyC... and {a} =YyCYyC.... Set X = Ufile
and Y = (J°,Y;. Since C' is a longest cycle in G and there exists no cycle C”
with the same length as C satisfying w(G — V(C")) < w(G — V(C)), we can
use the “Hopping Lemma” from Woodall [9].

Theorem B (Hopping Lemma [9]) Let C, X and Y be defined as above.
Then X and Y have the following properties.

(1) NY)=X C V(C).
(2) XNXt=0.
(3) XNY =0.
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Set z = |X| and y = |Y| and define ZT = X* —Y and Z~ = X~ - Y,
respectively. Then |Z7|=|Z | =2z —y+ 1.

The subgraph C' — X consists of segments of the cycle C. There are two
types of segments, namely,

(1) a segment consisting of an isolated vertex (the vertices in Y — {a}), and
(2) a segment consisting of two or more vertices.

The second segments can be considered as paths with one end vertex in Z+
and the other end vertex in Z—. We denote these “long” segments by Cp,
Cy,-,Cp—y. We also denote the element of V(C;) in Z* by p; and the
element of V(C;j) in Z~ by g;. Define S = J;_JV(C;)) —Zt —Z~, R =
V(G) —V(C)—{a} and r = |R|. And also, let Z=2Z1tUZ .

We will use the following lemma proved by Jackson [6].

Lemma 7 ([6]) Let C,Z",Z~ and R be defined as above. Then, the follow-
ing statements hold.

(a) Z* and Z~ are independent sets.

(b) Every vertex of R has at most one vertex of Z1 and at most one vertex
of Z~ as a neighbor.

Since z > degi(a) > 0(G) > n+ k, we can choose X' C X with |X'| = n.
Then, G' = G — X' has a k-factor F. Since Ng(Y) = X, so, Np(Y) C X — X"
Therefore,

(2.1)
ky =ep(Y,X — X')
<er(V(G"), X —X')—ep(Z,X = X') =k(z —n) —ep(Z,X — X').

Hence, £ —y > n. Assume z —y = n +¢t. Then by (2.1),
(2.2) er(Z,X — X') <k(z —y—n) = kt.
Since

2> deggla) > 503(G) > 3o — k= n),

N | =

we have p <2z +k+n. Assume x = %(p— k—mn)+ q, where ¢ is a nonnegative
half integer. Then, we have the following.

(2.3) p=2z+k+n—2q.
Let s denote |S|. Then, we have the following.

p=|X|+Y|+|Z|+|S|+|Rl=2+y+2(z—y+1)+s+r
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=2z+(z—y)+2+s+r=2c4+n+t+s+r+2.
Hence by (2.3), we have
(2.4) k—2¢g=1t+s+r+2.

Since we assume k < 4, we have g < 1.
By (2.2) and Lemma 7(b), we have the following:

(2.5) er(Z, X — XY+ ep(Z,8) +ep(Z,R) < kt + ks + 2.

Since x > degq(a) > §(G) > nt+k = c—y—t+k and k = t+s+r+2+2q > t+2,
we have y > 2, and hence Y — {a} # . First, we claim the following.

Claim 1 degg(a) > z—q, and for some vertex v € Y —{a}, degg(v) > z—3¢.

Proof. The first assertion is obvious since degg(a) > 103(G) > $(p—k—n) =
T —q.

For any vertex u € Y, deg(u) > §(G) >n+k=(r—y—1t)+ (t+s+
r+2+2q) >z —y+ 2. Hence, if |Y| = 2, then the second assertion is also
obvious. Suppose |Y| > 3. Take arbitrary distinct vertices u,v € Y —{a}. We
may assume deg(v) > degg(u). Since Y is independent, we have

(2.6) degq(v) + degg(u) + degg(a) > o3(G) > 3z — 3q.

Since degg(a) <z, (2.6) implies that 2 degq(v) +x > 3z — 3¢, or equivalently
degg(v) >z — %q. O

By Claim 1, we can choose a vertex v € Y —{a} such that degq(v) > z—32q.
Since |ZT| = |Z7| = n+t+1 > 2, there exist at least two long segments.
We may assume that the long segments Cy, C1, ..., Cy4¢ appear in this order
along vt Cv™.

We prove the following claim.

Claim 2 t > 1.

Proof. Assume ¢t = 0. Then by (2.2), we have ep(Z, X — X') = 0. Suppose
first that qf # Ppys Since ¢ < 1, we have degg(a) > x — 1 by Claim 1. Tt
follows that {v™, g5 } C Ng(a) or {v™,p,,,} C Ng(a). By symmetry, we may
assume the latter. Since ep({pp1¢}, X —X') =0and ep({pnit}, SUR) < s+,
we have ep({pn+¢},Z27) > k—(s+1) = 2+ 2q by Lemma 7(a) and (2.4). Since
deg(v) > z — 3¢ by Claim 1, there exists a vertex ¢; € Z~ with i # n +1¢
such that p,:q;, vq;Ir € E(G). Then, we have a cycle

_ < _
apy e Catv T aipni Coa,
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which is longer than C, a contradiction.

Suppose gf = Ppyi- Then |ZT| = |Z7| = 2. On the other hand,
since ep({pn+t}, X — X') = 0 and er({pn+¢},S UR) < s+ r, we have
er({pn+t},Z") > 2+ 2q. Hence we have ¢ = 0. Thus by Claim 1, we
have Ng(a) = X. In particular, this implies that {v7,p,,,} C Ng(a),
and hence the same argument as in the previous paragraph leads us to a
contradiction. O

By Claim 2 and (2.4), since k < 4, we have g <
have Ng(a) = Ng(v) = X.

%. Hence by Claim 1, we
Claim 3 For any i,j with0 <i < j <n+t, ¢ip; € E(G).

Proof. If ¢;p; € E(G) for some 7,j with 0 <¢ < j <n +1, then, we have a
cycle

& _
ap; Cq;'vﬁqipjﬁv a,
which is longer than C, a contradiction. U

By Claim 3, we have er({qo},Z2") < 1, er({pnt},Z27) < 1,

er({a1},Z27) <2 and er({pnti-1}, Z27) < 2. Let Z' = {qo, q1, Pntts Prvi—1}-
Then by Lemma 7(a), we have

(2.7) er(Z',X —X")+ep(Z',S) +er(Z',R) > 4k — 6.

On the other hand, by (2.5), the left hand side of (2.7) is at most kt + ks + 2r.
Since k > s +t+r+2 by (2.4), we have 4(s +t + 7 +2) — 6 < k(s + t) + 2r.
Hence k > 4, a contradiction. This completes the proof. O
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