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contractible edges of G.

AMS 1991 Mathematics Subject Classification. 05C40

" Key words and phrases. 3-connected graph, contractible edge, hamiltonian cycle

§1. - Introduction -

In this paper, we consider only finite, simple, undirected graphs with no
loops and no multiple edges. - o

A graph G is called 3-connected if |V (G)| > 4 and G — S is connected for
any subset S of V(G) having cardinality 2. An edge e of a 3-connected graph
G is called contractible if the graph which we obtain from' G' by contracting é
(and replacing each of the resulting pairs of parallel edges by a simple edge)
is 3-connected; otherwise e is called noncontractible. In [6], Tutte proved
that all 3-connected graphs other than K4 have a contractible edge. In-[2],
Dean, Hemminger and Ota proved that every longest cycle in a 3-connected
graph other than K, or K, x K3 contains at least three contractible edges.
In [3], Ellingham, Hemminger and Johnson proved that every longest cycle in
a nonhamiltonian 3-connected graph contains at least six contractible edges.
In view of these results, it is likely and desirable that one should obtain a
complete classification of those pairs (G,C} of a 3-connected graph G and a
longest ¢ycle C' of G-such that C contains at most five contractible edges.
The case where C' contains precisely three contractible edges has already been
settled by Aldred, Hemminger and Ota in [1] and by Ota in [5]. Further the
case where (' contains precisely four contractible edges has been settled by
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Fujita in [4]. In this paper we are concerned with the case where C contains
precisely five contractible edges:

Theorérn 1. Let G 'be @ 3-connected graph of order at least 16, and let C be
a longest cycle of G. Suppose that C'-contains ‘precisely five’ contractible edges
of G. Then the pair (G, C)) belongs to one of the 20 types, Types 1 through 20,
which are defined in Section 2.

The organization -of this paper is as follows. In Section 2, we define the
type of a pair (G, C) satisfying the assumption of Theorem 1. Section 3 con-
tains fundamental results concerning noncontractible edges lying on a hamil-
tonian cycle of a 3-connected graph. In Section 4, we derive basic properties
of a pair (G, C) satisfying the assumption of Theorem 1, and we complete the
proof of Theorem 1 in Section 5.

Our notation and terminology are standard except possibly for the fol-
lowing. Let G be'a graph. For U C V(G), we let () = (U)g denote the
graph induced by U in G. For U, V C V(G), we let E(U,V) denote the set of
edges of G which join a vertex in U and a vertex in V; if U = {u} (v € V(Q)),
we write E(u, V) for E({u},V). Asubset S of V(G) is called a cutset.if G~ S
is disconnected; thus G is 3-connected if and only if [V (G)| > 4 and G has no
cutset of cardinality 2. If G is 3-connected, then for e = uv € FE(G), we let
K ({e) = K(u,v) denote the set of vertices z of G such that {u,v,z} is a cutset;
thus e is contractible if and only if K{e) = 0. If ¢ is noncontractible, then for
each z € K(e), {u,v, 2} is called a cutset associated with e.

§2. Deﬁnitic;n of the Type of a Pair (G,C)

In this section, we define the type of a pair (G,C) of a 3-connected
graph G and a hamiltonian cycle C' of G such that C contains precisely five
contractible edges of G. Throughout this section, we let ng, n1, nz, ns and
n4 be nonnegative integers, and let G denote a graph of order ng ‘+ n +
ng + ng + ng + 5 with vertex set V(G) = {a;|0 <7 < no}U{b;|0 <7 <
npU{e|0 <4< na}U{di]0 < ¢ < m3}U{e;|0 < ¢ < ny} such that
G contains C = agay » -+ apyboby - - by, cocy s+t Cpodody ¢ - dng €€y e, 0o 38 2
hamiltonian cycle. In the definition of each type, it is easy to verify that if
G satisfies the required conditions, then G is 3-connected, and Ongbo, bnco,
Cnz 0, dns €0, €n,ap are the only contractible edges of G that-are on C. Further
if we let Co = {a01a1i ceny anb}rcl = {bﬂ,bh . '1bn1}, Co = -{Cﬂacla e 1cn2}:' '
Cs = {do,dy,...,ds,} and Cy = {eo,e1,...,€n,}, then Cp, Cy and Cy are
nondegenerate and Cy and Cj are degenerate in Type. 1 (see the paragraph
following Lemma 4.3 for the definition of the terms “nondegenerate” and .“de-
generate”), C1, C3 and Cy are nondegenerate and Cy and C; are degenerate
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in Type 2, C3 and C4 are nondegenerate and Cp, Cy and Cy are degenerate
in Types 3 through 7, C; and C, are nondegenerate and Cp, Cy and Cj are
degenerate in Types 8 and 9, Cy is nondegenerate and Cy, Cy, C3 and Cs are
degenerate in Types 10 through 20 (in Types 10 and 11, ny = ns = 0; in Types
12 through 14, n; = 0 and 7z = 2; in Types 15 through 20, ny = ny = 2).

Type 1. Let ng > 1-‘, ny>1,ne=00r2 n3=0o0r2 and ng > 1. Let

X = {arany2 10 < h <ng — 2}
t {bibi12|0 < i< ny—2}
{exer-I-Z | 0 S T S Ny — 2};

C C

' .
Fl = {alen4—11 a‘ng—lbl}7 Fl = {aoeﬂ4—1,aleﬂ4)ano—lb05 anobl}~,

{ano_lbo} (lf ny = 1 and g = 0)
Fy = {aen,} (if ng =1 and n3 =0)
8 {otherwise),

| {doe1} (if ng =0) ;)@ (if n3 = 0)
F2 - { {dEdZ: dlel} (lf nz = 2)1 F2 B { {dle()} (lf n’z = 2):

_ {Cﬂbnl—l} (lf Ny = 0) ' @ (1f g = 0)
b= { {cocz, 1bn,—1}  (if 2 = 2), and Iy = {e1bn,} (if n2 = 2).

Now G is said to be of Type 1, if we define X, Fy, 1, F|, F», Fj,
F3, F} as above, then G satisfiess X UF, UFyUF, U F3 C E(G) - E(C) C
XUFRUF/UF,UF,UF3U Fj. The graph depicted in Figure 1 is an example
of a graph of Type 1 with ng = n; =ng4 = 3 and ny = na = 0.



290 K. FUIITA AND K. KOTANI

Figure 1

Type 2. Let ng=0o0r2,n; > 1,72 =00r2,n3 > 1,and nq > L. Let r be
an integer with

(2.1) 1< r<min{n; + 1,03+ na+ 1},
and let ¢’ be an integer with
(2.2) 2<t'<r+1,
and let ko, k1,...,kr, kre1 and I3, 02, ..., L+, lr41 be integers such that
(23) 0:k0Sk1<k2<"'<kr_1<kr'S kr+1:n1,
(2.4) na=L>h>->lu1>0
and
(25) n32Et:>l,,r+1>--->l,.>l,.+1=0.
Let
r-+1
X1 = (UAbidiga ko1 S i< ke —2})
t=1
-2
U ( U {e:ce:t:—2 | Ilt Z x> lt+l + 2}) U {ea:e.r—Z Ilt"—‘l 22 2} .
t=1

)
U {djdsea|na > § 2 lo+ 23U (U Aditioa [ 2 5 > i +2)),

t=t’
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X — {dns—leOs dnael} (if lt’ < TL3)
2= 0 (lf It’_= n3)1

{bk:+lef:+1+1 I 1<ttt = 2} U {bk:+1'd‘t+1+1 |t’ —1<t<r—- 1}
(lf Itl < n3)

Y: =
! {bk:+1el:+1+1 | 1<t< t'— 2} U {bk,f +1€1}
U {bkt+1dlg+1+1 It < t < r— ].}(lf ltr = n3)
Y, = {bkrt1di 41} (F Ry < ma)
0 (lf k,- = ﬂl),
Yy = {b,—1e1-1 12 <t St = 1} U {bpe—rda ¢ ST <),y
Y—.2 _ {bkl_lell_l} (lf k> 0)
0] (if k&1 = 0),
¢ ¢ _o .
U {bktﬁm |lt 2 T 2 lt-i-l} U {bké,_lez ] lt‘—l 2 T 2 0}
i=1
U {bk,_,dj na > > I} U [ J{bedj| s 2> 5 2 lega }(if L < n3)
Y = =t

3 4 H_2 : i

U {broex |l > & 2 Ly} U {br,_ ez|ly_1 > 2 >0}

t=1

U U {bk;dj | lt 2 j 2 lt+1.}(if lt’ = n3),
\ i1=t!
Wi = Y (Ena=0) [ ¥ (if 710 = 0)
Yé U {blcl} (lf ng = 2), Y3 U {albo} (lf g = 2),

.

t'—1

(U {bies, | ke <0< Ke})

t=1
r+1
O{b d1t|kt 1 <i<ke}) (if Iy < m3)
Yi= =1 =
(U {bs e,,m 1 <1< kt})
i=1 1

l U {bidy [ ko S i< R (G by = ma),
t=t'+1 .
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if k; = 0 anid ng = 0)

{aoenq-—-l} (
Py o= 4 {ao0az, a16n,- 1.} (if Ky =0 and np = 2) |
' ~{aobs} (if &y > 0 and ng = 0) S
{aoaz, axby} (ﬁm>0mdm=g '
| {'Godl} (1 k» = n1 and ny = 0)
= {eoca; Cld1} (if &, = ny and ny = 2)
{cobny—1} (if k- < ny and ngy =0)
\ {CUC.'?)Clbnl 1} (if & < n1 &nd ng = 2),

0 (if no = 0) ) (if ny = 0)
F’ = . . ) ! = .
! { {aibo,aren,} (if mo =2), - and £ { {e1bnys exdo}  (if na = 2).

Further, let p and ¢ be, mtegers with kt: 1Sp < q < kg in the case where
Iy = ng, and let

{dna—lel} (if Iy < n3)

Xg — 0 (lf ltr ="n3, P -75 k‘t: and q % ktr_]_)
{dns—1€0} . (if Iy = n3, and p = ky(and then ¢ = ky))
{dn;e1} (if Ly =n3, and ¢ = ky_i(and then p= kt’—lj);

Vi = {bp+1€0} (lf ly=nzand ky_; <p< ktr) ;
; @ . (otherwise), . L

Ye — {bg_1dn;} (if Iy = mz and ky_y < g < ky)
6 [l (otherwise),

o | {bieal ke Si<p} (Tl =na)
5, ‘ 1} : (lf Iy < 7?,3),

Vo {bps1€0} (iflv =ngand p= kf_l_]_)
5T 0 {otherwise), ,

V! = {bdn3|‘1<3<kt} (iflt'=ﬂ3)
6 /N (if Iy < ma},

and

};I — ,{bqflt:ina} (if ltr = ng3 and qg= kt’)
° 9 (otherwise).
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Now G is said to be of Type 2, if there exist r and ¢ satisfying (2.1) and
(2.2), there exist ko, k1, ..., ks, kr+1 satisfying (2.3), and there exist I1,1;...,
Ir, 41 satisfying (2.4) and (2.5) (and there exist p and g with ky_, < p < ¢ <
kg if Iy = ma), such that G satisfies the following three conditions:

¢ X1UX,UYiUY1UY2UY2UYsUYsUFUR, C E(G) - E(C) C X1U XU
XUY1UuY U, UYL, UYUY UYs UY U Y UYsUY UY U R UF UR U F,

o ifng=0,n,=1,r=1and k(= k) = ny(= 1), then W, N E(G) 7-5@,
o ifng=0,n=1,r=1and k.(=Fk) =0, then Won E(G) # 0.
Type 3. Let ng =0 or 2,71 =0,n2=0or 2; n3 > 1, and m > 1. Let

X = {d;di42]0 < j < ng ~ 2} U {eserta |0 < @ < mg — 2},

Y = {bod; |0 < j < ma} U{boes [0 < 2 < ma},

F = {agen4_1} (lf g = O) F, — @ . (lf g = 0)
! {agag,alem_l} (lfng = 2), 1 {albo,d1€n4} (lf g = 2),

B = {Codl} (lf Mg = 0) Fl = @ (1f'n2: O) ’
2T {eoer,1di} (if ne = 2), 27| {erboscrdo}  (if no = 2),

Fy = {dn,~1e1}, F3 = {dn,e1,dn,~1€0},

(v (if no = 0) (v (if ng = 0)
Wl“{YU{albo} (ifng=2), Wz_{ Y U {bocs } (ifn2=2),

] {bodo} (if mnz=0) _} {boen,} (if no =0)
Zl“{woo (ifnz:Q), and Zz‘{@ | (ifngx-z).

Under this notation, G is said to be of Type 3 if G satisfies the following
conditions:

e XURURUFK CEG) -E(C)CXUYURUF URUFUFUFE,
o for each 7 with 1 < i <2, (W; — Z;) N E(G) # 0,
e if nop = 0 and ny = 1, then {epbo, €odn,.1} N E(G) # 0,
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e if ng =0 and nz3 =1, then {dnabo, dnael} N E(G) % .
Type 4. Let n0-= Qor2 n=2na=00r2 n3>1,and nqy > L Let

X = {d_;,d_,.;.glO S j‘ S n3 _Q}U{ezem-l-Z |0 S T S nq — 2} U{bObZ})

o {apby. ageny-1} (if ng = 0) P ] (if np = 0)
L {aUaZ:albla alenq-'l} (lf no = 2)! ! {aleﬂq} (if o = 2)1

F, = {cod1} (if n2 = 0) Fl— ) (if na = 0)
2= {(.‘062, cldl} (lf fig = 2), 2™ {Cldo} (]f Ny = 2)’

Fs = {dn;_161}, F3 = {dn;e1,dn,160},

_J {ben,1}, (i no=0)
F4_{ @1 1 (if,ng:z),

and

F, — {bl Eny } (lf ng = 0)
1 {b1en4_1,blen4} (if ’no=2).

Under this notation, G is said to be of Type 4 if G satisfies the following
three conditions: :

. XUFRUFRUFUF, C E(G)-E(C) C XUFRUFUFRUFJUFRUFUFUE,,
e if ng = 2, then F; N E(G) # 0,
e if ny = 0 and n3y = 1, then die; € E(G).

Type 5. Let ng=0o0r 2, n; = 2, ng =0or2 n3y>1,and ng > 1. 'Let

X = {djdj12|0 £ j < n3 — 2} U{esers2|0 < & < ng — 2} U {boba},

F o= {ageﬂq_l} (lf Np = 0) F, _ @ (lf Tip = 0)
1 {aoaz, aren,—1} (if no = 2), V7 {aren,} (if mo = 2),

_ {Codl} (if Ny = 0) r_ @ (lf Ny = 0)
F2 - { {CQCQ, Cldl} (lf nz = 2), F2 - { {Cldo} (lf a2 = 2),

F3 = {dns_lel}: and 1‘7‘3'r = {dnael, dns_leo}.
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Let p be an integer with 1 < p < n4 — 1, and set
Y ={be|p-1<2 <p+1),
and
W= Y ~ {bhen,} (if ng=10)
Y (lf g = 2).

Now G is said to be of Type 5 if there exists p w1th 1< p<ny—1such
that & satisfies the following three conditions: ‘

. XUFIUFQ.UFQ,EE(G)—E(C) QXUYUF1UF{UF2UF2’UF3UF3!,
e WNE(QG) 8, | '
e if n; = 0 and n3 = 1, then dye; € E(G).

The graph in Figure 2 is an example of a graph of Type 5 w1th ng = n2
0,nm=2,n3=3,n4=06and p=3.

Figure 2

Type 6. Let ng=0o0r2,ny =2, n3=00r2, n3s>1,and ng = 1. Let

X = {djd;j+2|0 < j < ng — 2} U {bobz},

B = { {aoen,—1} (if no = 0) Fl = { ) (if ng = 0)

{apaz, ayen,—1} (if ng =2), {aien,} (fno=2),
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_ {Codl} } (lf ng = 0) ;o @ : (lf Nig = 0)
F2 o { {coc2,c1d1} (if ny :'2), F2 - { {Cldg} (lf Ng = 2),

Fy={dn,—1e1}, ~ F3 = {dn,e1,dn,_160},
C o {breo}, (if no = 0) L w ) ety (if no =0)
F‘*—{ 0 (=2, ™ T\ (e bier} (fno=2).

