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Local analytic solutions to the DNLS equation in
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Abstract. We prove the local well-posedness of the evolution system

gt + (a(|al” + 24))x — (lg|* +24)y + igez =0
A + %(Q+a)y =0
7(0,X) = go(X)
in the analytic Sobolev spaces X™ (r(T')), m > 7, with the initial compatibility
conditions (¢o+Go)y = —2A40, and |go|* +24, = 10,, where Ay, b, € X™ (r(T)).
This model, due to E. Mjolhus and J. Wyller ([11]), appears in the physical
context of Alfvén waves propagating in a parallel (or quasi-parallel) direction
to the ambient magnetic field and is a generalisation of the DNLS equation.
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§1. Introduction

When studying weakly nonlinear waves in fluids, the reductive perturbation
method ([15],[2]) appears to be a useful unifying technique. In fact, it leads to
well known partial differential equations such as the Burgers equation, the Ko-
rteweg de Vries (KdV) equation and the Nonlinear Schrédinger Equation. In
particular, for weakly nonlinear, weakly dispersive, MHD waves, propagating
perpendicular or obliquely to the ambient magnetic field, this reductive per-
turbation method allows to derive the KdV equation for magnetosonic waves

([81,19D):

(1) Up + Upge + Uty = 0.
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Then, by taking into account weak dependence on the transverse direction,
this KdV equation was generalized in [7] by Kadomtsev and Petviashvili:

2) { Ut + Uggr + Uy +uty =0

Vg = Uy.

Similarly, when dealing with the singular case of parallel propagation, the
above mentioned reduction technique results in the Derivative Non Linear
Schrodinger equation (DNLS) (see for example [3]):

(3) Gt + iqex + (lgq)e = 0.

The DNLS equation has been studied by many authors (see for instance [14],

[16],[6], [10]).

Then, by allowing weak dependence on the transverse directions, Mjolhus and
Wryller derived a 2-dimensional model for parallel propagating MHD waves,
with the assumptions of weak nonlinearity, weak dispersion, weak diffraction
and slow evolution (see [11], [13] and [17]), namely

W {7 +a(a§((lBl2+2B B,)B) — By (B2 + 2B,B,)) + %8 =
9B 3By _

where B, is the ambient magnetic field, and the magnetic field B is such that

1 1
B = (B, + €By,€2 By, €2 B,),

(weak nonlinearity)

B =B, + iBz,
VA
=gz dF= 2vA
with vy = 4533
and finally
& = e(x — vat) (weak dispersion)
(5) n=ery (weak diffraction)

7 = €t (slow evolution).

Note that the small parameter € does not appear in (4) since this equation is
invariant by the transformation

(B, BL,¢'\nf,7') = (2B, By, e "¢ e 2 e 27).
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Finally by normalisation of the physical constants, (4) can easily be brought
to the canonical form:

(6) { qt + (Q(|Q|2 + 2A))$ - (|Q|2 + 2A)y + iQ$$ =0
Az + 5(g+7)y =0,

which is clearly a 2-dimensional extension of the DNLS equation, in a similar
way that the KP equation is a 2-dimensional extension of the KdV equation.

We will be concerned here with the Cauchy problem associated to (6).
Results in the classical Sobolev spaces H*(R?) do not seem easy to get, essen-
tially for two reasons:

First, when considering the linearized problem

(7) { Gt + 1qze — 2Ay =0
Ay +3(q+7)y =0,

the linear operator which generates the solutions of the Cauchy problem as-
sociated to (7) has the form, when D, = %Bw and Dy = %ayv

L(Da, Dy) = 5000,
where D, = %ax, D, = %Gy, and

3 3
5(51,52)=—a+ filJrf—Q-
1

The expression e5(€1:€2) does not oscillate for fixed &, and letting & tend to
infinity. Actually, for fixed &,

lim expitS(&1,&2) = 1.
62*}00

For that reason, one cannot obtain any dispersive estimates with smoothing for
the free evolution of (6). In particular, local smoothing estimates or Strichartz
type inequalities with smoothing do not seem to be available here.

