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On certain simple cycles of the Collatz conjecture
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Abstract. The Collatz conjecture is that there exists a positive integer n
which satisfies f(m) = 1 for any integer m > 3, where f is the function on the
rational number field defined by f(m) = m/2 if the numerator of m is even and
f(m) = (3m + 1)/2 if the numerator of m is odd. Let m be a rational number
such that f™(m) = m > 1. Then we show that, if m has some simple sequences,
then the total number of positive integer m is finite, by estimating f(m) — m.
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§1. Introduction

We define a function f on the set of the positive integers by

m . .
— if m is even,
Fm) =3 s p 1
—5 if m is odd.

The Collatz conjecture is that there exists a positive integer n which satisfies
f"(m)=(fo---of)(m)=1for any integer m > 3. We call m the “starting-
number” and the smallest n the “total-sequence”.

This conjecture is equivalent to the next two conditions for every odd in-
teger m:
(1) f™(m) # m for any n > 1. (If f*(m) = m holds, then we call m a “cycle-
number”.)
(2) m has total-sequence. (f™(m) dose not diverge.)
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We consider (1) and assume that m is odd, since even number is mapped
to an odd number by iterating f. We know only one integral cycle-number:
m = 1. We call one the “trivial-cycle”.

Let m be a cycle-number. We define the numbers /; (¢ > 0) and m; (i > 1) by
the following rules:

(i) We put lp = 0 and my = m.

(ii) For i > 1, I; is the least positive integer such that f'(m;) is odd.

(iii) We put m;y1 = £ (m;).

If m = my = mg41, then we call k “odd-cycle-sequence”. We write

my = (l1,la, -+, k).
We can easily see that
mi = (Ui liv1, sl o lier). (E= 1,000 0k) (1.1)
We can write trivial-cycle
1=(2).

If m is a cycle-number, and f™(m) = m, then we call n a “cycle-sequence”.
We can easily see that

Theorem 1.1. Let m = (ly,la,---,lg) and lo = 0. Then we have

i1

A ol
3k—z .9 =0

(2

1
m = ST . (1.2)

R

Theorem 1.1 was proved in [1]. The theorem shows that every cycle-number
has a rational expression. So we can generalize the Collatz conjecture to
rational numbers. That is, we define a function

a if a is even

— Vi
(O P
b 3“: if ¢ is odd,

for a/b, where a,b are positive integers such that (a,b) = 1. Then the ratio-
nal version of the Collatz conjecture is that there exists a positive integer n
which satisfies f"(a/b) = 1. Except for the trivial-cycle, we know by Theorem
1.1 that there are many cycle-numbers for the rational version of the Collatz
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conjecture. The cycle-numbers for the original Collatz conjecture are integral
cycle-numbers for the rational version of the Collatz conjecture. Therefore,
the Collatz conjecture can be reduced to a problem of an exponential indeter-
minate equation on positive integers.

To consider the integral case, we must know when (1.2) becomes an integer.
If we consider the case 2" — 3¥ = 1 for example, we have the following:

Theorem 1.2. The exponential indeterminate equation 2" — 3* =1 has only
one positive integral solution (n,k) = (2,1).

Proof. Let n >3, then 2" —3F = -3 = —30or —1# 1 (mod.8). |

This solution (n,k) = (2,1) corresponds to 1 = (2). And, the following
theorem is a result in the special case, too:

Theorem 1.3. Suppose m = (1,1,1,---,1,lx) is an integral cycle-number,
then m =1 = (2).

Theorem 1.3 was proved in [2]. We shall prove the next two theorem in Section
3, and 4.

Theorem 1.4. Let m be a cycle-number, n the cycle-sequence, and k the odd-
cycle-sequence. If 3/4 > 3K/2" then my = (1,---,1,1,---,1) is not a positive
integer.

Theorem 1.5. Let m be a cycle-number, n the cycle-sequence, and k the odd-
cycle-sequence. If 1 > 3F /2" > 3/4, then the total number of positive integer
of miy =(1,---,1,1,--- 1) is finite.

Combining Theorem 1.4 and Theorem 1.5, we have

Theorem 1.6. The total number of positive integer of my = (1,---,1,1,---,1)
18 finite.

This theorem is a generalization of Theorem 1.3.

§2. Some lemmas

Lemma 2.1. Let (ly,la,---,lg) = my. If m; = min{mq,---,mg} > 1, then
l; =1.
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Proof. We express m;y1 using m;. If ¢ = k, then let m;;+; = mi1. Then, by
definition, we have

, 3m; +1
mip1 = fl(m;) = o
Most right side,
3m; +1 4dm; m;

2li < 211 = 211'—2
for m; > 1. Let [; > 2. Then we have

Smi +1 m;
ol < oli—2 = M.