Under this notation, G is said to be of Type 6 if ¢ satisfies the following
three conditions:

e XUFUFUFUFy C E(G)—E(C) C XUF1UF{UFzUFéUF3UFéUF4EJF4’,

e if ng = 2, then FyN E(G) 75.@, :
; if‘ﬂ-g : 0 and ny = 1, then dl‘el E E(G).
Type 7. Let ng=00r2,ny =2, n2=00r 2, n3 > 1, and ny > 1. Let
X ={d;dj42|0<j <nz— 2} U{erert2|0 <z < ng— 2} U {boba},

P o= {agen—1} (if ng = 0) = B (ifro=0)
1 {aoa2aalen4-—l} (if ng = 2)1 1= {alem} (if Np = 2)!

[ fed)  (fra=0 . [0  (fn=0)
2= { {eocz, c1dr}  (if m2 = 2), 2= { {crdo} (if ”z = 2),

F:; - {dnaeladna—l‘BOadna—lelL F4’ = {bldna—labldn31 bleD-lblel}!

Wi = {b1dny—1,b1drn, }, W2 = {bre1,b1e0},
Ws = {dng—lela dng—leﬂ}: .W4 = {€1dn3—1,€1dn3},

W5 = {dn;—1€1,dnys_ 101}, and W= {e1dn,_1,€151}.
Under this no

tation, (G is said to be of Type 7 if G satisfies the following
conditions: ' ‘ ‘ : : :
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XuFlqucE(G') (C)CXuFluFlquququuFi,

forea,chzw1th1<z<6 W N E(G) £ 0,
e if ny = 0 and n3 = 1, then {d;b;,dje; } N E(G) £ 6,
e if g = 0 and ny = 1, then {eobl,.godn;,_i}n‘E(Gj;&:m.

Type 8. Let np=00r 2,71 > 1,2 =00r 2, ng...OorZ and ng > 1. Let r
be an integer with

(2.6) 1 5 7 <min{n; + 1, n4}, _
and let ko, ky,..., k- and I1,05,...,0, 1,41 be integers such that
(2.7) 0=ko < ki< <k <y

and : . o

{2.8) : ng=l >l >L>5L4 >0

Let '

X1 = U{bib£+2|kt—1 <1<k =2} U {bibiysp | k. <i<my -2},
=1 .

X2 = U{exem_g | lt > >‘ £t+1 + 2} U {e,,er_g | lr+1 > T > 2}
t=1

Yl = {bkt+lel;+1+1 | 1 S ¢ S r= 1}) Y’Z - {bk;—lel;-—l 12 S t S T'},

? — {bkl—lell—l} (lf kl > 0)
L ) (if &1 = 0),
r r4-1
Yi={bkeelle > & > ba},  Yi=|J{bier, | ks < < ket
=1 =1
{ao€n -1} (if no =0 and &y = 0)
F = {aoag, (116’,-,,4_1} (lf Mg = 2 and kl = 0)
1= {G.obl} . (lf ng=0and k; > 0)
{agaz, 016} (if no = 2 and k; > 0);

ool (if no = 0)
1= {Aalem, albg} (If N = 2),
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] (if ny =0 and k, = ny)
= {coca} (if ng =2 and k, = ny)
270 {cobn,—1}  (if ng =0 and k. < ni)

_ {cocz,clbm_l} (if np = 2 and &, < ny),

{c1bn,.c1do} (if n2 = 2,k < n1, n3 =0 and lry1=0)

Fj =< {c1bn,} (if np = 2, and either k, =ny or ng =201 l,11 > 0)
D ( otherwise ),
@ lf Nz = 0 and l,-+1 = 0)

_ (
Fa = {dgdg} (lf iz = 2 and l,-+1 = 0)

37 {doer} (if n3 = 0 and I+ > 0)
{dodz, d]_el} (lf N3z = 2 and lr+1 > 0),

and
{dieo,d1co} (if n3=2,0,41 >0, ng =0 and k, = )

F} =< {dieo} (if n3 =2, and either l,4; =0 or ng = 2 or kr < n1)
0 ( otherwise ).

Set
bkr+1 (lf k,- < nl)
U= eg (if k, = ny and ny = 0)
c1 (if k. =n; and ny = 2)
and
€ly1—-1 (If l,-+1 > 0)
w= dg (lf Ir+1 =0 and g = 0)
dy (if I,31 = 0 and ng = 2),
and let

D

{ues|lrp1 —2>2 >0} (if &k = n1,041 > 0 and ng = 0)
9 (otherwise),

F _ {b,-w|kr + 2 S i S nl-} (lf kr < Tbl,lr+1 =0 and fig = 0)
10 (otherwise),

{bkrw‘ UEL 41 uefr+1+1awelr+1+1}
I= (lf kr = nl,l,._;_l = O’nz = (0 and ny = 0)

{bp,w, uw, uey, ,, uer, ., 41, wer, 41} (otherwise),

Wi = {uelr+1+11 welr+i+1}:
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( {udy,uw,uey, ey, 1} U D :
W (ifkrznl,lr+1>0,n2=0a,nd n3=2)
2 —_—
{uw, uey,, ,ver,, 41 U D
(otherwise),
{br, w, uw,cyw, wey, 41} U F
W = (ifkr<n1,lr+1=0,n2———‘2&ﬂd n3=0)
3 {bp, w, vw, wey, 41} U F
(otherwise),

Wy = {byec|lr 22> Ly} U {brw},

{bkr’wibkrelr-{-l’uw1uelr+1} (if lT‘+1 > 0)
W5 - .{bkr€(r‘+l,’ue;r+1} (lf lr+1 =0 and N3 = 0)
{br et v, werny, . (if lry1 =0 and ng = 2),

{ueg} (Gf kr = n1, L1 > > 2,n2 = 0 and nz = 0)
7. = {uw} (if {41 = 1 and ng = 0)
27 {uw,uer,,} (if lry1=0and n3g=0)
¢ (otherwise),

{bp, w} (if k&, < n1— 2,541 =0,n2 =0 and n3 = 0)
7. {uw} (if k, = n; — 1 and ny = 0)
3T {bg,w,uw} (if k, = n; and ny = 0)
0 (otherwise),

by} (fre=2) . {asbo) .(ifﬂn. = 9)
Z“_{wk (ifn§=0), and Z‘*‘“{@lo (1fnz=o).

Now G is said to be of Type .8, if there exists r satisfying (2.6), there exist
ko, k1, . .., ky satisfying (2.7), and there exist 1,05 ..., I, [ 41 satisfying (2.8),
such that G satisfies the following conditions:

e XjUX UV UYQUE_UF1UF2UF3Q E(G)-—
C X1UX,UY,UYzUY,UYJUYJUTUDUFUFRUFURUFUFUF;,

f Wl n E(G) -‘/50
L] (Wg - Zg) M E(G) :,é @,
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o (W3- Z3)NE(G) # 0,

e in the case where n; = 1 and r = 1, we have (W, U 24) NE(G) #0if
k1 = 1 and ng = 0, andweha,ve(W4UZ4)ﬂE( ) # 0 if & = 0 and
g = 0, : '

eifng=0,r=1k =0and ly; =n4 1, then Wi NE(G) # 0.
Type 9. Let ng=0or 2,71 > 1,72 =0 or 2, ng = 0 or 2, and nq > 1. Let
X= {b,‘b,‘+2 | 0 S 2 S ny — 2} U {e;em_g |n4 2 :!:2 2},

[0 (if o = 0)
Fl_{ {aoag} (if’no:Q),

= {aobl, aoeﬁ4;1,b0€n4','b(j€n4_1,bl€n4,b16n4_1} (lf g = 0)
1= bo, a1b1, @1 6n, s Bo€ny s Bofny 1, brény brens—i} (f 7o = 2)
{al 0: 8101, Qi€ny s B1€ny—1,00€0,,00€n ~1,018n,4, 0160475 (Il Ng = &),

F = {Cﬂbm—l} (if nz = 0) = 0 (if ny = 0)
{C()Cz, clbnl—l} (lf g = 2) i {Clbnl} (lf Ttg = 2)
7o) {doer} o (ifmg= _ (if ns = 0)
: {dodz,d1e2} (if nz = 2 {dleo} 1f ng = 2),
W, = {blenu 616114—1} (lf ng = 0)
R {bla‘l: blen4sblen4—1} (lf ng = 2),
Wy = | {boeni-tsbren 1} (ifno=0)
{@1€n,—1,b0€n -1, b1€0,—1}  (if 2o = 2),

Wi = {boen“ 606114—1} (lf ny = 0)
{albg,bgen4,boen4_1} (if g = 2),

Wi = {aoen ~1,b0en,—1} (if no =0)
{01‘6114—1, boem—l} (if g = 2),

W, = | {boenssbren,} (if no =0)

{ale'ﬂq ' b06n4,b18n4} (lf ng = 2),

and .
' We = {aoh1,bren,} (if ng = 0)
{albls blen.;} (lf Tig = 2)

Under this notation, G is said to be of Type 9if G satlsﬁes the followmg
five conditions: :
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e XUFLUFRUF CE(G) -EC)CXURUFURUFUFRUF,
o foreach i with 1 < i< 2, W; N E(G) # 0,

o if ng = 2, then {a1by,e164,1} N E(G) # 8, and if ng = 0, then
{agby, apen,—1} N E(G) #9, o | |

o if ny =1 and ny = 0, then Wy N E(G) # @ and Wy 0 E(G) # 0,
e if 4 =1 and n3 = 0, then W5 N E(G) # 0 and We N E(G) # 0.

The graph in Figure 3 is an example of a graph of Type 9 with ng =n2 =
ng = 0 and ny = ng = 3.

Figure 3

Type 10. Let ng =0o0r 2, n1 = 0, ng =0, ng =0 or 2, and nq > 3. Let

X ={eses12]0 <2 <y =2},

= { {aoen, -1} (if no = 0) F = { 0 (if ng = 0)

{agaz,alem_l} (lf g = 2), i {albo,a1€n4} (lf g = 2),

F, = {doel} (if n3 = 0) - @ (if ny = 0)
2= {dodg, dlel} (lf Ny = 2), 2 .{dICO, dleo} (lf g = 2},

] {boen,} (if no =0) | {coen} (if n3=0)
Zl‘{e)o (ifno=2), "¢ Z2_{'@0 (ifnz—.:Q).
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Let p be an integer. with 1 < p < n4— 1, and let
Yy ={boez |p— 1<z <ng}, and Yo={coe [0 <2 <p+ 1}

Now G is said to be of Type 10 if there exists p with 1 < p < ng —1 such
that G satisfies the following two conditions:

e XURUFRCEG -EC)CXURUFURKRUFUYZUY,,
o for each i with 1 <: <2, (Y;— Z)) N E(G) # 8.

The graph in Figure 4 is an example of a graph of Type 10 with no = n; =
ng=n3=0,ny; =6 and p=3.

Figure 4

Type 11. Let ng=0o0r 2, ny =0, ne =0, n3 = 0 or 2, and n4 > 3. Let
X= {€$€x+2|0 S :ES N4 - 2}, Y = {Coea; |0 S T S ﬂ,4},

F = {G'OCO') 0061.14_1} (lf ng — 0)
{aoaz, a1, alen4—-1} (lf g = 2),

1= {albo, alen4} (if ng = 2),
P, = {doer} (if ng = 0) 7= 0 (if ng = 0)
2T {dodg, dlel} (lf My = 2), 2 {dlco,dleo} (lf g = '2), )

F= {boeﬂ4—1}a (lf g = 0)
710 (if no = 2),

and

F, — {bgem} . (lf g = 0)
3 {boem_l, bg‘em} (if g = 2).
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Under this notation, G is said to be of Type 11 if G satisfies the following
three conditions: o _ ,

e XURURUF CE(G)-E(C) CXUYURUFUFRUF,UFUF;,
o if ng = 2, then F3N E(G) £ @,

e in the case where ng = 0, we have Y N E(G) # § if n3 = 0, and we have
(Y U {Codl}) M E(G) % #if ng = 2.

Type 12. Let no =0o0r 2,7y =0, npo =2, ng =0 or 2, and nq > 3. Let

X = {ezez42]0 < -3’ <ng -2},

o {ape1} (if ng = 0) P {aoen,—1} (if no = 0)
1 {aoas,a1c1} (if no = 2), 1 {a16n,,0160,-1} (if no =2},

F2 o { {dodg,dlel} (lf n; = 2), Fz o { {d]_eo} (If TL; = 2),

F, — {bocl, boem...l, bgem} (if g = 0)
3 {boa1, boc1, boeny—1,b0€n, } (if ng = 2},

F4 = {CQCZ}, Fli = {Cleﬂq—l}clen4},

W, = {ens—100,€n,—1b0} (if 7o = 0)
! {en4—1a1:en4—1b0} (lf ng = 2)’

W — {en4—1b01 e'nq—lcl}' (lf fip = O)
2 {enq—lb()u enq bﬂ} U F‘; (lf Mo = 2)1

B _ | {boens} (if no =0)
7y = {bocr}, and Zz—{ (boar} (it ng = 2).

Under this notation, G is sald to be of Type 12 if G satisfies the following
conditions:

s XUFRURUFCEG) -FC)CXURUFURUFIUF,UF,UF],
e for each i with 1 <14 < 2, W; N E(G) # 0,

o (Fl—Z)NE(G) %0,

e (Fi-Z)NEG) #0,

o if ng = 0, then FI N E(G) # 0.
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Type 13. Let ng =0 or 2,n1 = 0, 2 =2, ng=0or 2, and'ng > 3. Letpbe
an integer with 1 < p < ng — 1, and let .

X = {eger4210 <2 <p—2, p<z <ng— 2},
X' = {€p+16p—'1}‘,

Y = {boes |p— 1 < 7 < na),

F = { {aoens—1} . (if no = 0) F = { o . . (if ng=10)

{apaz, a16ns—1} (f no = 2), {albo,alem} (if ng = 2},

{doe1} V(ifn =0) )0 (if ng = 0}
F2 = { {dgdl,dlel} (lf nz = 2), F2 - { {dleg} (lf Ny = 2), )

= § Aboer} (if no=10)
37 {bgal,bgcl} (lf Tip = 2), K

Fy= {Cocz}, F:i ='{01€p-1561€p,01€p+1},
Wy =X"U {3p+1cl}, Wa = X' U {ep-1b0},
Wa = Y (if g = 0)
7 {bai}UY  (if ng=2),
W = {bocr } U (Y — {boen,}) (if no = 0)
- {bo(.‘]_} uY (If Ng = 2),
and -
Wi = Fj (if ng=2o0rp>2)
57 Fi-{ciep1} (if a3 = 0and p= 1)._

Now G is said to be of Type 13 if there exists p with 1 < p < ng — 1 such
that G satisfies the following two conditions:

¢ XUF,UFUF; C E(G)-E(C) C XUX'UYUF,UFIUF,UF,UF}UF,UF},

o for each i with 1 < i <5, W; N E(G) # 0.

The graph in Figure 5 is an example of a graph of Type 13 with ng =
ni=n3=0,n =2, n4 =6 and p=3. ,
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Figure 5

Type 14. Let ng=0o0r 2, g - 0,n=2,n3=00r 2, and ny > 3. Let
X ={egepr2|0< z < my~2},
Y = {boe, | 0 <z < ny},
P = { {@oen,—1} (if 7o = 0) Fi = { 0 (if n0=og

{aoaz,ar€n,—1} (if ng = 2) {a1bo,aren,} (if no =2),

F, = 0 (lf Nz = 0) F, . {dobo, dgcl,dgel} (lf 3 = 0)
L {d{)dz} (lf Na = 2), 2= {d]_bo, dlcl, dleo, d]_el} (lf iz = 2),

E _{ {c1e1,c0c2} (if n3 = 0)
27 {coes} (if na = 2),

and

o= {e1bo, cre0} (if nz = 0)
3T {Clbo,cleo, (.'161} (lf ng = 2).

Let d = dq if ng = 0, and let d = d; if n3 = 2, and set
Wl = {dbo, dcl}, W2 = {dbo, del},

we = § {bodtUY (if 7o = 0),
T {boala bOd} U Y (lf Ng = 2),

[ {bocs, bod} U (Y — {Boen,}) (if 7o = 0)
We = { oo bodtUY (if g = 2).