Secondly, we only know three conservation laws for (6)

with

To(t) = / adady, Ji(t) = / g2 dudy
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and
To(t) = / [(lgl? + 2A4)? + 2iqgs)dudy,

which are natural extensions of the three first time-invariants for the DNLS

equation:
Jo:/qua Ji :/|Q|2dx

Jp = / (lal* + 2iqz) de.

and

One may try to use these invariants in order to derive a local existence result
for (6) in the classical Sobolev spaces H*(IR?), similarly to the case of the KAV
equation, the KP equation, and many other dispersive models. This energy
approach seems to fail in the case of (6) because the nonlinear term contains
the formal anti-derivative d, ! (q +7)y. For this same reason, we were not able
to find any a priori estimates in H*(R?) for possible solutions of (6).

However, an easy formal computation shows that, if we take the auxiliar evo-
lution variable u = |g|> + 2A, we obtain

(8)
{Qt + 1qzy — Uy + (UQ)x =0

up — Oy Muyy + 5(q — Qay — (wlg + 7))y + i(q4uz — 4Tez) + 2Re(q(ug)z) =0

and we only get an anti-derivative in the linear part. The price to pay for this
operation is the appearance of a big “derivative-loss” in the non linear term.
Many authors deal with this kind of problem by introducing the analytic
Sobolev spaces, which are essentially the functions f € L?(R?) that can be
extended to holomorphic functions in a band containing the real axis. For
instance, those spaces were used by Hayashi (see [4],[5]) to overcome derivative
losses in nonlinear Schrodinger equations.

In [1], de Bouard extends this result to nonlinear “non elliptic” Schrédinger
equations, by proving the well-posedness in the analytic Sobolev spaces of:

9 iU, + L(U) + G(U,T,VU,VU) =0
) { U(X,0) = Uy(X)

where G is a polynomial such that G(0,0,0,0) = 0, the self-adjoint operator
L is given by

LU(¢) =P(&)U(Q),
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and P(¢) is a symmetric matrix symbol with real entries P;(£) € L7?

loc*

Here, we will generalize this result to the case where the linear part presents
a singularity of the kind:

(10) L == L1 —|— LQ,
with L self-adjoint as in [1] and
Ly = Diag(ie1 0,02

T, P

. ien 0y 02 . ) € €{0;1} and k; € [1,n],

since, as we will see later, (8) can be reduced to this form.

The rest of this paper is organized as follows: In the second section, we in-
troduce the analytic spaces and equip them with a local structure, which is
crucial for our proof. At the end of this chapter, we will state our main theo-
rem.

In the third section, we prove the local well-posedness of (9), with L given by
(10): we first build a family of approximate solutions {u,}¢so by regularizing
the anti-derivatives, and then take its limit as e — 0.

In the last section, we apply these previous results to equation (6). For tech-
nical reasons, we will be dealing with a system possessing seven unknowns:

(@+Gq—T @+ D> (@ — D> (¢ + D)y (@ — D)y, |a]* + 24).

Finally, we will return to the initial system (6).

82. Sobolev analytic spaces
2.1. Definitions and first properties
We begin by introducing the analytic spaces used in [4],[5].

Definition 2.1. Let m €N, r >0 and n > 1.
We set(analytic Sobolev space of order m)

~

X™(r) ={f € L*(R"), |If |[xm(ry =< a(r,©)0*™(€) ], f >12@n)< +00}

m
2

where o™ (&) = (1 + |£]?)2 and

q(r,&) = q1(r,§) + qa(r H cosh(2r;) + ka sinh(2r&;) H cosh(2r¢;).

Jj=1 J#k
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We also introduce the Hardy analytic spaces:

Definition 2.2. Letr >0 and n > 1:
We set S(r) = {z € C",V1 < j <n, |Imz;| <r},

L. = {f € L*(R"), fis analytic on the band S(r),
and ||f||%r = Supye}—r,r["Hf(- +iy)||%2(Rn) < +OO},

Yn(RY) = {f € Ly, If I}, @n) = D N102F1IZ, < +oo},

la|<m

and, form > 1,

Yo (RY) ={f/Vf e L |lf|

Ve = Y, |102fI7, < +oo}.

