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On certain simple cycles of the Collatz conjecture
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Abstract. The Collatz conjecture is that there exists a positive integer n
which satisfies fn(m) = 1 for any integer m ≥ 3, where f is the function on the
rational number field defined by f(m) = m/2 if the numerator of m is even and
f(m) = (3m + 1)/2 if the numerator of m is odd. Let m be a rational number
such that fn(m) = m > 1. Then we show that, if m has some simple sequences,
then the total number of positive integer m is finite, by estimating f(m) − m.
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§1. Introduction

We define a function f on the set of the positive integers by

f(m) =




m

2
if m is even,

3m + 1
2

if m is odd.

The Collatz conjecture is that there exists a positive integer n which satisfies
fn(m) = (f ◦ · · · ◦ f)(m) = 1 for any integer m ≥ 3. We call m the “starting-
number” and the smallest n the “total-sequence”.

This conjecture is equivalent to the next two conditions for every odd in-
teger m:
(1) fn(m) �= m for any n ≥ 1. (If fn(m) = m holds, then we call m a “cycle-
number”.)
(2) m has total-sequence. (fn(m) dose not diverge.)
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We consider (1) and assume that m is odd, since even number is mapped
to an odd number by iterating f . We know only one integral cycle-number:
m = 1. We call one the “trivial-cycle”.
Let m be a cycle-number. We define the numbers li (i ≥ 0) and mi (i ≥ 1) by
the following rules:
(i) We put l0 = 0 and m1 = m.
(ii) For i ≥ 1, li is the least positive integer such that f li(mi) is odd.
(iii) We put mi+1 = f li(mi).

If m = m1 = mk+1, then we call k “odd-cycle-sequence”. We write

m1 = 〈l1, l2, · · · , lk〉.

We can easily see that

mi = 〈li, li+1, · · · , lk, l1, · · · , li−1〉. (i = 1, · · · , k) (1.1)

We can write trivial-cycle
1 = 〈2〉.

If m is a cycle-number, and fn(m) = m, then we call n a “cycle-sequence”.
We can easily see that

n =
k∑

i=1

li.

Theorem 1.1. Let m = 〈l1, l2, · · · , lk〉 and l0 = 0. Then we have

m =

k∑
i=1

3k−i · 2
i−1∑
j=0

lj

2n − 3k
. (1.2)

Theorem 1.1 was proved in [1]. The theorem shows that every cycle-number
has a rational expression. So we can generalize the Collatz conjecture to
rational numbers. That is, we define a function

f

(
a

b

)
=




a

2b
if a is even,

3a + b

2b
if a is odd,

for a/b, where a, b are positive integers such that (a, b) = 1. Then the ratio-
nal version of the Collatz conjecture is that there exists a positive integer n
which satisfies fn(a/b) = 1. Except for the trivial-cycle, we know by Theorem
1.1 that there are many cycle-numbers for the rational version of the Collatz
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conjecture. The cycle-numbers for the original Collatz conjecture are integral
cycle-numbers for the rational version of the Collatz conjecture. Therefore,
the Collatz conjecture can be reduced to a problem of an exponential indeter-
minate equation on positive integers.

To consider the integral case, we must know when (1.2) becomes an integer.
If we consider the case 2n − 3k = 1 for example, we have the following:

Theorem 1.2. The exponential indeterminate equation 2n − 3k = 1 has only
one positive integral solution (n, k) = (2, 1).

Proof. Let n ≥ 3, then 2n − 3k ≡ −3k ≡ −3 or − 1 �≡ 1 (mod.8).

This solution (n, k) = (2, 1) corresponds to 1 = 〈2〉. And, the following
theorem is a result in the special case, too:

Theorem 1.3. Suppose m = 〈1, 1, 1, · · · , 1, lk〉 is an integral cycle-number,
then m = 1 = 〈2〉.

Theorem 1.3 was proved in [2]. We shall prove the next two theorem in Section
3, and 4.

Theorem 1.4. Let m be a cycle-number, n the cycle-sequence, and k the odd-
cycle-sequence. If 3/4 ≥ 3k/2n, then m1 = 〈1, · · · , 1, l, · · · , l〉 is not a positive
integer.

Theorem 1.5. Let m be a cycle-number, n the cycle-sequence, and k the odd-
cycle-sequence. If 1 > 3k/2n > 3/4, then the total number of positive integer
of m1 = 〈1, · · · , 1, l, · · · , l〉 is finite.

Combining Theorem 1.4 and Theorem 1.5, we have

Theorem 1.6. The total number of positive integer of m1 = 〈1, · · · , 1, l, · · · , l〉
is finite.

This theorem is a generalization of Theorem 1.3.

§2. Some lemmas

Lemma 2.1. Let 〈l1, l2, · · · , lk〉 = m1. If mi = min{m1, · · · ,mk} > 1, then
li = 1.
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Proof. We express mi+1 using mi. If i = k, then let mi+1 = m1. Then, by
definition, we have

mi+1 = f li(mi) =
3mi + 1

2li
.

Most right side,
3mi + 1

2li
<

4mi

2li
=

mi

2li−2

for mi > 1. Let li ≥ 2. Then we have

mi+1 =
3mi + 1

2li
<

mi

2li−2
≤ mi.

It is a contradiction to the assumption that mi is the smallest. Therefore
li = 1.

Lemma 2.2. m = 〈1, l, l, · · · , l〉 is not a positive integer.

Proof. Let m be a positive integer, k be the odd-cycle-sequence. If l = 1,
then the result is clear from Theorem 1.3. Assume that l > 1. We make
m = m1, · · · ,mk in a way similar to that of (1.1) and let k ≥ 2. Then m1 is the
smallest. Because, if li > 1, then mi �= min{m1, · · · ,mk} from contraposition
of Lemma 2.1. That means min{mi|li = 1} = min{m1, · · · ,mk} = m1.

We express m3 using m1. If k = 2, put m1 = m3. Then, by definition, we
have

m3 = f1+l(m1) =
9m1 + 5

2l+1
.

Let l ≥ 3. Then,
9m1 + 5

2l+1
≤ 9m1 + 5

16
.

If x > 5/7, then (9x + 5)/16 < x. Hence we have

m3 =
9m1 + 5

2l+1
≤ 9m1 + 5

16
< m1,

since m1 is a positive integer. This contradicts the assumption that m1 is the
smallest.

Next, let k ≥ 3, l = 2. And, we express m4 using m1. If k = 3, put
m1 = m4. Then, we have

m4 = f1+l+l(m1) = f5(m1) =
27m1 + 23

32

If m > 23/5 then (27m + 23)/32 < m, therefore for m ≥ 5,

m3 =
27m + 23

32
< m.
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It is a contradiction. We know only one positive integral cycle-number if
m = 5, i.e., m = 1.

Lastly, let k = 2, l = 2. Then, m = 〈1, 2〉 and

m = 〈1, 2〉 =
3 + 2

23 − 32
= −5 < 0

It is not a positive integer.

Now, we see the case where m2 − m1 that is an integer. Because, if m1 is
an integer, then f l1(m1) − m1 = m2 − m1 is integral, too.

Let m1 = 〈1, · · · , 1, l, · · · , l〉, m2 = 〈1, · · · , 1, l, · · · , l, 1〉 be positive integral
cycles, x be the number of one’s, n be the cycle-sequence and k ≥ 2 be the
odd-cycle-sequence. Note that the number of l is k−x, and we get the relation
n = x + l(k − x). And, let l ≥ 2, then x ≥ 2 from Theorem 1.3 and Lemma
2.2.

By Theorem 1.1,

m1 =
3k−1 + · · · + 2x−1 · 3k−x + 2x · 3k−x−1 + 2x+l · 3k−x−2 + · · · + 2x+l(k−x−1)

2n − 3k

and

m2 =
3k−1 + · · · + 2x−1 · 3k−x + 2x−1+l · 3k−x−1 + 2x−1+2l · 3k−x−2 + · · · + 2x−1+l(k−x)

2n − 3k
.

Since m2 > m1,

0 < m2 − m1 =
(2x−1+l − 2x) · 3k−x−1 + · · · + (2x−1+l(k−x) − 2x+l(k−x−1))

2n − 3k

=
2x(2l−1 − 1)(2l(k−x) − 3k−x)

(2n − 3k)(2l − 3)

=
2x(2l−1 − 1)(2n−x − 3k−x)

(2n − 3k)(2l − 3)
. (2.1)

Now, m2 − m1 is integral, 2n − 3k > 1 and 2l − 3 ≥ 1 are odd integers. It
follows that

(2n − 3k)(2l − 3)|(2l−1 − 1)(2n−x − 3k−x). (2.2)

We consider the function

g(x) = 2n−x − 3k−x.

We have,
g′(x) = −2n−x log 2 + 3k−x log 3.
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The equation g′(x) = 0 has only one solution

x =
log 3k

2n + log log 3
log 2

log 3
2

= a.

Since 3k/2n < 1,

a <
0.461
0.405

< 1.139.

Therefore, If g(x) has the maximum on x ≥ 0, then x < 1.139. Now, since
k ≥ 2 and n − k > 1,

g′(k) = −2n−k log 2 + log 3 < −2 log 2 + log 3 = − log 4 + log 3 < 0.

So, if a < b, then g(x) is monotone decreasing at b.

Lemma 2.3. Let x ≥ 0. then g(0) ≥ g(x) if and only if

6x − 3x

6x − 2x
≥ 3k

2n
.

Proof. By the definition of g(x) and, g(0) ≥ g(x),

2n − 3k ≥ 2n−x − 3k−x.

Thus,
6x − 3x

6x − 2x
≥ 3k

2n
.

Lemma 2.4. 3/4 ≥ 3k/2n if and only if g(b) ≥ g(a) for any integer a, b such
that a ≥ b ≥ 0.

Proof. g(0) ≥ g(1) if and only if 3/4 ≥ 3k/2n by Lemma 2.3. And in this case,
the equation g′(x) = 0 has only one solution

log 3k

2n + log log 3
log 2

log 3
2

<
0.173
0.405

< 1.

Therefore, if 1 ≤ b, then g(x) is monotone decreasing at b.

Corollary 2.5. If 3/4 ≥ 3k/2n and a ≥ b ≥ 1, then g(b) > g(a).
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How is the case 1 > 3k/2n > 3/4? We have the following.

Lemma 2.6. For any positive integer n, there exists at most one integer k
which satisfies 1 > 3k/2n > 3/4. The number k is given by k = �n log3 2	, if
it exists. �x	 means the greatest integer not exceeding x.

Proof. By assumption 1 > 3k/2n > 3/4, we have

0 > k − n log3 2 > − log3
4
3
.

This implies that

n log3 2 > k > n log3 2 − log3
4
3
. (2.3)

Therefore, if there exists a positive integer k, then k = �n log3 2	.

Lemma 2.7. Let α1, α2 > 1 be multiplicatively independent real algebraic
numbers, and D = [Q(α1, α2) : Q]. Let A1, A2 denote real numbers > 1 such
that

log Aj ≥ max{h(αj),
log αj

D
,

1
D
}, j = 1, 2,

where h(α) is absolute logarithmic height of α. Let b1, b2 are positive integers,
and put

Λ = b1 log α1 − b2 log α2.

Then

log |Λ| ≥ −32.31D4(max{log B + 0.18,
10
D

,
1
2
})2(log A1)(log A2),

where
B =

b1

D log A2
+

b2

D log A1
.

Lemma 2.7 was proved in [8]. Now, using this lemma over rational integers
we have.

Corollary 2.8. Let α1, α2 > 1 be relatively prime rational integers. Let A1, A2

denote real numbers > 1 such that

log Aj ≥ max{log αj , 1}, j = 1, 2.

Let b1, b2 are positive integers, and put

Λ = b1 log α1 − b2 log α2.
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Then
log |Λ| ≥ −32.31(max{log B + 0.18,10})2(log A1)(log A2),

where
B =

b1

log A2
+

b2

log A1
.

§3. Proof of Theorem 1.4

In this section we shall prove Theorem 1.4. Let mi be as in (1.1), and consider
the equation (2.1). We compare (2n−3k)(2l −3) with (2l−1−1)(2n−x−3k−x).
First, we consider 2l − 3 and 2l−1 − 1. We have

2l − 3 − (2l−1 − 1) = 2(2l−2 − 1) ≥ 0

for l ≥ 2. Thus,
2l − 3 ≥ 2l−1 − 1. (3.1)

Next, we consider 2n − 3k and 2n−x − 3k−x. We have

2n − 3k = g(0) > g(x) = 2n−x − 3k−x

for 3/4 ≥ 3k/2n, by Corollary 2.5 and x ≥ 2. Therefore,

(2n − 3k)(2l − 3) > (2l−1 − 1)(2n−x − 3k−x).

It follows that

1 >
(2l−1 − 1)(2n−x − 3k−x)

(2n − 3k)(2l − 3)
> 0.

This means that m2 − m1 in (2.1) is not an integer, since the denominator
(2n−3k)(2l−3) is an odd integer. But m1 and m2 are distinct positive integers
for k ≥ 2, and so m2 − m1 is a positive integer too. This is a contradiction.

§4. Proof of Theorem 1.5

In this section we shall prove Theorem 1.5. Let 1 > 3k/2n > 3/4, l ≥ 2. Then
k can be expressed as

k = �n log3 2	 = n log3 2 + c1

for log3
3
4 < c1 < 0 by Lemma 2.3 and (2.3), if k exists. We estimate the size

of x,

x = n
l log3 2 − 1

l − 1
+ c2

(
c2 =

l

l − 1
c1

)
,
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by (2.3) and n = x + l(k − x). Hence we have

2n−x − 3k−x = 2n(1− l log3 2−1
l−1

)−c2 − 3n(log3 2− l log3 2−1
l−1

)+c1−c2.

Since the second term on the right hand is much smaller than the first term,
we get,

|2n−x − 3k−x| < 2n(1− l log3 2−1
l−1

)−c2 ≤ 2n log3
9
4
−c2,

for l ≥ 2. Then, it is easy to see

|2n−x − 3k−x| < 2n log3
9
4
+log3

16
9 . (4.1)

On the other hand, we consider the following linear form in two logarithm:

Λ = b1 log α1 − b2 log α2 = n log 2 − k log 3,

by putting α1 = 2, α2 = 3, b1 = n, b2 = k. Using the inequality

| log x|
2

< 1 − x,

for 1 > x > 3/4, we have

|Λ|
2

=
1
2
|k log 3 − n log 2| =

1
2

∣∣∣∣∣log
3k

2n

∣∣∣∣∣ < 1 − 3k

2n
.

And, it follows from Corollary 2.8 that

log |Λ| ≥ −32.31H2 log 3

Hence we have
|2n − 3k| > 2−32.31H2 log2 3+n−1 (4.2)

where H = max{log B + 0.18,10}, and

B =
n

log 3
+ k =

n

log 3
+ n log3 2 + c1 = n

1 + log 2
log 3

+ c1.

First, we assume H = 10. Then 9.82 > log B. The inequality

9.82 > log B = log
(

n
1 + log 2

log 3
+ c1

)
> log

(
n

1 + log 2
log 3

+ log3

3
4

)

says
n < 11938. (4.3)
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Next, we assume H = log B + 0.18. We note that |2n − 3k| < |2n−x − 3k−x|
by (2.2), and (3.1). Hence we have

2−32.31(log(n1+log 2
log 3

+log3
3
4
)+0.18)2(log2 3)+n−1

< 2n log3
9
4
+log3

16
9 ,

by (4.1), (4.2). It means
n < 22033. (4.4)

From (4.3) and (4.4), we have the necessary condition

n < 22033.

Since
22033 > n > k = �n log3 2	 > x = �nl log3 2 − 1

l − 1
	,

the number of (n, k, x, l) is finite.
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