Under this notation, G is said to be of Type 14 if & satisfies the following
three conditions: :
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N XUFIUFQQFg.g E(GY—-E(C)CXUYUFRUF/UFUFUF3UFj,
e if n3 =2, then {escy, e1d1} N E(G) # @ and {cie0,c1e1} N E(G) # 0,
e for each 7 with 1 < i <4, W; N E(G) # 0. |
Type 15. Let ng =0o0r 2, n1 =2, ng =2, ng =0 or 2, and nq > 3. Let
X = {exer+2]0 < 2 < na — 2} U {bobs, coc2}, ..

P = { {agen,—1} ~ (fng=0) [ { f] (if ng = 0)

{agas, ajen,—1} (ifno=2), ! {mren,} (if no = 2),

[ {doer) (if ng = 0) o |0 (if ns = 0)
F2 - { {dgdg,dlel} (lf Mg = 2), and F2 - { {dleo} (if fig = 2) .

Let p and ¢ be integers with 1 < p < ¢ < ng4 — 1, and let

Y= {bleq—h bleq1 b16q+1}7

Y= {Clep—1,c1€p101€p+1},

Wi = Y, — {bien,} (if'ngz() and g = ng — 1)
T v ( otherwise ),

and
W = Y, — {c1e0} (ifnz=0and p=1)
T Y ( otherwise ).

Now @ is said to be of Type 15 if there exist pand ¢ with 1 <p< g <ng—1
such that G satisfies the following two conditions:

. XUF1UF2QE(G)—E(C)gXUYlu}EUFIUF{UF2UF2’,

e foreachiwith 1 <i <2, W,NE(G)#0.

% The graph in Figure 6 is an example of a graph of Type 15 with ng =
n3=0,n=n=2,n,=9,p=3and ¢=26.
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Figure 6

Type 16. Let ng=0o0r 2, n1 =2, n3 =2, ng=0or 2, and n4 > 3. Let

X = {62634_2 IO S x S g — 2} U {bobg, 6062},

F = { {aoby, aoen,—1} (fro=0) L { 0 (if no = 0)

{aoaz, albl,alem_l} (if g = 2), A= {a,lem} (if g = 2),

_} {doer} (if ng = 0) 10 (if ng = 0)
F2 o { {dodg,dle]_} (lf Ny = 2), F2 o { {dleo} (lf g = 2), .

) {bieng-n}, (if ng =0} ;) {bren,} - (ifng=10)
F3 o { @ (lf hpg = 2), F3 o { {blen4_1, b16n4} (lf g — 2).

Let p be an integer with 1 < p < n4— 1, and let

Y = {Clep—la C1€p,C16p+1}1

and

W= Y;{cleo} (if n3=0and p=1)
1Y ( otherwise ).

Now G is said to be of Type 16 if there exists p with 1 < p < ng — 1 such
that G satisfies the following three conditions:

e XUFRUFUF C E(G)—E(C) CXUYURUFUFRUFUFRUF,
o if ng = 2, then Fi N E(G) # 0,
s WNE(G) #0.
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Type 17. Let np=0o0r 2, n1 =2, np =2, n3=0o0r 2, and n4 > 3. Let

F _ {aﬂen4—l} (lf fip = 0) F, — @ (if p = 0)
T {a002, 816041} (if no=2), P {aens} (if no=2),

_[fdoe}  (ifne=0) o [0 (ifna=0)
g —{ {dZdz,dlel} (fns=2), >4 ‘{ {dieo} (if na = 2).

Let p be an intéger with 1 <p<ng—1, and let
X = {ezeut2|0 <z <p—2,p < & < ng— 21U {boba, coc2},
X1 =A{eprrgp}, Xz ={ha},
Vi = {brep—1,b1ep, brepya ),
Y2 = {ciep-1, C1€p, C18p41 }
W) = XjU{ciepe1}, Wa=X{U {brep1},
Ws = X;U{creps1}, and Wy= X3U {brep-1}-

Now G is said to be of Type 17 if there exists p with 1 < p < ng— 1 such that
G satisfies the following five conditions:

e XURUF; CEG)-E(C)C XUX{UX,UY U, URUF{UFRUF,
o for each i with 1 <i <2, ;N E(G) #0,
o for each ¢ with 1 < i <4, W; N E(G) # 0,

o if ng = 0 and p = ng — 1, then {bye,,—1,b1€4,—2,C16n,—1,C18n,-2} N

E(G) # 0,
o if n3 =10 and p =1, then {bie;1,breq,¢1€1, 122} N E(G) # 0.
Type 18. Let ng =0o0r 2, ny =2, ng =2, n3g =0 or 2, and ny4 > 3. Let
X = {erert2|0 <z < ny — 2} U {bobs, COC‘J."}a

X' ={bc1},

_j 0 (if no = 0)
£ —{ {a0az} (if mo = 2),

F = { {aob1, aoct, @oen,—1} (if np = 0)

{a‘lblaa‘lcl1a’len4—11alen4} (lf g = 2):
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| {doer} (if nz = 0} r ] 0 (if n3 = 0)
F2 - { {dgdz,dlel} (lf nz = 2), F2 - { {dleo} (lf nz = 2),

Fé = {blem_l, blem}, and F‘i = {Clen4_1, 01€n4}.

Let @ = ag if ng = 0, and let a = a; if ng = 2, and set

W]_ = {abl,acl}, Wg =.{c1a,c1b1},
Ws = {aci,aen,—1}, Wi={en,—1a,€n,-101},

Ws = {c1a} U Fy,

Ny (if 70 = 0)
‘%*{@muﬂ (if o = 2),

e [ (B} U~ (hen)) (i mo=0)
f {b]_C]_} ] Fé (lf o = 2),

and

—_ { (F5 — {brens ) U (Fi = {eren})  (if no = 0)
8 FiUF, | (if ng = 2).

Under this notation, G is said to be of Type 18 if G satisfies the following
two conditions:

e XURUFR CEG)-EC)CXUX'URUFUFRUFRKUFUF,
e for each ¢ with 1 < ¢ < 8, W; N E(G) # 0.

Type 19. Let ng=00r2,n; =2, no =2, n3=0or 2, and ng > 3. Let

X = {exe,,.l_g l(]' S x S ng — 2} U {bgbg, C()Cz},

F o= {agbl, a0€n4_1} (lf g = 0) F, — @ (lf g = 0)
1 {agaz, aiby,ar1en,-1} (if ng = 2), 1 {a1€4,} (f ng = 2),

F o= {dgcl, doel} (lf nz = 0) F, . @ (If Ny = 0)
2= {dgdg,dlcl, dlel} (if Ny = 2), 2= {dleg} (lf Nz = 2),

Fs = {ble,u_.]_} (lf ng = 0) F, _ {616114} (lf g = 0)

T 0 (if no = 2), 27 ] {bren,-1.b16n,} (if no = 2),
_J {cres} (ifn3=0) : ] {c1ee} (if ns = 0)
Fy= { 0 (if ng = 2), and Fy = { {c1e0,c1e1} (if ng =2).

Under this notation, G is said to be of Type 19 if & satisfies the following
three conditions: >
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o XUFLUFUFUFs C B(G)-E(C) € XuFluF{uF2UF5L_JF3uF§uF4uF;,
e if no = 2, then F N E(G) #0, S |
o if ng = 2, then FJN E(G) #0. | |

Type 20. Let ng =0o0r 2, 71 =2, ng =2, n3 = Olor 2, and ny > 3. Let

X = {e_.,;exl+2 | 0<z<ng— 2} U {bobg, CQC2},

F = { {agen,-1} (fro=0)  _ { 0 (if no = 0)

{apaz, aren,-1} (if no =2}, 17} {aen,} (if no =2),

. { {doer}  fma=0) { 0 (ifns=0)

{dody, drer} (if na =2), 2 {dieo} (if na=2),
F. = {blem_l} (if Nnp = 0) F, — {b1€n4} (lf Mg = 0)
T (fro=2), 2 \ {brems-1,b1en} (if no =2),

Fy={ci1en,}, and Fj={ec1en,—2,C16n,-1}

Under this notation, G is said to be of Type 20 if G satisfies the following two
conditions:

o XUIUFUFUF; C E(G)-E(C) C XUFRUF{UF,UFUFUFUFUF)y,
o if ng = 2, then FjN E(G) # 0.

§3. Preliminaries

In this section, we prove fundamental results concerning noncontractible
edges lying on a hamiltonian cycle of a 3-connected graph.

Throughout this section, we let G denote a 3-connected graph of order
n+1 (n > 4), and let C = wov1 -+ -vpvp denote a hamiltonian cycle of G.
Lemmas 3.1 through 3.8 are proved in Section 3 of {4] (and also in Ota [5]},
and we omit their proofs (in Lemmas 3.1 through 3.8, we assume that the edge
vn o is noncontractible, and let {v,,vo,v,} be a cutset associated with it).

Lemma 3.1.

(i) No edge of G joins a vertez in {vp|l < k < a — 1} and a vertezx in
{vpla+1<k<n—1}.

(i) There exisis k with1 <k < a— 1 such that vau e E(G).

Lemma 3.2. If a =2, then E(v1,V(G)) — E(C) = {v1v,.}.
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Lemma 3.3. Suppose that vpv; is noncontractible and v, € K(vo,v1). Then
van € E(G).

Lemma 3.4. Suppose that v,v,41 is noncontractible, and let {VayVag1,v;}
be a cutset associated with it. Then a+ 3 < j < n (and hence ¢ < n — 3).
Further, if j = n, then vov,41 € E(G).

Lemma 3.5. Let 1 < j < a—2. Suppose that vjvjyy is noncontractible, and
let {vj,vj+1, v} be a cutsel associated with it, and suppose that a +1 < I <
n—1. Then! = a+ 1, v,v; is contractible and, unless | = n — 1, we have
v € K(vg,v0).

Lemma 3.6. Suppose that vovy is noncontractible, and let {vo,v1,v;} be a
cutset associated with it, and suppose that e +1 < j < n — 2. Then v; €
K(vp, vp).

Lemma 3.7. Suppose that K (v,,vo) = {v2}, and that vov; is noncontractible.
Then K(vo,v1) = {va_1}-

Lemma 3.8.
(i) If a = 2, then vyv, is contractible.

(i) If @ > 2, then there exists j with 0 < j < a — 1 such that vjvj4y is
contractible.

(iil) If @ > 3 and there exists only one j with 0 < j < a — 1 such that vjvj
is contractible, then v,v,41 is contractible.

Lemma 3.9. Let! be an integer with3 <1< n—1.

(i) Suppose that for each j withI+1 < j < n, vj_1v; is noncontractible and
K(vj—1.v;) N{v; |1 <4 <1 -2} #0. Then G has no edge v;,v;, such
that 1< j1 < j1+3< jo < n.

(ii) Suppose that | < n — 3, let h be an integer with 1+ 2 < h < n—1,
and suppose that for each j with 14+ 1 < j < n and j # h, v;1v; 18
noncontractible and K(vj—1,v;) N{v; | 1 < ¢ <1 =2} # 0. Purther let
v;,v5, € E(G) be an edge such thatl < j1 < j1+3 < j2 < n. Then
J1=h—2and jo=h+ 1

Proof. Let vj,v;, € E(G) be an edge such that ! < j; < j1+3 <jz <m. Letj
be an integer with j; +2 < j € j2 — 1. If the assumption of (i) holds, or if the
assumption of (i) holds and j # &, then K (vj1,v;)N{v; | 1 < i <1-2} #0,
which contradicts Lemma 3.1(i). Thus the assumption of (ii) holds and j = h.
Since j was arbitrary, this means that j; +2 = jo — 1 = h, as desired. ]
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Lemma 3.10. Let 1 < iy and &1 + 2 < i3 < i3 € n — 1, and suppose thai
v;viy1 is noncontractible for all 0 <@ <4 — 1.

(1) Suppose that K (vi, vig1) N {vjli2 <j < iz} #0 forall0<i<dy — 1
(i) Suppose that v, € K(vo,v1). Then for each 0 < i< iy —1, v, €
K (U{, 'Ui+1)-
(ii) Suppose that v, & K(vo,v1). Then vy, ¢ K (vi,vig1) for each 0 <
i<y - 1. | -
(iii) Let is < | < i, and suppose that v; € K(vg,1m) and v
€ K(v;,—1,vi,). Then vy € K(v;,v;4)) foreach 0 <i <4y — 1.

-

(II) Suppose that v, € K(vo,v1}, and v, ¢ K(vi,vig1) for each 1 < 7 <
i1 — 1. Then K(vi,vit1) O {v; |92 <j< iz} =0 foreach 1 <i <~ 1.

Proaf.

(1) (i) Let 1 < i< i — 1, and take vg € K (vi,viq1) 0 {v5]2 < J < i3}
We may assume that k # 4. But then, applying Lemma 3.5 or
3.6 to {vo,v1, v, } and {v;,viz1, v} according as ¢ > 20ri =1, we
obtain v;, € K(v;,vi41), as desired. ' o

(ii) Take vy € K(vo,m) N{vjliz < 7 < i3}. We have k # i3 by

assumption. Let 1 < ¢ < 4; — 1, and suppose that v;; € K (v;,vi41).

Then applying Lemma 3.5 or 3.6 to {vg,v1,vg} and {vi,vigy1, %}
we get vy, € K(vg,v1), a contrdiction.

(iii) Let 1 < i < i3 — 2, and take vg € K(v;,vip1) N {v;[i2 < 5 < 43}
We may assume k& #£ I. If 1 < k < i3, then we get vy € K (vi, viq1)
by applying Lemma 3.5 or 3.6 to {vp,v1, v} and {vi,viy1,vs}; if
i2 < k < [, then we get v; € K(v;,vi4+1) by applying Lemma 3.5 or
3.6 to {v;,—1,v;,, 1} and {v;, Vi1, 01}

(I) Let 1 < 4 < 41 — 1, and suppse that there exists vy € K (v;,vi41) with
i2 < k < i3. We have k # i3 by assumption. But then applying Lemma
3.5 or 3.6 to {vo,v1,vi,} and {vj,viy1,v}, we get vy, € K(vi,vig1), 2
contradiction. 7 7 5

Lemma 3.11. Let m, u, z be integers with0 < m < uw endu+2 < z < n, and
let A={v;]0<i<m}, P={v;m+1<i<u}, B={vi|ut+1<i<z},
Q={vilz+1<i<n} (thus A, P, Q@ # 0 and, |B| > 2}). For convenience,
let s = z— (u+ 1) and let w; = ujyyy1 foreach 0 < 7 < 5. Thuss > 0
and B = {w;|0 < j < s}. Suppose that viviy1 is noncontractible for all
0 <t <m—1. Also suppose that one of the following two sifuations occurs:
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(lla) wj;_yw; is noncontractible for all1 < j < s; or

(11b) there exists h with 2 < h < s — 1 such that wp_yw), is contractible and
wj_yw; is noncontractible for all 1 < j < s with j # h.

For convenience, set

N = {jl1<j<s} -(if (11a) holds)
{711 <j<s}—{h} (if (11b) holds).

Moreover, suppose that K(vi,viq1) NB # 0 for all 0 < i+ < m — 1 and
K(wj—y,wj)NA # 0 for all j € N. Then there ezists an integer r with
1 € r < min{m + 1,8}, and there exist integers ko, ki, k2,...,kr, kry1 and
ll,lg,...,lr,lr_;_l with 0= kg < ky < kg < +-- <k <k £ kr+1 = m and
s=Il>1Il3> - > > l,41 =0 such that the following hold.

() If (11b) holds, then iy # h for all 1 <t <r+1, and i, I,y #h—1,
and one of the following holds:

(11b-1) L #£h—-1foralll <t<r+1;o0r
(11b-2) there exists an integer t' with 2 <t' < r such that lp =h ~ 1.

(I () (a) If by =0, then vy, = vg € K{wy,wy,—1) = K{ws, ws_1).
(b) If &y > 0, then m > 0 and w;, = w, € K(viy,Vs1) =
K (vo, v1). |
(i) (a) If k, =m, then vy = vy, € K{wy, 41, w1,,,) = K(wo,w1).
(b) If by < m, then m >0 and wy,, = wo € K(Vgpy,—1:Vky,) =
K(Um—1,Um).

