A Note on Hamiltonian Cycles in (k, n)-Factor-Critical Graphs

Ken-ichi Kawarabayashi

(Received April 26, 2000)

Abstract. A graph G is said to be (k,n)-factor-critical if G-S has a k-factor for any $S\subset V(G)$ with |S|=n. In [7], the author, Ota and Saito conjectured that if G is a 2-connected (k,n)-factor-critical graph of order p with $\sigma_3(G)\geq \frac{3}{2}(p-n-k)$, then G is hamiltonian with some exceptions. In [7], the author, Ota and Saito also characterized all those graphs which satisfy the assumption of the conjecture, but are not 1-tough and, by using this, they verified the conjecture for k=1 and 2. In this paper, we verify the conjecture for k=3 and 4.

AMS 1991 Mathematics Subject Classification. 05C38.

Key words and phrases. Hamiltonian cycles, (k, n)-factor-critical graphs.

§1. Introduction

In this paper, all graphs considered are finite, undirected and without loops or multiple edges. For graph theoretic notation, we refer the reader to [4]. In particular, we denote by $\alpha(G)$ and $\delta(G)$ the independence number and the minimum degree of a graph G, respectively.

For an integer k with $k < \alpha(G)$, we define $\sigma_k(G)$ by

$$\sigma_k(G) = \min \left\{ \sum_{x \in S} \deg_G x \colon S \text{ is an independent set of order } k \text{ in } G \right\}.$$

For $k > \alpha(G)$, we define $\sigma_k(G) = +\infty$. We call $\sigma_k(G)$ the minimum degree sum of k vertices in G.

Starting with Ore's classical theorem [8] on degree sums and hamilton cycles, there are a lot of papers about degree sums and hamilton cycles. Ore's theorem is best-possible in the sense that the lower bound p = |G| of $\sigma_2(G)$

cannot be replaced by p-1. Let $G = K_{m,m+1}$ $(m \ge 2)$. Then p = 2m+1, $\sigma_2(G) = 2m = p-1$ and G is not hamiltonian. However, if we put additional assumptions on G, the lower bound of $\sigma_2(G)$ in Ore's theorem may be relaxed. In fact, Faudree and van den Heuvel [5] proved that the existence of a k-factor relaxes the degree sum condition.

Theorem 1 ([5]) Let G be a 2-connected graph of order p. If G has a k-factor and $\sigma_2(G) \geq p - k$, then G is hamiltonian.

A graph G is said to be n-factor-critical if $|G| \ge n+2$ and G-S has a 1-factor for each $S \subset V(G)$ with |S| = n. Motivated by this theorem, the author, Ota and Saito studied degree sum conditions for an n-factor-critical graph to be hamiltonian, and proved the following theorem.

Theorem 2 ([7]) Let n be a nonnegative integer and let G be a 2-connected n-factor-critical graph of order p. Suppose $\sigma_3(G) \geq \frac{3}{2}(p-n-1)$. Then

- (1) G is hamiltonian,
- (2) $\overline{K_n} + (n+1)K_2 \subset G \subset K_n + (n+1)K_2$,
- (3) G is a spanning subgraph of $K_{n+1} + (K_1 \cup (n+1)K_2)$, or
- (4) n = 2 and $\overline{K_2} + (K_4 \cup 2K_2) \subset G \subset K_2 + (K_4 \cup 2K_2)$.

They also studied the possibility of extending their results to a wider class. For a positive integer k and a nonnegative integer n, a graph G is said to be (k, n)-factor-critical if $|G| \geq k + n + 1$ and G - S has a k-factor for each $S \subset V(G)$ with |S| = n. Under this definition, a graph is n-factor-critical if and only if it is (1, n)-factor-critical, and a graph has a k-factor if and only if it is (k, 0)-factor-critical.

They proved the following lemma.

Lemma 3 ([7]) Let k and n be integers with $k \ge 1$ and $n \ge 0$, and let G be a 2-connected (k, n)-factor-critical graph of order p. If $\sigma_3(G) \ge \frac{3}{2}(p - n - k)$ and G is not 1-tough, then one of the following holds.