1<]a|<m
We now state two results proved by Hayashi in [4]:

Lemma 2.3. Let f € L,.
Then

[aolF©Pa < 21111,
where f* is the trace of f on the real azis. Conversely, if [ q (r,§)|f(§)|2df 08

finite, then f can be extended to an analytic function over S(r), and
171, <2 [ aolf) P

Lemma 2.4. We set

L.o={f¢€ L3(R™), fis analytic in the band S(r),

and ||f||%rz = Zsupy/yke]—r,r["*l / ||azkf( + iy)”%?(Rn)dyk < +OO}'
k=1 -

Then
/@@@M@ﬁEST“W%W

Conuversely, iffqg(r,§)|f(§)2d§ is finite, then f admits an analytic extension
to the band S(r) and

W%MSW”/mmOWm%é
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This leads to the following corollary:
Corollary 2.5. Let m € N and r > 0. Then

Yiy1(r) C X™(r) C Yiu(r)
Finally, we give a last result:

Lemma 2.6. Assume that m > [n/2] + 1. Then, for w,...,w, € Yy (r),

k k
I TT willye < €D (T willys, e ltlly -
7j=1

I=1 j#l

Proof: see [4].
We can state now our main result:

Theorem 2.7. Let (X,t) € RZ x R and m > 7.
Let q, € X™(10), 7o > 0, such that

(11) (9o + To)y = —2A,, where Ay € X™(r,)
and
(12) |0o|? + 24, = 1y with 1 € X (r,).

Then there exists M > 0, T > 0, depending only on q, and 3r : [-T,T] —
[ro,7(T)] strictly decreasing on [0, T], even, with r(0) = r, such that the system

q + (q(lal* + 24))2 — (la* + 24)y + igez =0
(13) Ay +5(g+7)y =0

(0, 2,y) = qo(z,y)
has an analytic solution

q € L®(=T,T,X™(r(T))) N L*(=T,T, Y,y 1, (r(T))),
with
¢ € L®(=T,T, X" *(r(T))) N L*(=T,T,Y,;,_,(r(T))).
Moreover,
q € Cu([=T,T|; X™(r(T)))

and is unique in the class

B(T) = {w € Cu([=T,T}; X" (r(T))),

T
sup {[w![%m (o)) +M/ ||w]
< T

%:Hrl(r(t))dt < 00}

Here C,, denotes the weak continuity.
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Remark 2.8.

Condition (12) is natural, since by differentiating the equation with respect to
y and taking the real part, we get:

(|q|2 + 2A)yy = am[_2At + iqqry + (uq)y]

2.2. Local Spaces

In this section, we define the local spaces X7} () where B is a open ball of R2.

Lemma 2.9. Letr >0 and m € N.
There ezists a family {Cyo(r)}acne of RY, with Y Cy < 400 such that

f e X™(r) if and only if ZC ) |0% f||%m Ry < +00.
|>0

Moreover,

1F1my = D CalrIOS F1iimny:

|la[>0

Proof:
One can write

s 20
~HE e

and, by Fubini-Tonnelli,

2r)? (2r)*F+! 2k+2
)+ Z 11 Z )(]; ke )

Jo=1j#jo k>0

Z C €2a

la[>0

Thus, for f € X™(r),

11y = <a@,8)o™™ (O, f >r2@n

— / a(r, )| A7 £ ()| 2de
- /ZC (r)E20) | A £ (£)[2de
|a|>0

and again by Fubini-Tonnelli,

11y = D CalrIO% S |Im -

la[>0
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Note that we have obtained another formulation for the scalar product of
X™(r):
< f.g>xpm) =< a(r,)0”™(E)f,§ > r2rn
= Colr) < 0% f,0%9 >pm e -

|20

Definition 2.10. For all ball B C R", we set

Xg ) ={f € PB)/f gy = D Calr)0%f fim(m) < +00}-
o]0

We now shortly prove the following elementary property:

Lemma 2.11. Let m € N and 0 > 0. Then, for all ball B C R", the embed-
ding
XpH(r) = X3 ()

18 compact.

Proof:
Let B; be the unit ball of Xg”‘s(r) and {fn}n>0 a sequence in B.

For all n € N,
7 Calnl|O% fullfpmes (s < 1.
|| >0

Thus, for every fixed «, the sequence ||0% fn||gm+s(py is bounded. The injec-
tion
HP(r) — HZ(r)

being compact, there exists a subsequence {9% f,, (n)}nzo which converges to
F, in H™(B).
Plainly,

F, = 0% F,,

and using a classical diagonal process, it is clear that there exists a subsequence
fo(n), still denoted f,, such that for all « € N",

Tim (|05 fo — 0% Fol g ) = 0,
and, for example,

|05 fr — 8?(Fo||Hgl(r) <1, for all n.
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Hence, since Cy||0% fn — 0% Follap () < Ca (With 37, Co < +00), we have by
dominated convergence that:
i [ fn = Follxp@) =0,

and yet the proposition is proved.