(I11) Set
r41
X1 = U{Uivi+2 | ki1 <1< ke — 2},
t=1

Xa = ) (if (11a) or (11b-2} holds)
3T {wp_qwp, wh_1wae1}  (if (11b-1) holds),

{Orr1wr 4111 <t <r =1} (if (11a) or (11b-1} holds)
Yi= ({Uk,+1wl:+1+l [1<t<r~1} - {Ukt,_1+1w1t,+1})
U {vk,_,s1wr,42}  (if (11b-2) holds),
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V. = { {ve, +1W1, .41} (f B < m)
1= w (zf k,- = m),

Y= {Ukr—lwlt—l | 2 <t< T},

Y, = {Ukl—lwh—l} (3f k> 0)
2T 0 (zf ky = 0),

U {vgew; |l > 7 > L1} (if (11a) holds or (11b-1) holds)
f=1

U {vrew; 112 5 > lpa} — {or,_,wn, ) (i (115-2) holds),

=1

r+1
UAviwe, | ki1 <3<k} (i (11a) or (11b-1) holds)

t=1
¢ r+1 -

U {winor, [ Bemy < i < e} — {winey, | Ry <8 < kg
t=1

(if (11b-2) holds).

(i) Suppose that (11b-2) holds. Then there exist integers p and q with
ku_1 < p < g< ky such that if we set

{

O {wjwj—2[le 2 § > lig1 + 2}

t__;l (if ¢ = ku_1(s0 p = ky_1))
U {wiwjezlli > >l + 2} — {wr,wn,,,,}

- (if ¢ # ky_1and p # ky)

(U {wjwj—2 |l 2§ 2 L1 +2} — {‘tUr,,wi:urz})
i=1

L U {wy,—1wi, 11} (i p= kp(s0 ¢ = ki),

7 = {UP‘le:r-l-l} (Ef kt’—l <p< kf’)
! 0 ( otherwise ),
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22 = { {vq_lwlgf} (Ef ki"—l < q < ktl)

P ( otherwise ),
Z1 = {viwy, 1 kp—y <9< p}y

7 = {vp+1’wlt,+1} (#fp= ke—1)
! 0 ( otherwise },

Zy = A{viwy, | g <1 < kyl,

w__{'@¢4wm} (if g = ky)

271 0 ( otherwise },
then we have
E({A)) - E(C) = Xy,
X, CE((B)) - E(C) C XU X5,
and

iuYiuY,uY,uZz Uz,
E(A, B)
VUV, UY,UYaUZIUZUYIUY]UZ,UZ U2 U2y

M M

(i) If (11a) or (11b-1) holds, then the same conclusion as in (i) holds
with

{wijwi—2 |1y > 7> lig1 +2} (if (11a) holds)

{wjwj_g |1 2 7 2 Ly +2} “{Wh—2wh:wh—lu’h+1})

U {Wh_g’w;l+1} ('L‘f (11b-1) hOldS),

Y
Xo = (terJl

and . _

Proof. For the sake of clarity, we sepatate some points of the proof and present
them as claims. Arguing exactly as in Claims 5.1 and 5.2 in the proof of
Proposition 1 of [4], we obtain the following two claims:
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Claim 3.1. Let0<i<m-1andj€ N, and take w; € K(v;,vit1)N B and
vg € K(wj—1,w;) N A. Then the following hold.

() Ifl> 4, thenk > i+ 1.
(i) IFi<j—1, thenk <i.
Claim 3.2. For each j € N, |K(w;,w;—1)NA| = 1.

For each j € N, write K (w;, wj—1) M A = {v;,}. Note that if (11b) holds,
then i is not defined. Arguing as in the proof of Claims 5.4 of [4], we obtain:

Claim 3.3.
(i) If (11a) holds, then ijyy < i; for each j € N — {s}.
(i) If (11b) holds, thenij4 < i; for each j € N—{h—1,s}, and ihq1 < th_y.

Write {i;|j € N} = {k1, k2,.- -, -} with by <ko <--- < k.. By Claim
3.3, there exist I1,l2,...lp41 with s =1 > Iy > -+ > .41 = 0 such that for
each 1 <t < r, we have

(3.1) i; =k forall j € N withly > 5 > 1 +1,

and such that in the case where (11b) holds, we have
(3.2) L£hforalll<t<r+1

In the case where {11b) holds, we have

(3.3) ~ Wyl £h—1

because 2 < h < s — 1 by the definition of A. By (3.3), it is clear that if
(11b) holds, then (11b-1) or (11b-2) holds. This proves (I}.

For convenience, let ko = 0 {even if k; = 0) and k43 = m (even if
kr = m). '

Claim 3.4.

(1) For each 1<t <r, we have K(w;,w;—1) N A = {vg,} for all j such that
j‘EN andlt72j211'+1+1.

(I0 @) If (11a) or (11b-1) holds, then for each 1 <t < r+ 1, we have
K(vj,viW)NB = {wy} for all by <1< k-1

(if) If (11b-2) holds, then the following hold.
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(a) For each 1 <t <r+1 witht #{, we have K(v;,vit1)N B =
{wy,} forall kg <i<k—1.
(b) There exzist p and q with ky_; < p < ¢ < k¢ such that the
following hold:
(b-1) for each ky_y <i<p—1, K(v;,v41) N B = {wy,41} ;
(b-2) for each p < i< g—1, K(v;,0i42) N B = {wy,+1,w1,} ;
(b-3) for each ¢ <t <ky—1, K(v;,via) N B = {wy, }.

Proof. We can prove (I), (IT)(i) and (II)(ii}(a) by arguing exactly as in Claim
5.5 of [4]. To prove (II)(ii}(b), suppose that (11b-2) holds. Let kv_; <7 <
kv — 1, and take w; € K(vi,vi41) N B. Since Iy = h -1 > 1, we get v, €
K(w;t,,wgz,_l) by (I), and hence it follows from Claim 3.1(ii) that I > ;.
Similarity, since Iy = h —1 < s —2 and ly_y > Iy + 2 by (3-2), we get
Vky_, € K{wi,+2,w1,41) by (I}, and hence it follows from Claim 3.1(i) that
[ <+ 1. Thus

(34) I{(Ui, 'U{.|..1) nB g {'IU[:,+1,?.U[‘,} for all kt’-—-l S ) S ktl‘ - 1.

By the assumption that K (v;,vi41) N B # 0 for all 0 < ¢ < m — 1, this in
particular implies that

(3.5) K (viy viga) N {wy, g1, wy, } # 0 forall kg <3 < ky — 1.

Let
min{i|wy, € K(vi, vig1),bp_y <1<k}
p= (if {i|wy, € K(vi,vig1),kp_y <@ < by} # 0)
ke (f {i]wy, € K(vi,vig1), keer <1< kp} =0)
and |

max{i|wy, 41 € K{vi,vi_1), kv_y <i<kp}
q= (if {4 ] w41 € K(viyvi-1), bp_y < i< by} # D)
ey (if {ifwr,+1 € K(vi,vi-1), k1 < i<k} =0)

Then by the definition of p and g,

(3.6) wy, ¢ K(vi,vig) forall ky_y <i<p—1,
(3.7) wy, 41 & K(vi,vig1) forall ¢ <4 < ky — 1
(3.8) wy, € K(vp,vp41) unless p = ky

and

(3.9) wi,+1 € K(v,-1,v,) unless g = ky_;.
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By Lemma-3.10(I)(i), it follows from (3.5) and (3.8) that-
(3.10) wy, € K(viyvig1) forall p < i < kp — 1.
Also by Lemma 3.10(I)(i), it follows from (3.5) and (3.9) th;t
(3.11) w41 € K (v, v;41) for all by <i<g¢—1.

If p > g, then wy, 41, Wi, ¢ K (vp—1,v,) by (3.6) and (3.7), which contradicts
(3.5). Thus we get '

(3.12) Py
Conbining (3.4), (3.6), (3.7), (3.10), (3.11) and (3.12), we get the disired
conclusion. I

Note that the assertion (II) of the lemma is an immediate consequence of
Claim 3.4.

Claim 3.5.

() E(AY) - B(C) = X1.
Proof. To prove (ii), we prove the following two subclaims.
Subclaim 3.1. X, C E((B)) — E(C).

Proof. By Claim 3.4(1) and Lemma 3.3, we have

(3.13) U{wjwj_a | It > 5 > Lipa + 2} C E({B)) — E(C) if (11a) holds,

i=1
(3.14) U{wjﬂ’j-z | > 5> g1 + 2} — {wp_awp, wp_1whi1}
t=1
C E((BY) — E(C) if (11b-1) holds,
and
.
(3.15) H{wjwj—a |l > § > g + 2} = {wy, Wi, 42}

=1
C E((BY) — E(C) if (11b-2) holds.
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Thus if either (11a) holds, or (11b-2) holds and p # ky and g # ky_1, we
immediately get X; C E({B)) — E(C). Now assume first that (11b-1) holds.
Then by (3.2) and (11b-1), we can take ¢t with 1 <t < r such that

(316) a lt >handh—-1> lH—I.
Since wy,_ywy is contractible, {wy_,, wy, vr, ) is not a cutset, and hence

(3.17) E(Q U {w|0<i<h—1}ufw|h+1<5< s},
P U {vilke+1<i<m}U{w;|0<j<h=2})#0

On the other hand, vy, € K{(wp—2,wp—1) and vy, € K(wp, wy41) by (3.16)
and Claim 3.4(I), and hence applying Lemma 3.1(i) to {wp_2, wa_1, %} and
{wp,wp41,v%, }, We get

(38.18) E(@Q U {w|0<i<hk—1}U{w;|h+1<j <5}
P U {glk+1<i<m}uf{w;[0<i<h-3})=0,

and

(319) EQ U {»]0<i<k—-1}U{w;j|h+2<j <5},
P U {vlk+t1<i<mju{w;|0<j<h-2})=0
By (3.17)}, (3.18) and (3.19), we obtain wp—qwpy1 € E(G), and this together
with (3.14) inplies that Xy C E({B)) — E(C). _
Next asuume that (11b-2) holds and p = ky (so ¢ = k). Then since

k
wy,, ¢ I((Uktr—la ,Uk.tl) (: I{(Up—lv U:ﬂ)) by Claim 34(11) (11) (b)1 {vktr—l: Ukyrn wftf}
is not a cutset, and hence we get

(3.20) E(Q U {w|0<i<ky —2}U{w;|lp+1<j<s},
P U {vilke+1<i<m)U{ms|0< i< lo—1}) #0.

On the other hand, wy, 41 € K (v, -1,%,) ( = K(vp_1,v,)) by Claim 3.4(II)
(ii}(b) and vy, € K (wy,—1,wi,) by Claim 3.4(1), and hence applying Lemma
31(1) to {Uktf—-ltvktnwltr+l} and {wltr—lswltnvktf} we get
(3.21) E(Q U {v;|0<i<ky—2}U{w;|ly+2<7<s},

P U {vlkpy+1<i<m}u{w;|0<i<L—1}) =0,

and

(322) E(Q U {vil0<i<hy—2bU{w;|lu+1<j<s},

PP
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By (3.20), (3.21) and (3.22), we obtain wy,_iwi,+1 € E(G), and this together
with (3.15) implies that X, C E({B)) — E(C).

Finally if (11b-2) holds and ¢ = ky_1(so p = ky_,}, then by virtue of the
symmetry of the roles of p and g, we get wy,wi, 12 € E(G) by arguing exactly
as in the preceding paragraph, and hence Xz C E((B)) — E(C). 1

Subclaim 3.2. E((B)) - E(C) € X2 U Xs.

Proof. Take w;, w;, € E((B)) — E(C) with j2 > j; +2.

Asuume first that jo = j1 + 2, and choose ¢ with 2 <t < r <41 so
that l;_y > jo > &4 + 1. Assume for the moment that j, = [; 4+ 1. Then
wy, ¢ K(vg,—1,vk) by Lemma 3.1(i). In view of Claim 3.4(II), this means
that (11b-2) holds and ¢ = ¢ and p = ky (note that we have 2 <t < r because
Iy = j3—1> j; > 0). Hence we get w; w;, € X3 by the definition of X;. Thus
we may assume
(3.23) lioy > G2 > I+ 2.

Moreover, since w;,—1 ¢ K(vg,_y, Vk,_,+1) by Lemma 3.1(i), it follows from
Claim 3.4(II)(ii)(b) that

(3.24)  if (11b-2) holds and ¢t =’ and ¢ # ky_1, then jy # Iy + 2.

By (3.23) and (3.24), we get w;, w;, € X3 U X3, as desired.

Next assume that 73 > j1 +2. Then in view of Lemma 3.9(i), (11a) cannot
hold. Thus (11b) holds, and 71 = £ — 2 and j» = A+ 1 by Lemma 3.9(ii).
Now if (11b-2) holds, then wy,41(= wp) € K(vg,—1,vk,) OF Wi, (= wh_1) €
K (g, -1, vk,) by Claim 3.4(II)(ii)(b), and we therefore get a contradiction by
applying Lemma 3.1(i) to {vz,,—1, Uk, w41} or {vg,—1,V,,wy, }- Thus (11b-
1) holds, and hence we get w;, w;, € XU X35 in this case as well. Consequently

E((B)) - E(C)C XoUXs. |

Now (ii) of Claim 3.5 follows from Subclaims 3.1 and 3.2, and (i) can be
verified in a similar way. This completes the proof of Claim 3.5. o
Claim 3.6.

KUY&UYEU?zUZlUZ_Q
C E(A,B) ) )
C hHuYiuY,uKXuZiUZuY{uY/uZiuZiuZziuZ,.
Proof. We first prove the following subclaim.

Subclaim 3.3. If (11b-2) holds, then vy,_ y1w1,42 € E(G) and
Ukt:--lu’ft:—l S E(G)
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Proof. Since wy,,wi, 41 is contractible, {wy,,, wy, 41, Vk,_, } is not a cutset, and
hence

(835) BQ U {0]0<i<kos—1}U{u;|lo+2 <5 < s,
P U {vilkya+1<i<mpu{w;[0<)<lw~1}) #0.

On the other hand, vg,-1 € K(wy,41,wr,42) by Claim 3.4([), and hence
applying Lemma 3.2(i) to {wy, 41, w42, vk,_, }, We get

(326) E(Q U {»|0<i<ky_1~1}U{w;|ly +3<j< s},
P U {vt|ktr_1+1§z§m}u{w3|0§3gltf—l})zw

Also either wy, € K(vg,_ V%, _ +1) oF wy,41 € K(vg,_, vk, 41} by Claim
3.4(ID)(i1)(b), and hence applying Lemma 3.2(i) to {vk,_ , vk, +1,%1,} or
{Uktj_l1vktr_1+1'}wlt;+1}} we get

(327) B(Q U {v|0<i<kpy—1}U{w;[ly+2<j<s),
P U {vwlhkpy+2<i<miu{w;|0<j<ly-1}) =0

By (3.25), (3.26) and (3.27), we obtain vkt,_l+1w1t,+2' € E(G). By the sym-
metry of the roles of &y, Iy + 1 and &y, Iy we similarly obtain vg,_ywy,_1 €

E(G). - 1

In view of Subclaim 3.3, we can prove the following two subclaims by
arguing exactly as in the first paragraph of the proof of Claim 5.8 of {4]:

Subclaim 3.4. Y;UY; C E(4,B).
Subclaim 3.5. Y;uUY, C E(A, B).
Subclaim 3.6. Z, U Z; C E(A, B).

Proof. We first prove Z; C E(A, B). We may assume that (11b-2) holds and
ky_y < p < ky. Then by Claim 3.4(II) (i) (b),

(3.28) wy, ¢ K(vp-1,%),
(3.29) w41 € K(vp_1,05),
and

(3.30) . : un,, € I(('l)p-, ?Jp.|.1).