- (1) $k = 1, n \ge 3 \text{ and } \overline{K_n} + (n+1)K_2 \subset G \subset K_n + (n+1)K_2$
- (2) $k = 1, n \ge 2$ and G is a spanning subgraph of $K_{n+1} + ((n+1)K_2 \cup K_1)$.
- (3) (k, n) = (2, 3) and $\overline{K_3} + 4K_3 \subset G \subset K_3 + 4K_3$
- (4) $k \equiv 1 \pmod{2}$, n = 2 and $\overline{K_2} + 3K_{k+1} \subset G \subset K_2 + 3K_{k+1}$
- (5) $k \equiv 1 \pmod{2}$, n = 2 and $\overline{K_2} + (2K_{k+1} \cup K_{k+3}) \subset G \subset K_2 + (2K_{k+1} \cup K_{k+3})$

- (6) $k \equiv 1 \pmod{2}$, n = 1 and $\overline{K_2} + (K_k \cup 2K_{k+1}) \subset G \subset K_2 + (K_k \cup 2K_{k+1})$
- (7) $k \equiv 0 \pmod{2}$ and G is a spanning subgraph of $K_2 + (G_1 \cup G_2 \cup G_3)$, where $\delta(G_i) \geq n + k 2$ $(1 \leq i \leq 3)$ and $|G_1| + |G_2| + |G_3| \leq 3(n + k)$.

They also conjectured the following.

Conjecture 1 Let k and n be integers with $k \ge 1$ and $n \ge 0$, and let G be a 2-connected (k, n)-factor-critical graph of order p with $\sigma_3(G) \ge \frac{3}{2}(p - k - n)$. Then G is hamiltonian or one of the graphs described in Lemma 3 (1)–(7).

They verified the conjecture for k = 1 and 2 in [7].

The purpose of this paper is to prove the conjecture for k = 3 and 4.

Theorem 4 Conjecture 1 is true for k = 3 and 4.

When we consider a cycle C, we always associate with C an orientation \overrightarrow{C} . Then we denote the reverse orientation of C by \overleftarrow{C} . If $u \in V(C)$, then u^+ denotes the successor of u on \overrightarrow{C} and u^- denotes its predecessor. If $A \subset V(C)$, then $A^+ = \{v^+ | v \in A\}$ and $A^- = \{v^- | v \in A\}$. For $u, v \in V(C)$, $u\overrightarrow{C}v$ denotes the set of consecutive vertices of C from u to v in the direction specified by \overrightarrow{C} .

In the subsequent arguments, we adopt one notation introduced in [5]. Let G be a graph and let $S, T \subset V(G)$ (possibly $S \cap T \neq \emptyset$). Furthermore, let $F \subset E(G)$. Then we define $\varepsilon_F(S,T)$ by

$$\varepsilon_F(S,T) = |\{(x,y) \colon x \in S, y \in T, xy \in F\}|.$$

Note that if $xy \in F$ with $x, y \in S \cap T$, then this edge is counted twice as (x, y) and (y, x).

First, we give basic properties of (k, n)-factor-critical graphs.

Lemma 5 ([7]) Let k and n be integers with $k \ge 1$ and $n \ge 0$, and let G be a (k, n)-factor-critical graph of order p with $\sigma_3(G) \ge \frac{3}{2}(p - k - n)$. Then

- (1) $\delta(G) \geq n + k$,
- (2) $\sigma_3(G) \geq p$, and
- (3) if k is odd, then G is n-connected.

§2. Proof of Theorem 4

In this section, we prove Theorem 4. In the rest of the proof, we assume $3 \le k \le 4$. Also, we assume $n \ge 1$. In fact, in [5], they proved that if $\sigma_3(G) \ge \frac{3}{2}(p-k)$, then G is hamiltonian except for the graphs described in Lemma 3(7) with k=2, where p,k,G are as in Conjecture 1 with n=0. Hence we may assume $n \ne 0$.