We end this section by the following remark:

Lemma 2.12. Let m > 2 and n = 2.
Then

V(f,9) € X" (r), fg € X" (r) and ||fgllxm@y < ClIfllxm |9l xm (-
Proof:

From Lemma 2.6, one gets, for f,g € X™(R?),
1f9lly,.ry € Cllf v 911y, )-
Moreover, note that for f € Y,,(R"),
1OZf (- + i)l 2wy = 10X f (- + 1)l L2 (r2)-

Thus, for 0% f,0%9g € L, 2 and for all |a| < m,

> 0% (fa)ll3,,

|a<m

= 5> Supycpre s [ 10505 F9) + ) ey

r
|a<m k=1 -

<O Supye retet | 10(F -+ i) Byl
k=1 -r
k=1 -r
+ / 19+ i) (£ + 39) 2 sy i

< CZSUpy/yke}r,r[n—I/ (1f 4 3|7 oy 1024, (9) (- + 39) | 7y (e
k=1

+ g+ i)z o102, (F) (- + i) [Fm o))y
< COUfImay Do 110%9llz, +gllmey D 103 F112,,)

la]<m la|<m
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and the lemma is proved by Lemmas 2.3 and 2.4.

§3. Approximate solutions for the System (9)

In this section we treat the scalar case, the generalisation for systems being
straightforward.

For all € > 0, we consider the approximate system Se:

(14)

iuy + Leu + G(u, @, Vu, Vu) =0
u(X,0) = uo(X)

where (X,t) € R" x R, G is a polynomial such that G(0,0,0,0) =0 and

7 fj 1

Le(u)(§) = 5‘]2.01)6(5) with pc(§) = ma (Jo, J1) € {1;n}.
J1

The system S, fulfils the conditions of theorem 1 of ([1]), hence:

Lemma 3.1. Let m = 2[n/2] +5 and u, € X™(r,) for some r, > 0.
Then, there exists M > 0 and T, > 0 such that the system S¢ has an analytic
solution

ue(t) € C([~Te, Tel; X™ (r(T))) N L* (=T, Te; Yo 41 (r(T)))
—[t|MeTe
with, for all t € [—T¢, T¢], u(t) € X™(r(t)), r(t) =roe o
Moreover, this solution is unique in the class:

B(T) = {w € C([-Te, Te); X (r(Te))),

loll ) = 512 lolBnoy + Me / loll2 . (r(8))dt < oo},

3.1. Uniform estimates for u.

Lemma 3.2. In the Lemma 3.1, one can choose T =T, and M = M, inde-
pendently of e.
Moreover, there exists C = C(u,) > 0 such that

el o (~rrix0m (r (7)) < C-
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Proof: The proof of this lemma relies essentially on the proof of Theorem 1 of
[1]. For clarity, we will shortly present this proof. For details, one can refer to
that paper.

We denote B, the ball of radius p = 2|u,||xm(r,) in Bn(Te), and for every
v € B,, we consider the equation

(15) { iue; + Leue = —G(v,0, Vo, VD)

u(X,0) = uo(X).

By setting w = we = )ﬂ(uf, |B] < m, and taking the Fourier transform of (13),
we get

(16) iy + Leid = —0° F(v).

Multiplying this last expression by ¢(r(¢), £)w(§) and integrating the imaginary
part,

0
a”w(t)ng(m(r(t)) —2r' () < |€%qu (r (), ) (€), (&) >ro(mn)

< —2Im < a)ﬁ(F(Q)),q(’l"(t),f)UA)(ﬁ) >L2(R”)a
since

atq ZQT £kQI )35) + h(gvt)a

where h < 0.

Thus, by Cauchy-Schwarz inequality, and integrating between —T, and T¢:

Te
luellB,, ) < ol [Xem(y) +2/T 105 F (W), 11w (9) Iy s B3
Finally, using the fact that

(17) IF @)y, ) < QU ) 0llyiya ) i = [n/2] +1
where @ is a polynomial with positive coefficients, we get(see [1] for details)

1
(18) luellcry < 25 +20Q(p) T, +

NG >
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In order to get a contraction in B, and therefore obtain a fixed point u,
solution of S, it is enough to choose M, and T, such that

(19) 2Q() 2T, + ) +

1
M, <5

1
V2
which can be done obviously independently of e. More, for all ¢t € [-T,T],

lull%,, () < Cuo)

and we have proved Lemmas 3.1 and 3.2.