Since {vp—1,vp, wy,} is not a'cutset by (3.28), we have

(331) E(@Q U {u]0<i<p-2}u{w;|ly+1<5<s),
P U {vp+1<i<m}U{w;j0<j<ly—1}#0.
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By (3.29), we can apply Lemma 3.1(1) to {vp—1, vp, Wi, +1} to get

(3.32) E(Q U {w|0<i<p—2yU{w;ily+2<j<s)
P U {wlp+1<i<mpuf{w;|[0<j<in—1})=

By (33(])1 we can apply Lemma 3.1(i) to {'up,'up_l_l, ’w;t,} to get

(333) E(Q U {w]0<i<p-2}U{wj|li+1<j<s)
P U {nlp+2<i<m}uf{w;|0<j<ln-1})=0.

By (3.31), (3.32) and (3.33), we obtain vpr1wy,41 € E(G). Thus Z; € E(A, B).
By the symmetry of the roles of p and g, we 31m1la,rly obtain Z> C E(A4, B).

Subclaim 3.7. Take v;w; € E(A, B).
(I) Let 1<t < r, and suppose that 1 < ky and j <. Then v;w; € Yo U Ys.

(1) Let 1 <t < r. Suppose that i > ky and j > Ly, and in the case where
(11b-2) holds and t = t' — 1, suppose further that j > ly + 1. Then
viw; € Y1 U Yi.

(111) Suppose that (11b-2) holds. Then the following hold.

(i) Suppoc:e that kpy_y <p<ky,andlet j=1yp +1. Theni <p+ 1.
(ii) Suppoee that ky_1<qg<kp, andlet j=1y. Theni> g—1.

Proof. We can prove (I) and (II) by arguing as is Claim 5.7 of [4]. To prove
(I11)(i), suppose that (11b-2) holds and ky_; < p < ky and j = lp + L.
If i > p+ 1, then by Lemma 3.1(i), {vp, vp41,w;,} is not a cutset, which
contradicts Claim3.4 (II)(ii)(b). Thus i < p+ 1, which proves (IIT)(i). By the
symmetry of the roles of p and ¢, we can similarly prove (III)(ii). 1

Subclaim 3.8.
E(A, B) B . _
C WuYuY,uYXUZiuZUYUY/UZIUZiUZyU Z;.

Proof. Take v;w; € E(A, B) and suppose that v;w; ¢ ¥5 U Y{ U Z] U Z3.

For the moment assume that j ¢ {/;|1 < £ < r+ 1}, and in the case
where {11b-2} holds, assume further that § # I;s+ 1. Take ¢ with &; > 7 > Ly,
Then since v;w; ¢ Y4, we have i # k¢, and hence it follows from (II) or (I} of
Subclaim 3.7 that v;w; € 1 U Y, or Ya U Ys, according as 2 > k¢ or @ < kz.

Throughout the rest of the proof, we assume that j € {I;|1 <t <r+1}
in the case where (11a} or (11b-1) holds, and assume that j € {ls}{1 <t <
74 1}U{ly+ 1} in the case where (11b-2) holds. Let t denote the index such
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that j = I; (in the case where (11b-2) holds and j = Iy + 1, we let £ = t/).
If i > ky;, then we get v;w; € ¥3 UY; by Subclaim 3.7(1I}; if ¢ < k¢_j, then
applying Subclaim 3.7(I) with ¢ replaced by t — 1, we get v;w; € YU Y,. Thus
we may assume

(3.34) ki <i < kye

By the assumption that vw; ¢ Yy, this implies that (11b-2) holds and ¢ =¢'.

We first consider the case where § = Iy + 1. From (3.34) and the assump-
tion that v;w; ¢ Z7, we get p+1 < ¢ < kyr. This in particular implies p < &y,
and hence i < p+ 1 by Subclaim 3.7(III)(i). Consequently, ¢ = p+ 1, and
hence v;w; € Zy or Z1 accrding as ky_1 < p < ktr or p = ky_1. This completes
the discussion for the case j = iy + 1.

i 5 = Iy, then by the symmetry of the roles of p and ¢, we can argue as in
the case j = Iy + 1, using Subclaim 3.7(IIT)(ii) in place of Subclaim 3.7(III)(i),
to see that vyw; € Zo U Z}. 1

By Subclaims 3.4, 3.5, 3.6 and 3.8, we get the desired conclusion, and this
completes the proof of Claim 3.6. 1

Now the assertion (III) of the lemma follows from Claims 3.5 and 3.6, and
this completes the proof of Lemma 3.11. 1

§4. Initial Reduction

Throughout the rest of this paper, we let G and C be as in Theorem
1, and write C' = apay - -anaboby -~ -by coc1 - Cnydody - - - dnyeoey -+ - €n a0,
where anobo, bn, co, cn,do, dn €0 and en,aq are the five contractible edges
contained in C'. Note that C is a hamiltonian cycle by the result of Elling-
ham, Hemminger and Johnson [3] mentioned in Section 1; thus |[V(G)| =
no+ni +ng+nzg+ng+ 5. Let Cp = {ao, a1, .. .,anu}, C) = {bo, by .., bﬂ1}1
Ca={co,C1,.++Cny}, C3={do,d1,...,dn;} and Cs = {€g,€1,...,n,}.

In this section, we derive some basic properties of (G,C). Lemmas 4.1
and 4.5 are proved in Section 4 of [4], and we can prove Lemmas 4.2 through

4.4, 4.6 and 4.7 by arguing exactly as in the corresponding lemmas in Section
4 of [4].

Lemma 4.1. Suppose that ny = 2. Then one of‘the following holds:
(i) K(bo,b1} = {co} and K{by,b2) = {an, }; or
(ii) K (bg.b1) # {co} and K (b1, b2) # {ar, }-

Lemma 4.2. Suppose that n; > 1.
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() If n1 # 2, then K{bo,b1) C C3UCyU {cn,; 0}
(ii) If ny =2, then K (bo,b1) C CaUCqU {co,cn,, a0}
Lemma 4.3. One of the following holds:
(i) ny = 0;
(i) ny =2 and K(bg, b1) = {co} and K(b1,b2) = {an, }; or
(i) 71 > 1 and K (bi,big1) N (CsUCs) £ 0 for all 0 <i < ny ~ 1.

With Lemma 4.3 in mind, we difine the terms degenerate and nondegen-
erate as follows: for each 0 <[ < 4, () is said to be nondegenerate if n; > 1
and K({u,v) N (Crpe N Ciys) # 0 for all wv € E((C))¢) (indices of the letter
C' are to be read modulo 5); otherwise Cj is said to be degenerate. Thus, for
example, C is nondegenerate if and only if (iii) of Lemma 4.3 holds, and it is
degenerate if and only if (i) or (ii) of Lemma 4.3 holds.

Lemma 4.4. At most three of the C) (0 <! < 4) are nondegenerate.

Lemma 4.5.. Suppose that Cy is degenemte,and ng = 2. Then the following
hold.

(i) E(ao, V(@) - E(C) = {acar}, and E(az,V(G)) - E(C) = {aoaa}.
(ll) E({G.(), ag}, V(G)) el E(C) = {agag}.

Lemma 4.6. Suppose that Cy is degenerate, and that Cy is nondegenerate
and by € K{en,-1,8n4)- ' '

(I) If ng = 0, then E(Co, V(G)) - E(C) = {a0€n4_1}.
(11} Suppose that ng = 2. Then the following hold.
(1) {aoaz,a1€4,-1} C E(Co, V(G)) -~ E(C) C
{aoas, a1bo, 10,1, 0160, }.
(ii) Suppose further that C z's‘degen‘emt'e, and that either ny =2, or

ny = 0 and ny > 1 and a3 € K(cp,c1). Then {apas,aren,~1} C
E(Co,V(G)) — E(C) C {aoaz,a1€n,—1,a1€n, }.

Lemma 4.7. Suppose that Cy is nondegenerate. Then e;e; ¢ E(G) for any
i, J withi+3 <. ‘

Lemma 4.8. Suppose that C3 and C’4 are nondegenerate. Then the following
hold. , . :

(-
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(i) K(dj,djs1})NCL#D for all0 < j<mz~—1.
(i) E(C3,C4) — E(C) C {dny—1€0,dny—161,dnze1}.
Proof.

(i) Let 0 < 7 < ng—~1and 0 € z < ng — 1. Then by assumption, we
can take y € K{d;,d;11) N (CoUC)) and z € K(ex, ex41) N (CL U Cy).
If y € €1, there is nothing to be proved. Thus we may assume y €
Cy. Then by Lemma 3.5, (y = an, and) z = by € K(d;,dj+1). Thus
.K(dj,dj+1) ncy # 0.

(i) Applying (i) to Cy as well as to Cs, we see that K(d;,d;1)NC1 # for
all0<j<ng—1and K(er,exp1)NCy F#Bforall 0 <z < nyg—1,and
hence the desired conclusion follows from Lemma 3.9. 1

Lemma 4.9. Suppose that Cs is nondegenerate, and Cy is degenerate and
ny=2. Then by ¢ K(dj,dj41) for al0< 7 <ng— 1.

Proof. If by € K(d;,d;+1), then since byby € E(G) by Lemma 4.5, we get a
contradiction by Lemma 3.1(i). - 1

§5. Proof of Theorem 1

We continue with the notation of the preceding section, and complete the
proof of Theorem 1.

Since |V(G)| > 16 by assumption, at least one of the C; (0 <! < 4) has
four or more vertices, and hence is nondégenerate. Thus by Lemma 4.4 and
by symmetry, it suffices to consider the following five cases:

e Co, Crand Cy are nondegenerate,and C; and Cs aredegenera,te;.

s (', C5 and C} are nondegenerate, and Cy and C» are degenerate;

e C3 and (' are nondegenerate, and Cyp, C} and C; are degenerate;

e () and C; are nondegenerate, and Cp, C2 and C3 are degenerate; or -
e (4 is nondegenerate and ng > 3, and Cp, €, C3 and (5 are degenerate.

We consider these five cases separately in five propositions, Propositions 1
through 5. Note that in the proof of Propositions 1 through 5, we do not make
use of the assumption that [V(G)}| > 16, and thus these five proposmons hold
for graphs of order less than 16 as well.
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Proposition 1. Suppose that Co, C1 and Cy4 are nondegenerate, and Co and
C'5 are degenerate. Then (G,CY) is of Type 1.

Proof. Let 0< i< ny—1land0 <& <ny— L Applying Lemma 4.8(i) to
Cy and Co, we get K (b;,bip1) NCa # B. Applying Lemma 4.8(i) to C4 and
Co, we get K{ez, ez1) NCo # @. In view of Lemma 3.5, these imply that
K (b;, biy1) N C3 = {do} and Klez, exy1) NCy = {cn, }. Thus

(5.1) do € K (bi big1) for all 0 < i < my — 1,

(5.2) ' Cn, € K(x €z41) forall0 <z < mg — 1.

Let now 0 < A < ng — 1. Applying Lemma 4.8(i) to Cp and C7, we get
K (ap,any1) N Cy # 0. By Lemma 3.5, this together with (5.2) implies

K (ap, aj41) N Cs = {do}. Similarly K (ap,apt1) N C2 = {cn, }- Thus

(5.3) {do, en, } C K(an,apqy) forall 0 < h <mg — 1.

In view of (5.1) through (5.3), we can now argue as in Proposition 2 of [4], to
see that G is of Type 1.

Proposition 2. Suppose that C1, C3 and Cy are nondegenerate, and Cp and
C, are degenerate. Then (G,C') is of Type 2.

Proof. By Lemma 4.8(i), we get K(d;,dj—1)NC) # @foralll < j < na.
By the symmetry of the roles of C3 and Cy, we also have K(es, e;-1) N C1 #
@ for all 1 < & < ng. Further by the assumption that C; is nondegenerate,
K(bi,bip1) N (C5UCy) #0forall 0 <i<m— 1. Consequently we can apply
Case (11b) of Lemma 3.11 with A = C}, B = C3UCy, m = n3, s = ng-kna+1
and h = n3+1, and argue as in Claims 5.9 and 5.10 in the proof of Proposition
1 of [4], to see that (G, C) is of Type 2.

Proposition 3. Suppose that C3 and Cy are nondegenerate, and Co, C1 and
C'y are degenerate. Then (G,C) is of Type 3, 4,5, 6 or 7.

Proof. Let 0 < j < na—1and 0 < z < ng— 1. By Lemma 4.8(), K (d;,d;41)N
Cy # 0. Moreover if n; = 2, then by ¢ K(d;,d;j41) by Lemma 4.9. Thus, we
get

(5.4) : if ny = O,then bo € I((dj,dj.}.l) for all 0 S j' S g — 1;

and
(5.5) if ny = 2,then K(d;,d;j11) N {bo,b2} # @ forall 0 < j<ma—1.
By symmetry, we also see that

(5.6) if ny - 0,then by € K(ez,€z41) forall0 <z < ny — L5



CONTRACTIBLE EDGES ON HAMILTONIAN CYCLES 327

(5.7) if ng =2, then K (ex,em+1) N {bo,bz} #£Qforall 0.< 2 < 4= 1.
By Lemma 4. 8(ii), '

(58) E( r3)Cf4) - E(C) g {dna—IEO)dna—leladnsel}'

- If ny = 0, then combining the proof of Proposition 3 of [4] for the case ny =
0, and the argument used in the proof of (5.6) and Claim 5.11 in Proposition
2 of [4], we see that (G,C) is of Type 3. Thus we henceforth assume that
ny = 2. Applying Lemma 4.5 to C, we get

(5.9) E({bg, b2}, V(G)) — E(C) = {bob:}-
Claim 5.1. One of the following holds:

(1) K(ex, €w+1) M {bo, bz} = {bg} fO'f‘ all 0 S T S g — 1 and I{(dj,dj.}.l) N
{bo, b2} = {b2} for all0 < j < n3— 15

(i) there exists p with 1 < p < ng — 1 such that by € K(ez, ex1) for all
p <z < ng—1and by € K(eg,ez41) for all 0 < z < p—l and
I{(d_:,,dj+1) n {bo,bg} {bz} fOT all 0 < j < nz — 1

(lll) ng =1 and by, b, € K (80,61), and I{(dj,dj+1 ﬂ {bg,bg} = {bz} fOT‘-GH
0<j<ns—-1

(IV) I{(Ex, €x+1) M {bg, bz} = {bo} fO'n"‘ all 0 <a < ng-— 1 and I((dj,dj+1) n
{bo, b2} = {ba} for all 0 < j <nz—1;

(v) Kles erp1) N{bo, b2} = {bo} for all 0 < z < nyg — 1, and there exists p
with 1 < p < na — 1 such that b € K(dj,d;41) for allp < j < n3 -1
and by € K(d;,dj41) for all0<j<p-1;

(vi) K(es,epc1) N {bo,b2} = {bo} for all0 < z < ny— 1, and nz = 1 and
bo, by € I{(d(),dl); or o

(Vii) K(e,;, €x+1) N {bo,bg} = {bo} fOT‘ all 0 S xr S N4 — ]., and I((dj,djq_ﬂ N
{bo, b2} = {bo} for all 0 < j <mnz—1.

Proof. Assume first that
(5.10} by € K(eg,e1).