By Lemma 3, we have already listed up all exceptions of Theorem 4. In order to establish Theorem 4, we have only to prove the following theorem.

Theorem 6 Let $k \leq 4$ and n be a nonnegative integer, and let G be a (k, n)-factor-critical graph of order p. If $\sigma_3(G) \geq \frac{3}{2}(p-n-k)$ and G is 1-tough, then G is hamiltonian.

By Lemma 5, we can apply the following theorem in which, the first part was proved by Bauer, Morgana, Schmeichel and Veldman [2], and the second part was proved by Bauer, Broersma and Veldman [1].

Theorem A ([1], [2]) Let G be a 1-tough graph on $p \geq 3$ vertices with $\sigma_3(G) \geq p$. Then every longest cycle of G has the property that V(G) - V(C) is an independent set. Moreover, if G is nonhamiltonian, then G contains a longest cycle C such that $\max\{d(v)|v\in V(G)-V(C)\}\geq \frac{1}{3}\sigma_3(G)$.

By Theorem A, we can choose a longest cycle C in G and a vertex $a \in V(G) - V(C)$ such that $N(a) \subset V(C)$ and $\deg_G(a) \geq \frac{1}{3}\sigma_3(G)$. We assume that C and a are chosen so that $\deg_G(a)$ is as large as possible. In the rest of our proof, we use several ideas of the proof of the result of Bondy and Kouider[3], and Faudree and van den Heuvel [5].

Set $Y_0 = \{a\}$ and define, for $i \geq 1$,

$$X_i = N(Y_{i-1}), \quad Y_i = \{a\} \cup \{v \in V(C) | v^-, v^+ \in X_i\}.$$

Then, $N(a) = X_1 \subset X_2 \subset \ldots$ and $\{a\} = Y_0 \subset Y_1 \subset \ldots$. Set $X = \bigcup_{i=1}^{\infty} X_i$ and $Y = \bigcup_{i=0}^{\infty} Y_i$. Since C is a longest cycle in G and there exists no cycle C' with the same length as C satisfying $\omega(G - V(C')) < \omega(G - V(C))$, we can use the "Hopping Lemma" from Woodall [9].

Theorem B (Hopping Lemma [9]) Let C, X and Y be defined as above. Then X and Y have the following properties.

- (1) $N(Y) = X \subset V(C)$.
- (2) $X \cap X^{+} = \emptyset$.
- (3) $X \cap Y = \emptyset$.

Set x=|X| and y=|Y| and define $Z^+=X^+-Y$ and $Z^-=X^--Y$, respectively. Then $|Z^+|=|Z^-|=x-y+1$.

The subgraph C-X consists of segments of the cycle C. There are two types of segments, namely,

- (1) a segment consisting of an isolated vertex (the vertices in $Y \{a\}$), and
- (2) a segment consisting of two or more vertices.

The second segments can be considered as paths with one end vertex in Z^+ and the other end vertex in Z^- . We denote these "long" segments by C_0 , C_1, \dots, C_{x-y} . We also denote the element of $V(C_i)$ in Z^+ by p_i and the element of $V(C_i)$ in Z^- by q_i . Define $S = \bigcup_{i=0}^{x-y} V(C_i) - Z^+ - Z^-$, $R = V(G) - V(C) - \{a\}$ and r = |R|. And also, let $Z = Z^+ \cup Z^-$.

We will use the following lemma proved by Jackson [6].

Lemma 7 ([6]) Let C, Z^+, Z^- and R be defined as above. Then, the following statements hold.

- (a) Z^+ and Z^- are independent sets.
- (b) Every vertex of R has at most one vertex of Z^+ and at most one vertex of Z^- as a neighbor.