Remark 3.3. Uniqueness
In [1], the uniqueness of the solutions of (14) is given in the class
Bm(T) = {w € C([=T,T}; X™(r(T))),

T
sup [[w][5m (1)) +M/ ||w]
< 7

%CZH(T(t))dt < 00}

More precisely, it is shown in [1] that if ui,us € B, are two fixed points
solutions of (14) corresponding to the same initial data ¢ € X™(r,),

1
w1 = u2llg,, (ry < (2Q1(p, p) +2v/PQ2(p, p)) (2T + wrllu1 — u2l|g,, (1))

where @1 and Q3 are two polynomials and once again p = 2|[¢||xm (r,)-
Therefore, by eventually choosing new values for T" and M, we get u; = us.

3.2. Uniform estimates for .

Lemma 3.4. Assume that u, € 8;]_1Xm(r0), ie. uy = Oy ¢, with ¢ €
X™(ro).
Then there exists C = C(u,) > 0 such that

|luell Lo (— 13 xm=20(1y) < C.

Proof:

We begin by proving the existence of w..

We fix t € |-T,T7.

For h small enough (in order to have t + h € |-T,T]), we set

FIE) = (et + h) = ue(t)).

S| =
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It can be seen from the system S¢ that

(20) ul € C([=T, T); X™2(r(T))).
Therefore, a standard argument shows that

FM (@) = ul as h — 0 in X™2(r(T)) weak.
An elementary computation shows that

O (1) + Lef (8) + RSP (1), ue(t) = 0,

= P (OR1 (ue) + P () Ra(ue) + V() Ry (ue) + V), () Ra ()

and
Rj(ue) = Rj(ue(t), we(t + h), Vue(t), Vue(t + h))

are polynomials.

More, for all ¢,

Ue(t + h) — ue(t)
{ Vue(t +h) = Vue(t) in X™ 1 (r(T)) strong.

Hence, uy(t) exists in X™~4(r(T)), and, setting v = v, = ey,

{ vy + Le(v) + R(v(t), ue(t)) =0

(21) v(0) = —Le(uco) + G (teo)-

We now consider equation (21):
We have v, € Xp—2(T), m —2 =2[n/2] + 3 and

R (v(#), ue(®))lv,—atr) < CU0llvi_amll + [1VOll5 )

Therefore, the estimate (17) holds for the nonlinear term R(v,u.) and we
can apply the fixed-point technique described above to equation (21): this
equation possesses a unique solution vg € By,_o(T'). Moreover,

[os ()| xm-2(r(1)) < Cllollxm—2(r,)-

Also, u. € By, (T) satisfies (21). Therefore u. = vgs and

[ ()] xm—2(r(1y) < Cllug ()] xm—2(r(1))
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where C is a positive constant independent of e.
Finally,

|luol I xm=2(r,) < [ Lethol| xm=2(r,) + |G (to)|| xm-2(r,)
and

2

||Leuo||§'m72(ro) = /q(,r,(o)’é‘)O_Z(mm(é‘) (6 +312 )2| 0| d£
4 4
— 2(m—2)
= [0 @ g e

IN

[1boll3m (r(

84. Limit of the approximate solutions

Lemma 4.1. Let m > 2[n/2] + 5 and u, € X™(r,) such that Op; & = uo
where ¢ € X™(r,).
Then there exists a sequence €, — 0 such that

te, — u in L®(=T,T; X" (r(T))) weak-*
and
u. — ' in L®(=T,T; X™ *(r(T))) weak-*

Moreover, for a € 10,2],

Ue, = u in C([=T,T), X;)"*(r(T))) strong.

Proof:
The first two assertions are consequences of Lemmas 3.2 and 3.3.
Since the embedding

Xy 2(r) = X5°(r)

is compact, the standard Aubin’s compactness lemma yields, up to a subse-
quence,

e, — u in L*(=T,T; X""%(r(T))) strong.

loc
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Moreover, one can write, for all ¢,,t; € [-T;T]:
[tter, (81) = e, (t0)[[m-a

< / g(r(T), )02 uz, (1) — 1, (1) [2d

a 1-2
< lue, (t1) — e, (t0)||)2(m*2(r(T))||u5n (t1) — te, (to)||Xm2(r(T))
t1

<C t ||ulen(7—)||)5(m—2(r(T))

< Clty — o]

and u, is equicontinuous in C([-T;T]; X" *(r(T))), 0 < a < 2.
By the same calculations,

lu(ty) — ulto)|%,,_, < Cltr — tol.
Now, by setting fp,(t) = ||u(t) — u., (t)||§(lm_a,

T
/ fn(t)dt — 0 as n — 400
-7

and f, is equicontinuous, hence

sup fn(t) = 0 as n — +oo.
[_TvT}

Lemma 4.2.
10z, Le, te, — —ngou weakly-* in L (=T, T; X™ 2(r(T))).

Zj1
Proof:
It is clear that Oy Le,ue, — v in L®(=T,T; X™ 2(r(T))) weak-*.
Let f € LY(=T,T; X™2(r(T))).
On one hand,

T
/T < al’jl LCnUEn (T)7 f(T) >Xm_2(T(T)) dr

T
— /T < U(T),f(’r) > Xm=2(p(T)) dr.
On the other hand,

T
/T < al’jl LETLUGn (T)7 f(T) >Xm_2(T(T)) dr

T
= —/ < 92 ’LL(T),f(T) >Xm72(r(T)) dr

T
Jo
-T

T

m— ¢ —En p

+ / <A (T), 0 f(7), Oy, ulT) > 2y
— n 71
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By dominated convergence, it is clear that the above integral tends to 0, and
the lemma is proved.
We can already state that

(tug + G(u, @, Vu, Vi), = —0p; uin L>(=T,T; X" Yp(T))).

Zjy
The nonlinear terms also converge, since

te, — uw in C([-T,T], X""%(r(T))) strong.

loc

Finally,

Remark 4.3.

One has
u € Cyp([~T,T], X™(r(T))),

Le., for all p € X" (r(T)), t =< 9, u(t) >xm( (1) is continuous.

In fact, it suffices to notice that
q € L>(=T,T; X™(r(T)))

and
¢ € L>®°(=T,T; X" %(r(T))).

(See for instance [12], Vol.1, Chap.1).
We finish this section by the following theorem:

Theorem 4.4. Let (z,t) € R" xR, m = 2[n/2]+5, and G a polynomial such
that G(0,0,0,0) = 0.
We assume that for some r, >0, u, € X™(r,) such that

Up = Py with ¢ = 8;; Uy € X™(10).

Then, there exists M >0 and T > 0, depending only on u, and r: [-T,T| —
[ro,7(T)] strictly decreasing over [0,T], even, r(0) = ro, such that the problem

g + agjov + G(u,u,Vu,Vu) =0
(22) Vg = U
u(0,X) = u,(X)

has an analytic solution such that

uw€ L®(=T,T,X™(r(T))) N L*(=T,T, Y., (r(T)))
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and
u' € L®(=T,T, X" 2(r(T))) N L*(=T,T,Y,_,(r(T))).

Moreover, u € Cy([-T,T],X™(r(T))) and is unique in the class
By (T) = {w € Cu([=T,T]; X" (r(T))),

T
sup ([0l ey + M [ Il ()t < oc).
4| <T T

Proof:
We first check that u € B (T):

It is easy to see that

Suppy<rl|u()|| xm ) < oo

by replacing in the proof above ¢t by T
More, we have, for all € > 0,

T
/_T uellvz | () dt < Cluo).
Also,
T T 1 2
/ ||ue||YT;+1(r(t))dt:/ |0 () (g1 (r(2), €))2 Exie (€, 1) ||2 2 dt.
Therefore,

Tm(E)q1(r(t), €))2 €. (€,1) — o in L2(—T, T; L*(R)) weak.

Since 0, (£)&(q1 (r (1), f))% € C*°([-T,T]xR), a simple argument of uniqueness
of the limit in the distributional sense yields

W=

= om()(q1(r(t), ) 2Ea(E, ).

Uniqueness of this solution can now be obtained as in Remark 3.3, since the
same a priori estimate holds here. Therefore, we only need to show that

u(0,.) = uo(.). In fact, for ¢ € X™(r(T)) fixed and for all n,

< Ugy @ > xm(p(1)) =< e, (0), & >xm (7)) =< u(0), ¢ >xm(r(1)) -
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85. Application to Alfvén waves
5.1. The case of systems

As also noticed in [1], it is straightforward to generalize these results to the
system (9):

Theorem 5.1. Let (z,t) € R* x R et m > 2[n/2] + 5.

Let U = (uy,u2,...,uq) and {Gj}1<j<q d polynomials such that G;(0) = 0.
We set BY,(T) = {B%}! and L = Ly + Lo,

where Ly is a self-adjoint operator with a symmetric matriz symbol with real
entries P; € Ly, and

Ly = Diag(ie10,,' 05, ..., i€, 0, 05, )

where €; € {0;1}, k;j € [1,n].

Then, if for each €; = 1, uy; € 3;11Xm(r0),ro > 0, there exists T > 0 and
M > 0 depending only on Uq and r : [=T,T] — [ro,r(T)] strictly decreasing
over [0,T], even, r(0) = r,, such that the system

iU+ LU+ GU =0
(23) { U()‘;v 0) = Uo($)
where
G1(U)
G(U) = - ,
G4(U)

has a solution U such that

m

U e L®(-T,T;X™(r(T))) N L*(-T,T;Y? 11(r(T)))

and
U’ € L®(-T,T; X" 2(r(T))) N L*(~T,T; Y, (r(T))).

Moreover,
U € Cu([-T,T); X™(r(T)))

and is unique in the class BY (T').

5.2. Proof of Theorem (2.7)

We consider the following system:

iQ: + LQ +G(Q) =0
(24) { Q(X,0) = Q,(X)
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with Q) = (a, b,a, 3,7, 57“)7

0710y —0Opw 0 0 0 0 0
— 0Oy 0 0 0 0 0 0
0 0 0 —Ou 0 0 0
L= 0 0 —0p O 0 0 0
0 0 0 0 —i07'0yy —0Os 0
0 0 0 0 — 0O 0 0
0 0 0 0 0 0 10,10y,
and
2G =

uag + af(a,b) — $(a® — b?),

—iuby — ibf(a,b)

UzGy + uay + ag f(a,b) + 2ag(a, a, b, B) — (azay — byby + acyy — bBy) + vy
—iugby — iulBy — iby f(a, b) — ibg(a, a, b, B)

UyQy + Uyy + ay f(a,b) + 2ah(a, o, b, B,7y) — (ai — bz + ary, — bdy)

—ityby + wyy — by f(a,b) —ibh(a,,b,3,7)

20y + (acy — bBy) + 2(uya) + 2(ua)y, — 2uy(a® — b?)

where )
fla,b) = Z(G'Q - bQ)x — Qy,
1
g(a‘aaa ba B) = Z(a’i +aa; — bi - bBZL‘ + 4:0[y)7
and

1
h(aaaa baﬂﬂ’) = 1(2729 + QgpGy — bxby + A0y — bﬂy)

As mentionned in the introduction, this system was obtained heuristically by
setting

(a” ba aa/Ba’Ya 63“) = (q+6a q—q, (q +§)x, (q _a)xa (Q+§)ya (q _Q)ya |q|2 + QA)’

in order to apply Theorem 5.1.
By choosing a, € X™(r,) and b, € X™(r,) such that

1
Ao = ¢z, P € Xm(ro) and Z(ag - bg) - ¢y = Py, YPs € Xm(ro)
with

Qo = (am bo, Qo s box s oy boya (Gg - bg) - ¢y)a
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the system (24) has a solution in the product space BY,(T) = (BY(T))? x
(B®_,(T))*, as in theorem 5.1.

m—1
We now prove that

1
V(t) = (a_a:vaﬁ_bxav_a’ya’y_byau:v_z(az_bz)x‘i‘ay) =0forallte [—T,T]

By construction, by taking U = (vq,v9,vs,v4), it is easy to see that U €

w_,(T) satisfies a system of the form
(25) Up+ L1(U) + R1(Q, VQ) R (U, VU) = 0

where R; are polynomials, R2(0,0) = 0, and @ is a fixed function (the solution
of (24) with initial data Q,).
Since @ € B/ _,(T'), the computation presented in Remark 3.3 remains valid

for example in BY _,(T') and therefore, for all times, U(t) = 0.

We can now prove by the same method that vs = 0, and Theorem 2.7 holds
for

o(z,1) = %(a(x,t) + b(z, 1)) and A, 1) = —%(u(w,t) gl 1))

by looking at the first two lines of the system (24).

Conclusion

We were able to prove the well-posedness of system (9) for analytic initial data.
It remains an interesting and important open problem to prove the existence
of solutions for less regular initial data, say H*(R?), for some s > 0.
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