Then by Lemma 3.5, it follows from (5.5) that

(511) I‘{'(dj,dj.[.l) N {bo,bz} = {52} for all 0 S] S g — 1.
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If K(eny—1€n,) N {bo, b2} = {bs}, then by Lemma 3.10(1)(ii} and (5.7),
K(ez, exy1) N {bo, b2} = {by} for all 0 < z < mq - 1, and hence it follows from
(5.11) that (i) holds. Thus by (5.7), we may assume '

(5.12) bo € K(ens-1,€na}-

Now if nq = 1, then it follows from (5.12), (5.10) and (5.11) that (iii) holds;
and if ng > 1, then in veiw of (53.12), (5.10) and (5.11}, arguing as in Claim
5.16 of [4], we see that (ii) holds. Thus we may assume by ¢ K(ep,e1), and
hence by Lemma 3.10(I)(ii} and (5.7), - '

(5.13) K (ez, ez41) N{bo, b2} = {bo} for all 0 g r<ng— 1L

By symmetry, we may also assume bp ¢ K (dn,-1, dy, ), and hence
I((dj,dj.l.l) N {bo, b2} = {bp} forall 0 € j < n3—1,
and we now see that (iv) holds. ' 1

If (i), (it) or (iii) of Claim 5.1 holds, then combining the prool of Proposi-
tion 3 of [4] (in the case where Claim 5.1(iii) holds, we apply the argument in
the proof of Claim 5.17 of [4] with Y = {b;eq,b1€1}), and the proof of (5.6) and
Claim5.11 of [4], we see that (G,C) is of Type 4, 5 or 6. Thus by symmetry,
we may asstme Claim 5.1(iv) holds. Applying Lemmas 3.3 and 4.7 to C5 and
C4, we have ‘

(5.14) E({C3)) - E(C) = {fljdj'+2 |0 <j<ns—2}
and '
(5.15) E((Ca)) — E(C) = {estosr |0 < & < na — 2},

Applying (I) and (IT)(ii) of Lemma 4.6 to Cp and Cy, we get the following two
claims: i - '

Claim 5.2.
(i) If ng=0, then E(Co,V(G)) — E(C) = {acen-1} - -

(i) If no = 2, then {aopas, aren,—1} C E(Co,V(®)) — E(C) C
{aoaz, a1en, 10165, }- :

Claim 5.3.
() If na = 0, then E(Cy,V(G)) — E(C) = {cod1}.
(i) If na =2, then {coca, c1dy} C E(Ch, V(G)) — E(C) C {cocz, crdy, cido}.
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Further applying Lemma 3.1(i) to {dn,—1,ds,, b2} and {eo, e1,b0}, we get
(5.16} E(b1,V(G)) — E(C) C {b1dns—1,b1dn,,b1€0,b11}.
Claim 5.4.
() {b1dnam1, 5180} N E(G) # 6.
(i) {bre1,b1e0} N E(G) # 0.

Proof. By the assumption of this case, {eo,e,bs} is not a cutset, and hence
E( '0U(Cl —{bg})U(ng—{eo, 61}), CgUC3) 7& @ Since E(CO.U (Cl —{bz})U(C4—
{eo.e1}),C3) = 0 by Claim 5.3, and since E(CoU{bo}U(Cy—{eo,€1}),C3) = @
by Claim 5.2, (5.9) and (5.8), this means E(b1,C3) # . Hence it follows from
(5.16) that E(by, V(G)) must contain bydn,—1 or b1dy,. Thus (i) is proved, and
by symmetry, we see that (ii) holds. i

Claim 5.5.
(i) {dﬂa—leladﬂa—leo}mE(G) % 0.
(Il) {eldna_l, eldna} i E(G) :,é @

Proof. Since C is degenerate by the assumption of Proposition 3, {61, 2, ds, }
is not a cutset, and hence E(Cy U {by} U Cy,Co U (C5 — {dp;})) # 0. Since
E(CoU{bo},C5 —{dn,}) = @ by Claim 5.2 and (5.9), and since F{CoU {bo} U
C4,C2) = 9 by Claim 5.3, this means E(Cy,C3 — {dn, }) # 0. Hence it follows
from (5.8) that F(Cs,Cy) must contain dp,~1€1 or dn,-1€0. Thus (i) is proved,
and by symmetry, we see that (it} holds. I

Claim 5.6.

(1) {dn3_161,,dn3_1bl} N E(G) 75 m
(i) {e1dm—1,e10} NEG) #0.

Proof. Since d,,eq is contractible, {dn,, ep, b2} is not a cutset and hence

E(Cou (C1—{b})U (04“{60} CzU(Cs {dns })) #
In view of Claim 5.3, (5.9) and Claim 5.2, we have

B(CoU (G1 = {b2}) U (C1 = {eo}), C2) = 0,

(bOa Cs — {dns})
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and ‘
E(Co,C3 — {drs}) = 0.
Consequently | '
E({bl} U (C4 - {60})? Cs - {dna}) :/lé 0. .
Hence it follows from (5.16) and (5.8) that (i) holds. By symmetry, we also
see that (ii) holds. 1
Claim 5.7.
(i) If ng =0 and n3 = 1, then {dib1,d1e1} N E(G) # 0.

(i) If no = 0 and ng = 1, then {eoby, odny—1} N E(G) # 0.

Proof. Suppose that ng = 0 and ng = 1. Since codp is contractible, {ca,do, €0}
is not a cutset, and hence

E(d1,CoUCLU (Cq — {eo})) #£ 0.
In view of (5.9) and Claim 5.2, we have
E(dy, {bo,bo}) =0
and
FE(d, Co) = 0.

Conseciuently
E(dy, {b1} U (Cs — {eo})) # 0.

Hence it follows from (5.16) and (5.8) that (i) holds. By symmetry, we also
see that (ii} holds. 1

Now combining (5.8), (5.9), (5.14), (5.15), (5.16), and Claims 5.2 through
5.7, we see that (G, C) is of Type 7.

Proposition 4. Suppose that Cy and C4 are nondegenerate, and Co, C and
('3 are degenerate. Then (G, C') is of Type 8 or Type 9.

Proof. Let

min{i|0 < i< ny —1,do € K{b;,big1)}
i = (lf {’ilOS’iSnl-—l,do E-If(bi,b,q_l)}#@)
n1 (lf {'t. | 0<t < ny — l,dg € I{(bi,b,q_l)} = @),
and
max{z |1 < 2 < n4,cn, € K€z, €5-1)}
2’ = (if {z|1 <z < ng, cny, € K(eg,e2-1)} # 0)
0 (if {z|l<z < nycn, € K(ey ex1)} =0).
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Then by Lemma 3.10(I)(i),

(517) do € I{(b'iabi-i-l) for all i ﬁ i S ny — ].,
and ‘ _
(5.18) Cny € K&z, €0_1) forall 1 <z < 2'.

We divide the proof into two cases.

Case 1. z>00ra:<n4 :
By the svmmetry of the roles of {b;|0 < i < i’} and {ex|n4 > z > 2},
we may assume z’' < ng. We show that

(519)  K{bi,bip1) N{es|na> e 22’} #0forall 0<i < il — 1.

If #/ = 0, then (5.19) trivially holds. Thus assume ' > 0, and take ¢ with 0 <
i <1 — 1. We first show that K (b;, b;41) N Cy # 8. Since C is nondegenerate,
we can take v € K{b;,b;11) N (C3 U Cy). By the definition of ¥, v # dp. If
v € Cy, there is noting to be proved. Thus we may assume nz = 2 and
v € C3 = {dy}. Then v # d; by Lemma 4.9, and hence v = dy. Consequently,
we get eg € K (b;, b;41) by applying Lemma 3.5 to {b;, bi41,d2} and {dp, d1,e0}.
Thus K (b;, biy1) N Cy # 0, as desired. Further if there exists z with 2 < z’
such that e, € K(b;,biy1) N Cl4, then since ¢,, € K(ez41,€2) by (5.18), we get
a contradiction by applying Lemma 3.4 to {b;,biy1, 5} and {ez,eqq1, s}
Thus (5.19) is proved. By symmetry, we also see that

(520)  K(eg ez_1)N{b;|0<i<i}#Bforallny >z >’ +1.
By (5.19) and {5.20), we can apply Case (113.) of Lemma 3.11 with A =

{0;10 < i < i}, B—{er|w <:1:<n4} m =1 ands-m;—:t: to get the
following claim: :

Claim 5.8. There exists an integer r with 1 < r < min{#' + 1,74 — 2'}, and

there exist integers ko, k.. ... kr krsr and b, la, o0 1 Ly with
(521) S Ozkogk1<"'<kr5kr+l=i'

and

(522) ﬂ4=ll>lg'-'>lr>lr+1=$’

such that the following hold.
(I} () (a) Ifky =0, then by, = bo € K(ey,e1,-1) = K(en,,eng=1)-
(b) Ifky > 0, theni > 0 and ey, = en, € K (biy,bros1) = K (Bo, b1).
(i) (a) If kr =7, then by = by, € K (€1, 415 €l 4,) = K(€pr41, €2}
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(b) If b < i/, then i > 0 and e, = e € I((bkr“—hbkr“) =
K (bi‘—la bil) .

(1) Set
r+1
X1 = [J{bibisa | kt-1 <7 <k — 2},
i=1
” ‘
X2 = U{erez_gllt 2 T 2 lt+1 + 2},
t=1
Yy = {bk:+1ef:+1+1 1<t <r—1},
}7’ —_ {bkr+1elr+1+1} (2f k" < 1")
1= 0 (if by = 1),
Y2 = {bkt_left._]_ |2 S 13 S 'f‘},
1} _ {bk1——lel1—l} (3f kl > 0)
2T 0 (if ky = 0),
Yy = | J{br.ex |l > 2 > lips ),
t=1"
and
r<+1
Yi= | J{bier | k-1 <1 < ki)
i=1

Then we have
E({{d:10 <i<i'})) ~ B(C) = X3,
B({{e. |2’ < = < na})) - E(C) = X,
.and

(5.2),UYIUYaUY, C E({b:|0<i<i},{es]a’ <2< ng})

iuYiuYaUY,uYsuYy.

IN 1N

In Claim 5.8(I)(ii), if ¢ > 0, then without loss of generality, we may
assume that -

(524) . S i =k (= krya)
and B ' '
(525) : R : bkr = I{(elr+1-+1aefr-§.1)
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by the symmetry of the roles of {b;|0 < i < i’} and {ez|ns > = > z'}. Note
that if ¢/ = 0, then (5.24) and (5.25) clealy hold because the condition forces
r =1 and k; = 0(= ¢). Thus we henceforth assume that (5.24) and (5.25)
hold. Further by (5.22),

(526) .’B’ = lr+1.
By (5.25) and Lemma 3.1(i), we have

E({b,‘lkr-FlS?:Snl}UCQUC3U{63|OS$Slr+1—-1},

(527) f()U‘[bilo <i< ko — 1}U{E$”r+1+2 <z < n4}) = 0.
Claim 5.9.
(I} Suppose that k. = ny and ny = 2. Then E({co, 2}, V(G)} — E(C)
= {60(.‘2}.
(I1) Suppose that l.p1 =0 and ng = 2. Then F {do,dg} V(@) — E(C)
= {dod}.

(III) Suppose that k. < ny. Then the following hold.

(i) If np =0, then E(C,,V(G)) ~ E(C) = {cobn,—1}-
(i) Ifne =2, n3 =0 and l,1 = 0, then {coca, c1bn, -1} C E(C2, V(G))
—E(C') g {C()Cg, Clbnl—-l: Clbnl, CIdO}-

(tii) If na = 2, and either n3 =2 or l,41 > 0, then {coca,e1bn, -1} C
E(C2, V(@) — E(C) C {coca, c1bny~1-c182, }.
(IV) Suppose that {1, > 0. Then the following hold.

(i) If ng = 0, then E(Cs,V(G)) — E(C) = {doe1}.

(11) If ny = 2, gy = 0 and k,- =", then {dodg,dlel} g E(C3 V(G)) -
E(C) C {dod3, d1co, d1€0, dre1 }.

(iii) If na = 2, and ezthe'r ny = 2 or k. < ny, then {dgd2 dlel} -
E(C, (G)) ) € {doda, dreo, drer}.

(V) Supppose that ky = 0. Then the following hold.

(i) If no = 0, then E(Co, V(G)) — E(C) = {agen,_1}.

(ll) If Ng = '2, then {aoaz, a1€n4_1} g E(CDV'(G)) - E(C)
C {aoaz,ai1€n,—1. 0160, 0100 }.

(VI) Supppose that ky > 0. Then the following hold.
(1) If o = 0, then E(Co, V(G)) - E(C) = {aobl}.
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(ii) If no = 2, then {aoaz, a1b1} C E(Co, V(G)) - E(C)
C {agag,alem,a1bo,albl}- o '

Proof. Statements (I) and (II) are proved by applying Lemma 4.5 to (5 and
Cs. Note that if k. < m1, then do € K(bn;—1,b5,) by (5.17) and (5.24), and
that if l,4; > 0, then ¢z, € K (ep,e1) by (5.18) and (5.26). Thus we can
prove (ILI) and (IV) by applying Lemma 4.6 to C3 and Cs. Also note that
if &, = 0, then by € K(eny,€ny—1) by Claim 5.8 {I)(i)(a), and that if by > 0,
then en, € K{bo,b1) by Claim 5.8(I)(i)(b). Thus we can prove (V) and (VI}
by applying (1) and (I){i) of Lemma 4.6 to Co. : 1

Claim 5.10.

Q) E({bi |k +1 < i <), {bilkr <i<m}) — E(C) = {bibisalh, <1 <
T —-2}. ‘

(i) {ezer—2|bp1 2222} C E({ec|brgr =12 22> 0} {ez [brpr+122 2
0}) — E(C) C {ezes—2flrsa+1222 2}.

Proof, {ezez—a|lby1 22> 2} C E({ezllbp1— 1222 0 {ex|lrpa+12
z >0} — E(C) by (5.18) and Lemma 3.3, and = . . ‘

E({ezllrg1—=122 2 0} {ez|brpu+l 22 0})-E(C) C {ezte—2 |l +12
@ > 2} by applying Lemma 4.7 to Cy. Thus (ii) is proved, and (i) is verified
in a similar way. . _ i

Claim 5.11.
@) E({b;|k+2<i<m}, (Ca—{do}U{es| b +12>2 > 0})-E(C)=0.
(i) E({ex|lrp1 =222 20}, {bi|kr <2 <m}U(Co— {en})) — E(C}=0.

Proof. We first prove (i). We may assume that .{bg- |kr +2 < i< m1} # 6.
Then do € K(by,.bx,41) by (5.17), and hence (i) follows from Lemma 3.1(i).
Thus (i) is proved, and (ii) is verified in a similar way. | 1

Set .
bkr+1 (if kr < nl)
u=1+ . ¢ (if kr =n1 and ng =0)
a o (fk=mn and nqy = 2),

lyy-1 (if g1 > 0)
w = do (lf lr-+]_ =0 and n3 = 0)
’ dl (lf lr+1 =0 a.nd-n3 = 2),
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and set "
‘ g 0 (if k < ng)
{u} (if kr = n1)
and ' '
T = ) (if Iry1>0)
{'w} (lf l,a+1 = 0)
Note that

(528)  {bilkr+1<i<n}US={bilk +2<i<n}u{ul,

(529) {ex|by1—1>z>0}UT ={e;|lry1 —22> 2> 0}U{w}.

Claim 5.12. Let P = {b;[ky +1<i <m}USU{ey|lrp1 —1 > z > 0}
U T and Q =PU {bkr,61r+1,81r+1+1}.

(I) Suppose that k, = n;.

(i) Suppose that ny = 0. Then the following hold.
(a) E(u,Q)— E(C) C{ue|lq1 —22> 2 > 0} U {uw, uey,, ,,
uey, 41} (in the case where I.4; = 0 and n3 = 0, we have
uw ¢ E(u,Q) — E(C) because uvw € E(C)).
(b) E(bx,, P) — E(C} C {by, w}-
(ii) Suppose that ny = 2. Then the following hold.
(a) E(u,@)—E(C) C {bx,u, uw, vey, ., ve 41}
(b) E(by,, P} — E(C) G {bg,u, by, w}.

(II) Suppose that I,4q = 0.