Since $x \ge \deg_G(a) \ge \delta(G) \ge n+k$, we can choose $X' \subset X$ with |X'| = n. Then, G' = G - X' has a k-factor F. Since $N_G(Y) = X$, so, $N_F(Y) \subset X - X'$. Therefore,

(2.1)

$$ky = \varepsilon_F(Y, X - X')$$

$$\leq \varepsilon_F(V(G'), X - X') - \varepsilon_F(Z, X - X') = k(x - n) - \varepsilon_F(Z, X - X').$$

Hence, $x - y \ge n$. Assume x - y = n + t. Then by (2.1),

(2.2)
$$\varepsilon_F(Z, X - X') < k(x - y - n) = kt.$$

Since

$$x \ge \deg_G(a) \ge \frac{1}{3}\sigma_3(G) \ge \frac{1}{2}(p - k - n),$$

we have $p \leq 2x + k + n$. Assume $x = \frac{1}{2}(p - k - n) + q$, where q is a nonnegative half integer. Then, we have the following.

$$(2.3) p = 2x + k + n - 2q.$$

Let s denote |S|. Then, we have the following.

$$p = |X| + |Y| + |Z| + |S| + |R| = x + y + 2(x - y + 1) + s + r$$

$$=2x + (x - y) + 2 + s + r = 2x + n + t + s + r + 2.$$

Hence by (2.3), we have

$$(2.4) k - 2q = t + s + r + 2.$$

Since we assume $k \leq 4$, we have $q \leq 1$.

By (2.2) and Lemma 7(b), we have the following:

Since $x \ge \deg_G(a) \ge \delta(G) \ge n+k = x-y-t+k$ and $k = t+s+r+2+2q \ge t+2$, we have $y \ge 2$, and hence $Y - \{a\} \ne \emptyset$. First, we claim the following.

Claim 1 $\deg_G(a) \geq x - q$, and for some vertex $v \in Y - \{a\}$, $\deg_G(v) \geq x - \frac{3}{2}q$.

Proof. The first assertion is obvious since $\deg_G(a) \ge \frac{1}{3}\sigma_3(G) \ge \frac{1}{2}(p-k-n) = x-q$.

For any vertex $u \in Y$, $\deg_G(u) \geq \delta(G) \geq n + k = (x - y - t) + (t + s + r + 2 + 2q) \geq x - y + 2$. Hence, if |Y| = 2, then the second assertion is also obvious. Suppose $|Y| \geq 3$. Take arbitrary distinct vertices $u, v \in Y - \{a\}$. We may assume $\deg_G(v) \geq \deg_G(u)$. Since Y is independent, we have

(2.6)
$$\deg_G(v) + \deg_G(u) + \deg_G(a) \ge \sigma_3(G) \ge 3x - 3q.$$

Since $\deg_G(a) \leq x$, (2.6) implies that $2 \deg_G(v) + x \geq 3x - 3q$, or equivalently $\deg_G(v) \geq x - \frac{3}{2}q$.

By Claim 1, we can choose a vertex $v \in Y - \{a\}$ such that $\deg_G(v) \geq x - \frac{3}{2}q$. Since $|Z^+| = |Z^-| = n + t + 1 \geq 2$, there exist at least two long segments. We may assume that the long segments $C_0, C_1, \ldots, C_{n+t}$ appear in this order along $v^+ \overrightarrow{C} v^-$.

We prove the following claim.

Claim 2 $t \geq 1$.

Proof. Assume t=0. Then by (2.2), we have $\varepsilon_F(Z,X-X')=0$. Suppose first that $q_0^+ \neq p_{n+t}^-$. Since $q \leq 1$, we have $\deg_G(a) \geq x-1$ by Claim 1. It follows that $\{v^+, q_0^+\} \subset N_G(a)$ or $\{v^-, p_{n+t}^-\} \subset N_G(a)$. By symmetry, we may assume the latter. Since $\varepsilon_F(\{p_{n+t}\}, X-X')=0$ and $\varepsilon_F(\{p_{n+t}\}, S \cup R) \leq s+r$, we have $\varepsilon_F(\{p_{n+t}\}, Z^-) \geq k-(s+r)=2+2q$ by Lemma 7(a) and (2.4). Since $\deg_G(v) \geq x-\frac{3}{2}q$ by Claim 1, there exists a vertex $q_i \in Z^-$ with $i \neq n+t$ such that $p_{n+t}q_i, vq_i^+ \in E(G)$. Then, we have a cycle

$$ap_{n+t}^- \overleftarrow{C} q_i^+ v \overrightarrow{C} q_i p_{n+t} \overrightarrow{C} v^- a,$$

which is longer than C, a contradiction.