It is a contradiction to the assumption that m; is the smallest. Therefore
L=1.1

mi+1 =

Lemma 2.2. m = (1,1,1,---,1) is not a positive integer.

Proof. Let m be a positive integer, k be the odd-cycle-sequence. If | = 1,
then the result is clear from Theorem 1.3. Assume that [ > 1. We make
m=my,---,my in a way similar to that of (1.1) and let £ > 2. Then m; is the
smallest. Because, if [; > 1, then m; # min{my,---, my} from contraposition
of Lemma 2.1. That means min{m;|l; = 1} = min{mq, -+, my} = m.

We express ms using mi. If k = 2, put m; = ms. Then, by definition, we

have O 4 5
mi

Let [ > 3. Then,

9m1 + 5) 9m1 +5
< .
2l+1  — 16
If x > 5/7, then (92 + 5)/16 < z. Hence we have

~ 9my +5 < 9mq + 5
m3 = oI+l = 16

since m; is a positive integer. This contradicts the assumption that m; is the
smallest.

Next, let £ > 3, I = 2. And, we express my using mi. If £k = 3, put
mq = my. Then, we have

< my,

N 32

If m > 23/5 then (27m + 23)/32 < m, therefore for m > 5,

27Tm + 23
m3:T<m

my = f1+l+l(m1) — f5(m1)
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It is a contradiction. We know only one positive integral cycle-number if
m =5, ie,m=1.
Lastly, let k =2, { = 2. Then, m = (1,2) and

3+2

m=(1,2) = 55 532

=-5<0
It is not a positive integer. ||

Now, we see the case where mo — my that is an integer. Because, if m; is
an integer, then f%(m1) —mq = mg — my is integral, too.

Let my = (1,---,1,1,---,1), ma = (1,---,1,1,---,1,1) be positive integral
cycles, x be the number of one’s, n be the cycle-sequence and k& > 2 be the
odd-cycle-sequence. Note that the number of [ is k—x, and we get the relation
n=ux+I(k—z). And, let [ > 2, then = > 2 from Theorem 1.3 and Lemma
2.2.

By Theorem 1.1,

3k—1 N gz—1, 3k—:c 497 3k—9c—1 + 9z+l '3k—:c—2 4Lt 2x+l(k—9c—1)
m = on _ 3k

and

- 3k—1 N 9r—1 3k—:c 4 9r—1+1, 3k—9c—1 4 9r—1+20 3k—9c—2 L 2x—1+l(k—9c)

e = 2n — 3F
Since mgy > maq,
(2:v—1+l _ 2:1:) . gk—z—1 NI (2ac—l+l(k—ac) _ 2:v+l(k—:v—1))
on — 3k
2x(2l—1 . 1)(2l(k—ac) . 3k—ac)
(2 — 352 - 3)
21(2%1 _ 1)(271736 _ 3I€7m)

- P OTrE T (2.1)

O0<mg—mqp =

Now, me — m; is integral, 2" — 3k > 1 and 28 —3 > 1 are odd integers. It
follows that

(2" —3M) (2 —3)|(2 L — 1) (2 — 3k, (2.2)
We consider the function

g(x) =2 — 3k,

We have,
g (z) = —2""%log 2 + 3" % log 3.
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The equation ¢’'(z) = 0 has only one solution

log 3
log2

log ;’—i + log

x

3

log 5
Since 3% /2" < 1,

< 0.461

“= 0.405

Therefore, If g(x) has the maximum on x > 0, then z < 1.139. Now, since
k>2andn—k>1,

< 1.139.

g (k) = —2"""log2 +1log3 < —2log 2+ log3 = —log4 +log 3 < 0.
So, if a < b, then g(x) is monotone decreasing at b.
Lemma 2.3. Let x > 0. then g(0) > g(x) if and only if

6* — 3% 3k
> —

Proof. By the definition of g(z) and, ¢(0) > g(z),
on _ Sk: > on—c _ 3k—ac'
Thus,

6T — 3% 3k
> —.
6T — 2T — 9n

Lemma 2.4. 3/4 > 3K/2" if and only if g(b) > g(a) for any integer a,b such
that a > b > 0.

Proof. g(0) > g(1) if and only if 3/4 > 3%/2" by Lemma 2.3. And in this case,
the equation ¢’(x) = 0 has only one solution

k
log 5= +log 123 0.173

< <
log % 0.405

1.

Therefore, if 1 < b, then g(z) is monotone decreasing at b. i

Corollary 2.5. If3/4 > 3%/2" and a > b > 1, then g(b) > g(a).
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How is the case 1 > 3%/2" > 3/4?7 We have the following.

Lemma 2.6. For any positive integer n, there exists at most one integer k
which satisfies 1 > 3% /2" > 3/4. The number k is given by k = |nlogs 2|, if
it exists. |x| means the greatest integer not exceeding x.

Proof. By assumption 1 > 3%/2" > 3/4, we have
4
0>k —nlogs2 > —logs 3"

This implies that
4
nlogs2 > k > nlogs 2 —logs 3 (2.3)

Therefore, if there exists a positive integer k, then k = |nlogs2|. i

Lemma 2.7. Let aj,as > 1 be multiplicatively independent real algebraic
numbers, and D = [Q(a1,a2) : Q. Let Ay, Ay denote real numbers > 1 such
that

loga; 1
D D
where h(a) is absolute logarithmic height of . Let by, by are positive integers,
and put

log A; > maz{h(a), ji=12,

A= b1 10g a1 — b2 10g 9.
Then

1

1
log |A| > —32.31D* (maaflog B + 0.18, 50, 512 (l0g A1)(10g A2),

where

b1 ba
B = .
Dlog A, + Dlog Ay

Lemma 2.7 was proved in [8]. Now, using this lemma over rational integers
we have.

Corollary 2.8. Let o, a9 > 1 be relatively prime rational integers. Let A1, Ao
denote real numbers > 1 such that

log A; > maz{log a;, 1}, j=12.
Let by, by are positive integers, and put

A =b1logay — bylog as.
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Then
log |A| > —32.31(maz{log B + 0.18,10})? (log A )(log As),
where . ;
. 1 2
~ log Ay + log Ay

§3. Proof of Theorem 1.4

In this section we shall prove Theorem 1.4. Let m; be as in (1.1), and consider
the equation (2.1). We compare (2" — 3%)(2! — 3) with (2!71 —1)(2"% — 3k—=),
First, we consider 2' — 3 and 2=1 — 1. We have

232t -1 =202"2-1)>0

for [ > 2. Thus,
2l — 3> 1. (3.1)

Next, we consider 2" — 3% and 2"~% — 3k~ We have
2" — 3" = g(0) > g(z) =2"7" =37
for 3/4 > 3% /2", by Corollary 2.5 and 2 > 2. Therefore,
(2" — 352t —3) > (27t —1)(2n T — 3k,
It follows that

(2l—1 o 1)(271—35 o 3k—ac)
CIRELICIEE)

1> > 0.

This means that ms — mj in (2.1) is not an integer, since the denominator
(2" —3F)(2! - 3) is an odd integer. But m; and my are distinct positive integers
for k > 2, and so mo — m; is a positive integer too. This is a contradiction.

84. Proof of Theorem 1.5

In this section we shall prove Theorem 1.5. Let 1 > 3%/2" > 3/4, 1 > 2. Then
k can be expressed as

k= |nlog32| =nlogs2+ c;

for logg 3 < ¢; < 0 by Lemma 2.3 and (2.3), if k exists. We estimate the size

of x,
llog,2 —1 l
Q?:TLOZgST‘FCQ (C2 = Cl)a
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by (2.3) and n =z + I(k — z). Hence we have

l10g32 1) l10g32 1)

3k T _ 2n( —c2 _ gn n(logs 2— _:,_61_02'

Since the second term on the right hand is much smaller than the first term,

we get,

logs 2 1)

‘2n—$ 3k‘ J," < 2"(1 C2 S 2nlog3 %—62’

for [ > 2. Then, it is easy to see
|on—® _ 3h==| < gnlogs $+logs 5 (4.1)
On the other hand, we consider the following linear form in two logarithm:
A =bloga; —bylogas =nlog2 — klog 3,
by putting a; = 2,9 = 3,b1 = n, by = k. Using the inequality

1
logsl _,_,,

for 1 >« > 3/4, we have

A 3 3k
|—2| ]klog3—nlog2[ log2—n ~on
And, it follows from Corollary 2.8 that
log|A| > —32.31H?log 3
Hence we have
2 — 3k’ > 2—32.31H2 logs 3+n—1 (4.2)
where H = max{log B + 0.18,10}, and
n n 1+ log?2
= k= —— | 2 =n——— .
log3+ 10g3—|—n0g3 ta=n log 3 “

First, we assume H = 10. Then 9.82 > log B. The inequality

1+ log2 1+4log2
9.82 > log B = log (n& + 01> > log <nﬂ + logs §>
log 3 log 3 4

says
n < 11938. (4.3)
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Next, we assume H = log B+ 0.18. We note that |27 — 3F| < |27—% — 3k—|
by (2.2), and (3.1). Hence we have

14log 2
2732.31(10g(n%+10g3 %)+0.18)2(log2 3)+n—1 < 9n log, %Jrlogg 1?6’

by (4.1), (4.2). It means
n < 22033. (4.4)

From (4.3) and (4.4), we have the necessary condition
n < 22033.

Since
llog;2 —1

22033 >n > k= [nlogy2] >z = |n T

1,

the number of (n, k,x,1) is finite.
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