(i) Suppose that ng = 0. Then the following hold.
(a) E(w,Q)—-E(C) C {bjw|k-+2 < i < ny}U{br w, uw, wey, 41}
(in the case where k, = n1 and ny = 0, we have uw ¢ E(w,Q)—
E(CY).
(b} E({efr+1ielr+1+1}vP) - E(C) C {uefr+1!"_"efr+:+1#we1r+1+1}'
(i) Suppose that ng = 2. Then the following hold.
(a') E(’{U,Q) - E(Cr) C {bkrw: uwawelr+uwelr+1+1}'
(b) E({Elr+11eir+l+1}1p) - E(C) g {ue1r+1,uegr+1+1,wegr+l,
'we_fr+1+1}'
(III) Suppose that k, < nq and l,11 > 0 (s0o S =T = 0). Then E(P,Q) —
E(C) C {bgb,‘.}.glkr < i < my - 2} U {6_-,;83;_2”,-4.1 >z > 2}
U {br, w, uw, ey, , |, U€l, 41, Wl 1 +1)-
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Proof. In view of (5.29), (I)(i)(a) trivially holds, and (I)(i)(b) and (I}(ii) follow
from Claim 5.11(ii) and (5.28). Thus (I) is proved. Now (II) can be verified
in a similar way, and (III) follows from Claims 5.10 and 5.11 and (5.28) and
(5.29) (note that e, 111, -1 = wer 41 if Ly > 0). :

Set,

D= {ueg|lrg1 —22 2 >0} (if k. =ny,041 > 0and np =0)
10 (otherwise),

P {bjw| ks +2<i<m} (fk <ny,ley;1 =0 and ng=0)
1 @ (otherwise),

He = {dleo} (lf l,-+1 =0 and Ny = 2)
LT 0 (otherwise),

. {bp,c1} (if kr = ny and ny = 2)
2= @ (othérwise),

{br, w, U€lry1s ULy 141 welr+1+1}
I= (ifkrznl,l,H:D,nz:Oand n3=0)
{br, w, ww, vey, ., Uy, 41, We,, 41} (otherwise),

Wy = {uelr+:+11 we1r+1+1}’

{udy, uw, vey ., ue, 41} U D | :
Wa = (if k& = n1,lr41 > 0,22 =0 and n3 = 2}
{uww,uey,. ., ue 41} U D (otherwise),

{br,w,uw, crw, wey, 41} UF
Wa = (lf k. < Tt‘.]_,l,,-_’_l =0,7, =2 and n3 = O)
{br, w,uw, wey, ., 41} UF (otherwise),

{ueo} (if k&, =n1,l41 > 2,02 =0 and ng = 0)
g {uw} ' (if I,+1 = 1 and ng.= 0)
27 {ww, uer, ., } (if L1 =0 and ng = 0)

(

B otherwise),
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and
. {bp, w} (if kr < ny—2,lr41 = 0,72 = 0 and nz = 0)
7. — {uw} (if &, = ny — 1 and ny = 0)
*7T Y {bg,w,uw} (if kr = n; and ny = 0)
0 (otherwise).

Claim 5.13. {b{b{+2 | kr S i S ny — 2} U {6;,;33_;....2 | lr+1 >z Z 2}
CE({bitkr +1<i<m}USU{ezllip — 122 > 0}UT,

{6 | kptl <4 <y JUSU{es [ g1 —1 2> 2 > 0JUT UL by, elr+1:etr+1+1}) -E(C)
g {bibi+2|kr S'LS'R] _2}U{€x€z_2|l,~+1 2 EZQ}UIUDUFUHlLJHg.

Proof. If k. = ny or I,y = 0, then the assertion follows from Claim 5.10 and
() or (II) of Claim 5.12. If k, < ny and l.4; > 0, then the assertion follows
from Claim 5.10 and (III) of Claim 5.12 (note that e;  t1e1,,,~1 = wer 41
if Ly > 0). ]

Claim 5.14. W; N E(G) # 0.

Proof. Since by, € K{ey,,,,¢€l,4,+1) by (5.25), we have E(e;, 41, {bi | kr +1 <
1< mtUCUCU {e |41 — 12>z > 0}) — E(C) # @ by Lemma 3.1(ii},
and hence we can take e;,,, 112 € Eley 41, {bifk+1 < ¢ < np UCU
CsU{ez|l41 =12 =z > 0}) — E(C). From (I) and (III) of Claim 5.9, we get
z ¢ Cy — S5, and from (II) and (IV) of Claim 5.9, we get z ¢ C5 — {T'}. Hence
z€{bi|lkr+1<i<m}USU]{e|lry1 —1> 2> 0}UT, and we therefore
obtain z € {u, w} by Claim 5.13.

Claim 5.15. (W2 - Zg) n E(G) #10.

Proof. We divide the proof into three cases.
Case(i). &k, = ny, ny =0 and n3 = 2. .

Since G is 3-connected, we have deg(co) > 3, and hence E{co, V(G) —
{bn,,c0,do}) # 0. Consequently, we get (Wp — Z3) n E(G) # @ by (5.27),
Claim 5.13, and (II} and (IV)(ii) of Claim 5.9.

Case(ii). n3=0.

Since dopep is contractible, {do, o, b, } is not a cutset, and hence E(CpU
{6:10 <t <k —1}U(Cy—{eo}), {bi | kv +1 < 1 < my }UC,) — E(C) # 8, which
implies E({e, [l41+1 > z > 1}, {b; | kr+1 < i < 0 JUS)—E(C) # O by (5.27)
and (I) and (III) of Claim 5.9. Consequently, we get (W, — Z2) N E(G) # @
by Claim 5.13.

Case(iii). nz = 2, and either &, < ny or ng = 2.

Note that ¢,, and b, are not consecutive. Since cp,dp is contractible,

{cnsy do, by, } is not a cutset, and hence E(CoU {b;|0 < i < k. — 1} U (C3 —
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{do}) U Cy, {bi | kr +1 < i < m} U{Ca — {en,})) — E(C) # 0, which implies
E{es|lgr+1 > 2 > 03 UT, {bi|k, +1 < ¢ <m}USYH - E(C) # 0 by
(5.27) and (T}, (IL), (III)(iii) and (IV)(iii) of Claim 5.9. Consequently, we get
(We — Z3) N E(G) # @ by Claim 5.13. , 1

Claim 5.16. (W3 — Z3) N E(G) # 0.

Proof. We divide the proof into three cases.
Case(i). £r+1 = 0, g = 2 and N3 = 0.

Since G is 3-connected, we have deg{dy) > 3, and hence E(do, V{G) —
{ca,do, €0}) # 0. Consequently, we get (Ws — Z3) N E(G) # 0 by (5.27), Claim
5.13, and (I) and (III)(ii) of Claim 5.9.

Case(ii). ny = 0.

Since by, co is contractible, {bn, , co, €., } is not a cutset, and hence E(CoU
(Cr—{ba, NU{ez g 2 2 > ry1+1},CaU{es [ b1 =122 > 0} - E(C) # 0.
Consequently, we get (Ws — Z3) N E(G) # 0 by (5.27), Claim 5.13 and (II)
and (IV) of Claim 5.9.

Case(iii). ny = 2, and either I,41 > 0ornz3 =2. -

Note that do and e, are not consecutive. Since cn,dp is contractible,
{€ny, do. €1, } is not a cutset, and hence E(CoUC1U (C2 - {en, ULz |14 >
2 > g1+ 1}, (Cs = {do}) U{ex | g1 —1 > = > 0}) — E(C) # B. Consequently,
we get (Ws — Z3) N E(G) # 0 by (5.27), Claim 5.13, and (1), (1), (ITE}(iii) and
(IV) (iii) of Claim 5.9. ' I

Set
Wy = {b ez |l > = > L} U {br, w0},
7, = {br,u} (if ny=2)
1 0 (ifny=0),

and

;| {a1bo} (if no = 2)
Z4_{ @0 (if no = 0).

Claim 5.17. Suppose that ny =1 and r =1.
(1) If kl =1 and g = 0, then (W4 U Z4) n E(G) 715 @
(i) If ky =0 and ngy = 0, then (W4 U Z}) N E(G) # 0.

Proof. First assume that ng = 0, ny = 1, r = 1 and &k = 1. Then since
aobo is contractible, {ag, bo, co} is not a cutset, and hence E(bx, (= b1), V(G) -
{ag,bo, b1, c0}) # 0, which implies that E(b,,Cs USUT) — E(C) # 0 by
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(I},(IT) and (IV) of Claim 5.9. Consequently, we obtain (WU Z4) N E{(G) # 0
by Claim 5.13. Next assume that n; = 1, ns = 0, r = 1 and & = 0.
Then since by cp is contractible, {by, cq, @y, } is not a cutset, and hence E (b, (=
bo), V(G) = {an,, b0, b1, ¢0}) # @, which implies that E(bg,, (Co — {@n, ) UCsU
T) — E(C) # 0 by (II), (IV)(i) and (IV)(iii} of Claim 5.9. Consequently, we

obtain (Wa U Z1) N E(G) # 0 by (V)(ii) of Claim 5.9 and Claim 5.13. '
Set
{bkrwa bkrelr+1 U, ue;r“} (lf lr-i-l > 0)
Ws =< {br.e,. uey,} (if I,11 = 0 and n3 = 0)
{br €1, uel L1, wer ) ) (if {,4+1 = 0 and n3 = 2).

Claim 5.18. Suppose that ng =0, r =1, k, = 0 and .41 = ny — 1. Then
Ws NE(G) £ §.

Proof. Since e,,aq is contractible, {en,, a0, do} and {en,, o, dn, } are not cut-
sets, and hence we get

(5.30) E(CrUCy, (C3— {do})) U(Cs — {en,}) #£ 0
and
(‘5-31) E(Cl v CZ U (03 - {dna})i( 4 — {em}) 71—' @

If I,y > 0, i.e., ngy > 1, then (5.30) together with (III)(i), (IM)(iii) and
(IV)(iii) of Claim 5.9 implies E(C1,Cy4 — {en,}}) — E(C) # @ (note that we
have § = T = 0 by the assumption that k. = 0 < ny and [,4; > 0}, and hence
we get Ws N E(G) # 0 by Claim 5.13; if l,41 = 0, then (5.31) together with
(I1) and (111) of Claim 5.9 implies E(Cy UT,Cy — {en,}) — E(C) # 0 (note
that we have S = ), and hence we get W5 N E(G) # 0 by Claim 5.13. 5

Combining (5.24), (5.26), Claim 5.8, (5.27), Claim 5.9 and Claims 5.13
through 5.18, we now see that (G,C) is of type 8.

Case 2. i =0 and z' = ng4.
By (5.17) and (5.18),

(5.32) do € K (bi,big1) forall 0 <@ < ny — 1,
and

(5.33) Cny € K€z, ex—1) forall 1 < z < ny.
Claim 5.19.
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(1) If no = 2, then E({ao, a2}, V(G)) = E(C) = {acaz}.

() () If ng =0, then E(Ca,V(G)) — E(C) = {cobn,~1}-
(i) If n2 = 2, then {cocz, c1bn,—1} C E(C2,V(G)) — E(C)
C {coce, C;bnl—l,clbm}'

(1) () If na = 0, then E(C3,V(G)) — E(C) = {doe:}.
(11) ff Ny = 2, then {dodg,dlel} g E(Cg,,V(G)) — E(C)
C {dods, dreo, drer }-

Proof. Statement (I) follows immediately from Lemma 4.5(ii). By (5.32) and
(5.33), we have dy € K(bn,—1,0r,)} and ¢, € K(eo,€1), and hence we can
prove (II) and (II1) by applying (I} and (IT)(ii) of Lemma 4.6 to C2 and Cs. y

Claim 5.20.
(i} E({C1)) — E(C) = {bibiy2 [0 <i<n -2}
(ii) E({C4)) — E(C) = {exezr—2|ns >z > 2}.

Proof. By (5.32) and (5.33), (i) and (ii) follow immediately from Lemmas 3.3
and 4.7. |

Claim 5.21.

(I) (1) If’noz 0, E(C’l,O4U{a0}) —E(C)
g {b()en.; 3 bOen4—1 y aObla ble'nq 1 blen4—1}-
(i) If no = 2, B(C1,CyU{a1}) — E(C)
C {alboyb06n4?boen4—1aalblablenqsblen.;—l}-

(I) (1) Ifng =0, E(Cys,C1 U{ao}) — E(C)
C {boen,,b1€n,, @0Eny—1,b0€n,~1,b1€0,-1}-
(i) If no =2, E(C4,Cy U'{al}) - E(C)

- {alenuboenq,blem,alem_l,boem_l,blen4_;}.
Proof. Since dy € K(bg,b1) by (5.32), it follows from Lemma 3.1(i} that
(5.34) E(Cy — {bo, 01}, CsUCp) = 0.
Also since ¢p, € K(en,,en,—1) by (5.33), it follows from Lemma 3.1(i) that
(5.35} E(C1UCy, Cq—{en,,en,—11) = 0.

Combining (5.34) and (5.35), we get all the desired conclusions. = - £
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Set
W, = {blen4 ’ blen.;—l} (lf g = 0)
{bra1,b1en,, b16n, 1} (if no = 2),

and

W2 — {b06n4—1:- blen4-1} (lf g = 0)
{ﬂ'len4-'11boen4—-lablen4_1} (if no = 2).

Claim 5.22. W) NE(G)#0 and Won E(G) # 0.

Proof. Since an.bp is contractible, {an,,bp,cn,} 18 not a cutset, and hence
E((Cy ~ {bo}) U (Cy - {an}), (Co ~ {ano}) UCyuCs) # . Consequently,
we obtain Wi N E(G) # § by Claim 5.19 and Claim 5.21(I). In view of the
symmetry of the roles of €] and Cy, we similarly obtain Wr N E(G) # 0. 4

Claim 5.23. If Ng = 2, {albl, alem_l} ﬂE(G) # @,’ If g = O,
{aoh1, agen,—1} N E(G) # 0.

Proof. Suppose first that ng = 2. Then since an,bo is contractible,

{@ny. b0, €n,} is not a cutset, and hence E({ap,a1},{Ci — {be}) UC, U C5U
(Cs — {en,})) # 0. Consequently, we obtain {a1hy,a1€n,-1} N E(G) #£ 0 by
Claim 5.19 and (1)(ii} and (II)(ii} of Claim 5.21. Suppose now that ng = 0.
Then since G is 3-connected, E(ao, (C1 — {bo}) UC UC3U (Cs — {en, }) # 0.
Since dp € K (bo, b1) by (5.32), we get E(ao, (C1 — {bo,b1}) UC,} = ¥, and since
Cny € K{en,,€n,—1) by (5.33), we also get E(ao, (Cs — {€ny,€ny—1})UC3) = 0.

Consequently, we obtain {agh1, apen,~1} 0 E(G) # 0. .
Set
Wy = {bOenq ) b06n4—1} (if ng = O)
{aibo, boen,, boen,—1} (if ng = 2),

W, = {aoen,~1,b0en,—1} (if ng = 0}
4 {a1en,-1,b0€n,—1} (if np = 2},

We = {boen,, b1€n,} (if ng = 0)
{a1€n,, boeny  b1en, }  (if no = 2),

and

W = {a.gbl,blem} (lf ﬂ.o:O) :
6~ {albl,blem} (lf ﬂ.o:Q)

Claim 5.24.
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(i) Ifny =1 and na =0, then Wa N E(G) # 0 and WaN E(G) # 0.
(i) If na =1 and n3 = 0, then Wy N E(G) # @ and W5 1 E(G) # 0.

Proof. To prove (i), suppose that n; = 1 and ng = 0. Then since bycp is
contractible, {by, co, @ny } and {b1,co,€n,} are not cutsets, and hence we get

(5.36) E(bg, (Co — {az, }) U Cs UCq) #0

and
(5.37) E(Cp U {bo},C3U (Cs — {en, }) # 0.

By (5.36), Claim 5.21(I) and (I),(III} of Claim 5.19, we obtain W3NE(G) # @,
and by (5.37), Claim 5.21(II}, and (I}, (III) of Claim 5.19, we obtain Wy N
E(G) # §. Thus (i) is proved, and by the symmetry of the roles of Cy, Cy and
Cy, Ca, (ii) can be verified in a similar way. o X
Combining Claims 5.19 through 5.24, we see that (G,C) is of Type 9.

Proposition 5. Suppose that Cy is nondegenerate and ng > 3, and Cq, C1,
C2 and C3 are degenerate. Then (G,C) is of Type 10, 11, 12, 13, 14, 15, 186,
17, 18, 19 or 20.

Proof. By symmetry, we may assume n; < ny. We divide the proof into three
cases, according as (ny,n2) = (0,0), (71, n2) = (0,2), or (ny,n2) = (2,2).

Case 1. (n1,ny) = {0,0).
Since Cy is nondegenerate,

(5.38) K(eg,ezp1) N{bg,co} ZDforall 0 <z <ny— 1.
Arguing as in Claim 5.16 in the proof of Proposition 3 of [4], we obtain:

Claim 5.25. One of the following holds:
(i) K(ez eap) N {Bo, co} = {co} for all 0 < & < my — 1;

(ii) there exists p with 1 < p < ny4 — 1 such that cp € K(eg, ez1) for all
0<z<p—1andby € K(eg,epq1) forallpL e <ng—1; or

(ii1) K (ex, eatr) N {bo,co} = {bo} for all 0 < z < my—1.

By symmetry, we may assume that (i) or (i) of Claim 5.25 holds. If Claim
5.25(ii) holds, then applying the argument in the proof of (5-16) of [4] to bocy
instead of bob;, and the argument in the proof of Claim 5.14 of [4] to ¢ as well
as by, we see that G is of Type 10. Thus we may assume Claim 5. 25(1) holds.
Then applying Lemma 4.5 to Cy and Cs, we get




CONTRACTIBLE EDGES ON HAMILTONIAN CYCLES 343

[ {coer |0 <2 < ng} U{coaon}
(if ng = 0 and ng = 0)
{ecoez |0 <z < nyg} U{coar}
(if n3 = 0 and ng = 2)
{coes | 0 € z < ng} U{coao,cods}
(if n3 = 2 and ng = 0)
{Coea; | 0 $ r S ?’L4} L '{Coal,Codl}
{ (if n3 =2 and no = 2).

(5.39) E(co, V(G)) — E(C) =

Claim 5.26. Suppose that ng = 0.
(i) If na =0, then {coes |0 < z < ng}NE(G) # 0.
(i) If ng =2, then ({coez |0 < 2 < na} U {codi }) NE(G) # 0.

Proof. Since agbg is contractible, {ag, by, dp} is not a cutset, and hence
E(co, (C3 — {do}) U C4) # 0. Consequently we get the desired conclusions by
(5.39). 1

Now arguing as in Case 2 in the proof of Proposition 3 of [4] (we apply
the second half of the proof of Claim 5.20 of [4] to bycg), we see that G is of
Type 11.

Case 2. {ny,ny) = (0,2).
Applying Lemma 4.9 to Cy and Ca, we see that e1 ¢ K (eg,ez41) for each
0 < & < m4— 1. Since Cy is nondegenerate, this implies

(5.40) K(ez exp1) N {ba,co,ca} O forall 0 <z <ng— 1.

Claim 5.27. Let 0 < x < nyg — 1, and suppose that cg € K(ez,ez41). Then
bo € K(ez, €x41).

Proof. Let 0 < z < nyq — 1. Since C is degenerate and ng = 2 and ny =,
by € K(ci,c2), and hence the desired conclusion follows from Lemma 3.5. &

In view of (5.40) and Claim 5.27, we obtain the following claim by arguing
as in Claim 5.16 of [4):

Claim 5.28. One of the following holds:

(l) K(ex, Eg;_|_1) N {bo, Co, Cz} = {CQ} for all 0 <ax<ng—1;
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(i) there exists p with 1 < p < ng— 1 such thai ¢; € K (er,ezt+1) for all
0<z<p—1andbg€ K(es,ez41) forallp<z <ng—1;0r
(ii}) K (e €x+1) N {bo; co, 2} € {bo,co} for all 0 <z <mg — 1.

Now we divide the proof into three subcases, according to whether. (i),
(ii) or (ili) of Claim 5.28 holds.

Subcase 1. Claim 5.28(i) holds.

For convenience, let @ = ay if ng = 2, and let @ = ag if ngp = 0.
Arguing as in the first half of the proof of Claim 5.20 of [4], we obtain:

Claim 5.29. ac, € E(G).

Applying the second half of the proof of Claim 5.20 of [4] to {eo,¢1,€n, }
and {co, ¢1,an, }, we obtain the following two claims:

Claim 5.30. {es,—14, em_ll_wo} NE(G) # 0.

Claim 5.31.
() If no = 2, then {boay,boeny—1,b0en, } O E(G) # 0.
(ii) If no = 0, then {boen,—1,boen, } N E(G) # 0.

We can prove the following two claims by applying the proof of Claim 5.21
of [4] to {a1, as, co} and {a;, a2, do} or {en,, a0, co} and {en,,a0,do}, according
as ng = 2 or ng = 0:

Claim 5.32.

(i} If no =2, then {boc1, bo€n,—1,boen, } N E(G) # 0.

(ii) If no =0, then {boci, boen,~1} N E(G) # 0.
Claim 5.33.

(i) If no = 2, then {em_ll;o, ém_lcl, engbo, ensc1} N E(G) # 0.
(§i) I o =0, then {en,—1bo,en,_101} N E(G) £ 0.

Arguing as in Claim 5.26 of Case 1, we obtain:

Claim 5.34. Ifng =0, then {ci€n,—1,C16n,} N E(G) # 0.
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Now combining Claims 5.29 through 5.34, and applying Lemma 4.6 to
Cs3, and Lemmas 3.3 and 4.7 to (4, we see that (G, C) is of Type 12.
Subcase 2. Claim 5.28(ii) holds.

Applying Lemma 3.1(i) to {ep—1,¢€p,¢2}, and Lemma 4.5 to Cy and Cj,
we get :

{b(}Cl} U {b()e;,; Ep -1 S T S TL‘4} (lf o :0) '
Efbo, V(&) - B(C) & { {Boar, boc} U {boew | p— 1 < z < mg} (if no = 2).
(5.41) - - :
Applying the proof of (5.16) of [4] to bpcy as well as to cger, we obtain
the following two claims: o

Claim 5.35. {ep—1bo,ep—16p41} N E(G) # 0.

Claim 5.36. {epi101,€pq16p-11 N E(G) #£ .

Claim 5.3;?. "
(i) If no =2, then ({boa1} U {boex|p~ 1 < 2 < na}) N E(G) #0.
(i) If no = 0, then {boez |p — 1 < z < na} N E(G) # 0.

Proof. We prove (i) and (ii) simultaneously. Since C; is denenerate by the
assumption of Proposition 5, {co, €1, @n, } is not a cutset, and hence E{bo, (Co—
{@ne }} U {c2} UC3UCy) # . Consequently, we get the desired conclusions by
(5.41). 1

Applying the proof of Claim 5.14 of [4] to {a1, a3, co} or {en,, 20,0} (ac-

cording as ng = 2 or 0), and {dp,d;,bo} or {do,en,bo} (according as nz =
2 or 0), we obtain the following two claims:

Claim 5.38.

(i) If no =2, then ({bocr} U {boes |p — 1 <z < ng}) N E(G) # 0.

(ii) If no =0, then ({bpcs} U{boez|p~ 1<z < ny—1})NE(G) #0.
Claim 5.39.

(i) If either ny =2 or p > 2, then {clep_l,clez;., cre,41} N E(G) # 0.

(i) If either ng = 0 and p = 1, then {ciep, c1ep01} NE(G) # 0.
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- Now combining Claims 5.35 through 5.39, and applying Lemma 4.6 to Co
and Cs, and Lemmas 3.3 and 4.7 to Cy, we see that (G,C) is of Type 13.

Subcase 3. Claim 5.28(iii) holds.
Let d = d; if na = 2, and let d = dp if n3 = 0. Arguing as in the ﬁrst half
of the proof of Claim 5.20 of {4], we obtain:

Claim 5.40. {dby,dc1} N E(G) # 0.
Arguing as in Claim 5.21 of [4], we obtain:

Claim 5.41.
(i) If ng =2, then {c1e0,c1e1} N E(G) # 0
(ii) If n3 =0, then c1e1 € E(G).

Applying the second half of the proof of Claim 5.20 of [4] to {bo,co, €0}
as well as to {c1, ¢z, €0}, we obtain the following two claims:

Claim 5.42. {dby,de1} N E(G} # 0.
Claim 5.43. If nz =2, then {e1c1,e1d1} N E(G) # 0.
Arguing as in Claim 5.37, we obtain:
Claim 5.44.
(i) If no = 2, then ({boay, bod} U {bge; |0 < 2z < nq}) N E(G) # 0.
(ii) If no =0, then ({bod} U {boe; |0 <z < ng}) N E(G) # 0.
Arguing as in Claim 5.38, we obtain:
Claim 5.45.
(i) If no = 2, then ({bocy,bod} U {boe |0 < z < ng}) N E(G) # 0.
(ii) If no = 0, then ({boc1,bod} U {bpe; |0 < z < ny — 1}} N E(G) # B.
Now combining Claims 5.40 through 5.45, and applying Lemma 4.6 to

Co, and Lemmas 3.3 and 4.7 to Cy, we see that (G, () is of Type 14.

Case 3. (ny;n2) = (2,2). -
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For each 0 < z < ng — 1, we get ¢y ¢ K(ey, ez41} by applying Lemma
4.9 to C4 and Cy, and by symmetry, we also get by ¢ K (e, ez41). Since-Cy is
nondegenerate, this implies

(5.42) K (e, ez41) N {bo, b2, co,c2} # O for all 0 <z <ng—1.
Arguing as in Claim 5.27, we obtain:

Claim 5.46. Let 0 < z < nyg— 1. Then either by, co € K(ez, €z41) 0r by, co &
K(ez,ez41)-

Claim 5.47. One of the following holds:

(i) there exists p and q with 1 < p < ¢ < ng — 1 such that ¢; € K(ex, €xt1)
forall0 <z <p—1, and {ba,c0} C K(eg,e541) forallp <z < g-1,
and by € K(egz, ex41) forallg <z <mny-—1;

(i) bo ¢ K(es,ext1) for all 0 < z < ng — 1, and there exists p with 1 <
p < ng — 1 such that ca € K(eg,ep41) for all 0 < 2 < p—1, and
{beCO} g I{(e:r:a ea:-l-l) fOT‘ all p S z _<_ 4 — 1;

(i) K(eg,epqpr) N{ba,co} =0 for all 0 < z < ny— 1, and there ezists p with
1< p< ng—1 such that cz € K(eg,epq) forall0 <z < p-—1, and
bo € K(ey,€pp1) forallp<z<ng—1;

(iv) c2 ¢ Klez, exy1) for all 0 < z < ng — 1, and there exists p with 1 <
p < ng — 1 such that {by,c0} C K(ez,epy1) for all0 <z <p-1, and
bo € Keg,ezq1) forallp<z <ng-1;

K (e, €za1) N {bo, b2, 0. c2} = {2} for all 0<z<ng—1;

K

) K(ex

(vi) K(eg,epq1) N {ba,b2,co,c2} = {b2,co} for all0 <z <my —1;
) K(ex,epq1) N {b01b2360162} ={bo} forall0 <z <ny— 14
) K(

Klez,ez41 ﬂ{bg, bq, co, Cz} {Cz} forall) <z <ny—2, and {bo, bg,Co}
C K(en,~1,€n,); OT

(ix) K(ez,ery1)N{bo,b2,co,c2} = {bo} for alll < z < ng—1, and {ba,co, 2}
g I{(eo,E]_)-_ ‘

Proof. If ¢2 ¢ K(eo,e1), then by Lemma 3.10(I)(ii) and (5.42), we have c; ¢
K(ez,epq1) and K ez, ezy1) N {bo,b2,c0} # @ forall 0 <z < ng—1, and in
view of Claim 5.46, we therefore see that (iv), (vi) or (vii) holds by arguing as
in Claim 5.16 of [4]. Thus we may assume

(5.43) o3 € K (eg, 1)
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Similarly we may assume bg € K (en,—1,€x,).
We first consider the case where

(5.44) K(ez,erp1) N{ba,co} =B forall 1 <2< ng—-2.

In this case, arguing as in Lemma 5.16 of [4], we see that there exists p with
1 < p < ny— 1such that '

(5.45) ez € Kleg,epqpr)forall0<z<p—1land
bg € Kleg, ezp1)forall p<az<ng—1.

Subclaim 1.

(1) If {b3,co} C K (eo,e1), then ¢z ¢ K(ez eppq) forall 1 <2< ny—1 (so

- p=1).
(ii) If {b2,c0} C K(em_l,em) then by ¢ K(ey,ery1) for all 0<z<ng~2
(sop=1mn4—1).

Proof. If {by,co} C K{eg, e1) and there exists z with 1 < z < n4 ~ 1 such that
¢z € K(ez,ex41), then 2 = 1 by Lemma 3.5, and hence {bz,¢0} C K(ey,es)
by Lemma 3.6, which contradics (5.44) (recall that we are assuming nq > 3 in
Proposition 5). This proves (i), and (ii) can be verified in a similar way. I

. Returning to the proof of the claim, assume for the moment that {b3,¢q} C
K(eo,e1). Then by Subclaim 1(i), ¢z ¢ K(ez,eppy) forall 1 < z < mg— 1
and p = 1, and hence K(en,_1,€,,) N {b2,c0} = @ by Subclaim 1(ii). Conse-
quently, it follows from (5.43) and (5.44) that (ix) holds. Thus we may assume
K(eo,e1) N {b2,c0} = B. Similarly we may assume K(en,—1,€n,) N {b2,co} =0,
and it therefore follows from (5.44) and (5.45) that (iii) holds.

We now consider the case where (5.44) does not hold. In this case, we
get {1 < 2 < ny—2|{b,co} C K(ez,exe1)} # 0 from Claim 5.46. Let
p=min{l < 2 < ng—2|{bj,c0} C Kfey,ep41)} and ¢ = 1+ max{l <
< ng— 2| {bg,Co} C K(ez,ez41)}- Then p < ¢, and by Lemma 3.10(1)(iii),
{bs,¢0} C K(em,erH) for all p < & < ¢— 1. By Lemma 3.10(II) and. the
minimality of p, K(ez, ez41) N {bo,bg,ﬂo} =f@forall 1 <z < p-1, and
hence ¢; € K(es,€541) forall 0 <z < p—1 by (5.42) and (5.43). Slrnllarly
bo € K(es,ez41) forall g < z < n4 — 1, and we now see that (i} holds. .

By symmetrv, we may assume that (i), (11 (i), (v}, (vi) or (viii) of Claim
5.47 holds. If Claim 5.47(i) holds, then arguing as in Case 1 of Proposition 3
of [4], we see that (G, C) is of Type 15. If Claim 5.47(ii) holds, then combining
the arguments in Cases 1 and 2 'of Proposition 3 of [4], we see that (G,C) is
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of Type 16. If Claim 5.47(vi) holds, then arguing as in Case 2 of Proposition
3 of [4], we see that (G,C) is of Type 19. If Claim 5.47(v) holds, then arguing
as in Case 2 of Proposition 3 of [4] {(we apply the first half of the proof of
Claim 5.20 of [4] to {en,-1,€nrq: b0} and {en,_1,€n,, 0}, and the second half
to {b1, b2, do} as well as to {bg, b1, en,}, {€0, €1, €n, } and {co, ¢1,an, }; We apply
the proof of Claim 5.21 of [4] to {a1,a2,c0} and {a1,az,do} or {en,,an,c0}
and {e,,,a9,dp}, according to whether ng = 2 or ng = 0), we see that (G,C)
is of Type 18. If Claim 5.47(viii) holds, then combining the proof of (5.16) of
[4] and the proof of Claim 5.38 in Case 2, and applying the first half of the
proof of Claim 5.20 of [4] to {en,—2,€n,—1,c0}, we see that (G, C) is of Type
20. Thus we may assume that Claim 5.47 (iii) holds. Arguing as in the proof
of (5-16) of [4], we obtain: ‘

Claim 5.48.
() {epr1ep-1,€pp101} N E(G) # D
(D) {ep-1€p+1,€p-1b1} N E(G) # 0.

‘Applying the first half of the proof of Claim 5.20 of [4] to {ep—1,€p, b2}
and {ep,ept+1,¢0}, we obtain:

Claim 5.49.
(i) {bre1,biep—1} N E(G) £ 0.
(i) {e1b1,crepp1} NE(G) # 0.
Arguing as in Claim 5.37 of Case 2, we obtain:
Claim 5.50. {b1ey—1,b1€p, 016511} N E(G) # 0.

Arguing as in Claim 5.37 with C% and a,, replaced by C; and dp, we
obtain:

Claim 5.51. {clep_l,lclep,clepﬂ} NE(G) # 0.

Applying the proof of Claim 5.14 of [4] to {en,,a0,do} and {eo, do, @n, },
we obtain:

Claim 5.52.

(i) If no = 0 and p = ng — 1, then {biey,—1,b1€n,—2,C1€0,—1, C1En,—2} N

E(G) #0.
(ii) If ng =0 and p=1, then {c1e1,c1€2, h1e1,b1e2} N E(G} # 0.
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Now combining Claims 5.48 through 5.52,-and applying Lemma 4.6 to Cy
and:C3, and'Lemmas 3.3 and 4.7 to Cy, we see that (G,C) is of Type 17.
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