Suppose $q_0^+ = p_{n+t}^-$. Then $|Z^+| = |Z^-| = 2$. On the other hand, since $\varepsilon_F(\{p_{n+t}\}, X - X') = 0$ and $\varepsilon_F(\{p_{n+t}\}, S \cup R) \leq s + r$, we have $\varepsilon_F(\{p_{n+t}\}, Z^-) \geq 2 + 2q$. Hence we have q = 0. Thus by Claim 1, we have $N_G(a) = X$. In particular, this implies that $\{v^-, p_{n+t}^-\} \subset N_G(a)$, and hence the same argument as in the previous paragraph leads us to a contradiction. \square

By Claim 2 and (2.4), since $k \leq 4$, we have $q \leq \frac{1}{2}$. Hence by Claim 1, we have $N_G(a) = N_G(v) = X$.

Claim 3 For any i, j with $0 \le i < j \le n + t$, $q_i p_j \notin E(G)$.

Proof. If $q_i p_j \in E(G)$ for some i, j with $0 \le i < j \le n + t$, then, we have a cycle

$$ap_i^- \overleftarrow{C} q_i^+ v \overrightarrow{C} q_i p_j \overrightarrow{C} v^- a,$$

which is longer than C, a contradiction.

By Claim 3, we have $\varepsilon_F(\{q_0\}, Z^+) \leq 1$, $\varepsilon_F(\{p_{n+t}\}, Z^-) \leq 1$, $\varepsilon_F(\{q_1\}, Z^+) \leq 2$ and $\varepsilon_F(\{p_{n+t-1}\}, Z^-) \leq 2$. Let $Z' = \{q_0, q_1, p_{n+t}, p_{n+t-1}\}$. Then by Lemma 7(a), we have

(2.7)
$$\varepsilon_F(Z', X - X') + \varepsilon_F(Z', S) + \varepsilon_F(Z', R) \ge 4k - 6.$$

On the other hand, by (2.5), the left hand side of (2.7) is at most kt + ks + 2r. Since $k \ge s + t + r + 2$ by (2.4), we have $4(s + t + r + 2) - 6 \le k(s + t) + 2r$. Hence k > 4, a contradiction. This completes the proof.

Acknowledgement

I would like to thank the referee for helpful suggestions.

References

- [1] D. Bauer, H.J. Broersma and H.J. Veldman, Around three lemmas in hamiltonian graph theory. In: R. Bodendiek and R. Henn.: Topics in Combinatorics and Graph Theory, Essays in Honour of Gerhard Ringel. Physica-Verlag, Heidelberg (1990) 101–110.
- [2] D. Bauer, A. Morgana, E.F. Schmeichel and H.J. Veldman, Long cycles in graphs with large degree sums, Discrete Math., **79** (1989/90) 59–70.

- [3] J.A. Bondy and M. Kouider, Hamilton cycles in regular 2-connected graphs. J. Comb. Theory (B) 44 (1988)177–186.
- [4] G. Chartrand and L. Lesniak, *Graphs & Digraphs* (3rd ed.), Chapman & Hall (1996).
- [5] R.J. Faudree and J. van den Heuvel, Degree sums, k-factors and hamiltonian cycles in graphs, Graphs and Combin. 11 (1995) 21–28.
- [6] B. Jackson, Hamilton cycles in regular 2-connected graphs J. Comb. Theory (B) 29, 27-46 (1980)
- [7] K. Kawarabayashi, K. Ota and A. Saito, Hamiltonian Cycles in *n*-Factor-Critical Graphs, Discrete Math, in press.
- [8] O. Ore, A note on hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
- [9] D.R. Woodall, The binding number of a graph and its Anderson number, J.Comb. Theory (B) **15** (1973) 225–255.

Ken-ichi Kawarabayashi

Department of Mathematics, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan