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Abstract. From a viewpoint of the general theory for convex functions it is
shown that invariance of closed convex subsets under semigroups of nonlinear
operators is characterized in complex Hilbert spaces. Some examples, which
generalize positivity of semigroups, are given for semigroups generated by non-
linear elliptic operators.
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§1. Introduction

Let H be a complex Hilbert space and A a nonlinear quasi-m-accretive
operator with domain D(A) dense in H , that is, A + α is m-accretive in H
for some α ≥ 0 (cf. Kato [8, Section V.3.10]). Then −A generates a nonlinear
C0-semigroup {S(t)}t≥0 of type α on H . Let K be a closed convex subset of
H and denote by IK the indicator function of K: IK(v) = 0 if v ∈ K, and
IK(v) = ∞ if v �∈ K. This paper is concerned with the characterizations of
the invariance of K under {S(t)}t≥0:

S(t)K ⊂ K ∀ t ≥ 0.(1.1)

In terms of IK , (1.1) is characterized by

IK(S(t)v) ≤ IK(v) ∀ v ∈ H ∀ t ≥ 0.(1.2)
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A typical example of such a pair of K and {S(t)}t≥0 is the positive cone
L2

+ := {u ∈ L2(Ω; R); u ≥ 0} and positive semigroups (for example, generated
by the usual Laplacian ∆ with suitable boundary condition) onH := L2(Ω; R).
It is well-known that positivity of semigroups generated by “linear” elliptic
operators is characterized by Kato’s inequality (see Arendt [1], [2] and [9])
and by the Beurling-Deny criterion (see e.g. Davies [7, Section 1.3], Ouhabaz
[13] and [14]), respectively. Moreover, positivity of semigroups generated by
“nonlinear” elliptic operators is characterized by Barthelemy [3].

The purpose of this paper is to reveal that there exist simple examples of
such closed convex subsets and associated semigroups in the “complex” Hilbert
space L2(Ω; C). Now let ϕ be a proper lower semi-continuous convex function
on H . Then (1.2) is a particular case of the following condition:

∃ β ≥ α ; ϕ(S(t)v) ≤ e2βtϕ(v) ∀ v ∈ H ∀ t ≥ 0.(1.3)

In particular, if H is a “real” Hilbert space and A is “m-accretive” in H
(α = 0), then the criteria for (1.3) with β = 0 have been intensively studied
by Brezis [4, Section IV.4] (see also Brezis-Pazy [5]).

In the first part of this paper we shall give a practical criterion for (1.1)
by generalizing [4, Theoreme 4.4 and Proposition 4.5] to the case where H
is a “complex” Hilbert space and A is “quasi-m-accretive” in H (α �= 0) (see
condition (ii) in Theorem 2.4 below).

In the second part we construct two examples of invariant sets under non-
linear semigroups. Let {S(t)}t≥0 be a nonlinear semigroup on H := L2(Ω; C)
generated by the p-Laplacian with monotone perturbation (see Section 3).
Here we consider two examples of closed convex subsets:

Example 1. K(a1, a2, b1, b2) := {u ∈ H ; (Reu, Imu) ∈ [−a1, a2]×[−b1, b2]},
where aj, bj ≥ 0 (j = 1, 2) (see Figure 1 below).

Example 2. K(θ) := {u ∈ H ; | argu| ≤ θ}, where 0 ≤ θ ≤ π/2 (see Figure
2 below).

We shall show that K(a1, a2, b1, b2) and K(θ) are invariant under {S(t)}t≥0.
Note that K(0, a2, 0, 0) tends to the positive cone L2

+ if a2 → ∞. On the other
hand, it is obvious that K(0) = L2

+. In this sense the subsets in Examples
1 and 2 may be regarded as complex generalizations of L2

+. Accordingly, the
invariance of these subsets complexifies the notion of positivity of semigroups.
In fact, we are supposed to show that condition (ii) in Theorem 2.4 is satisfied
in order to prove that K(a1, a2, b1, b2) and K(θ) are invariant under {S(t)}t≥0.
Here we would like to emphasize that the maximum principle for parabolic
differential equations does not work in the complex space though it is very
strong in the real space.

This paper is organized as follows. In Section 2 we characterize invariance
of closed convex subsets under semigroups of nonlinear operators in complex
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Hilbert spaces by using a general result concerning convex functions. Applying
the abstract result prepared in Section 2 to semigroups generated by nonlinear
elliptic operators, we construct some examples of closed convex subsets in
Section 3. In particular, we shall show that K(θ) is invariant under nonlinear
C0-semigroups of “type α”.

§2. Abstract Results

Let H be a complex Hilbert space and A a nonlinear operator in H such
that A+ α is m-accretive in H for some α ≥ 0:{

Re(Au1 − Au2, u1 − u2) ≥ −α‖u1 − u2‖2 for u1, u2 ∈ D(A),
R(1 + λA) = H for λ > 0 with λα < 1.

(2.1)

We assume for simplicity that A is single-valued; however, we need not assume
that D(A) is dense in H . It is well-known that −A generates a nonlinear C0-
semigroup {S(t)}t≥0 of type α on D(A) (the closure of D(A) in H):


S(0) = 1, S(t+ s) = S(t)S(s) for t, s ≥ 0,
S(t)v → v (t ↓ 0) for v ∈ D(A),
‖S(t)v1 − S(t)v2‖ ≤ eαt‖v1 − v2‖ for v1, v2 ∈ D(A) and t ≥ 0.

In this section, given a closed convex subsetK ofH , we shall present several
criteria to guarantee that

S(t)(D(A)∩K) ⊂ K ∀ t ≥ 0.
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We modify the arguments in [4] and [5] in which H is a real Hilbert space and
α = 0.

First we prepare two lemmas. Let {Aλ; λ > 0 (λα < 1)} be the Yosida
approximation of A:

Aλ := λ−1(1 − (1 + λA)−1) for λ > 0 with λα < 1.(2.2)

The next lemma shows the accretivity of Aλ + α(1 − λα)−1. The proof is the
same as that of Okazawa [11, Lemma 2.2].

Lemma 2.1. Let A be a nonlinear operator in H such that A + α is m-
accretive in H for some α ≥ 0. Let λ > 0 with λα < 1. Then Aλ + αλ is
accretive in H :

Re(Aλv1 −Aλv2, v1 − v2) ≥ −αλ‖v1 − v2‖2, v1, v2 ∈ H,(2.3)

where αλ := α(1 − λα)−1.

The following is derived from the maximality of A+ α.

Lemma 2.2. Let A be as in Lemma 2.1. Let [v0, w0] ∈ H ×H . Assume that

Re(w0 − Au, v0 − u) ≥ −α‖v0 − u‖2 ∀u ∈ D(A).

Then v0 ∈ D(A) and w0 = Av0.

Next we give a general result concerning convex functions. Let ϕ be a
proper lower semi-continuous convex function on H , where proper means that
the effective domain D(ϕ) := {u ∈ H ;ϕ(u) < ∞} is non-empty. Then the
subdifferential ∂ϕ of ϕ is defined as

∂ϕ(u) := {f ∈ H ; Re(f, v − u) ≤ ϕ(v)− ϕ(u) ∀ v ∈ H}

for u ∈ D(∂ϕ) := {u ∈ D(ϕ); ∂ϕ(u) �= ∅}. It is well-known that ∂ϕ is a
(possibly) multi-valued m-accretive operator in H : Re(w1 − w2, u1 − u2) ≥ 0
for wj ∈ ∂ϕ(uj) (j = 1, 2). Since (1 + µ∂ϕ)−1 is single-valued, the Yosida
approximation {(∂ϕ)µ; µ > 0} of ∂ϕ is also defined as (2.2) with A and λ
replaced with ∂ϕ and µ, respectively. For µ > 0 we set

ϕµ(u) := min
v∈H

{ 1
2µ

‖v − u‖2 + ϕ(v)
}

=
µ

2
‖(∂ϕ)µ(u)‖2 + ϕ((1 + µ∂ϕ)−1u).

Then ϕµ is Fréchet differentiable on H and the derivative ∂ϕµ coincides with
(∂ϕ)µ (see [4, Proposition 2.11]). We denote by PD(A) the projection of H on

D(A).
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Theorem 2.3. Let A and {S(t)}t≥0 be as above. Let ϕ : H → (−∞,∞] be a
proper lower semi-continuous convex function such that ϕ(P

D(A)
v) ≤ ϕ(v) for

v ∈ H . Then for β (≥ α) the following conditions are equivalent :
(i) ϕ((1 + λA)−1v) ≤ (1 − 2λβ)−1ϕ(v) for v ∈ H and λ > 0 with 2λβ < 1.
(ii) Re(Aλv, w) ≥ −2β(1 − 2λβ)−1ϕ(v) for v ∈ D(∂ϕ), w ∈ ∂ϕ(v) and

λ > 0 with 2λβ < 1.
(iii) Re(Aλv, ∂ϕµ(v)) ≥ −2β(1− 2λβ)−1ϕµ(v) for v ∈ H and λ, µ > 0 with

2λβ < 1.
(iv) Re(Au, ∂ϕµ(u)) ≥ −2βϕµ(u) for u ∈ D(A) and µ > 0.
(v) ϕµ((1 + λA)−1v) ≤ (1 − 2λβ)−1ϕµ(v) for v ∈ H and λ, µ > 0 with

2λβ < 1.
(vi) ϕµ(S(t)v) ≤ e2βtϕµ(v) for v ∈ D(A), µ > 0 and t ≥ 0.
(vii) ϕ(S(t)v) ≤ e2βtϕ(v) for v ∈ D(A) and t ≥ 0.

Proof. (i) ⇒ (ii). Let v ∈ D(∂ϕ) and w ∈ ∂ϕ(v). Then by definition we see
that for λ > 0 with 2λβ < 1,

Re(Aλv, w) = −λ−1Re((1 + λA)−1v − v, w)

≥ −λ−1(ϕ((1 + λA)−1v) − ϕ(v))

≥ −λ−1((1 − 2λβ)−1 − 1)ϕ(v) = −2β(1 − 2λβ)−1ϕ(v).

(ii) ⇒ (iii). It follows from (2.3) that for v ∈ H and λ, µ > 0 with 2λβ < 1,

Re(Aλv, ∂ϕµ(v))

= µ−1Re(Aλv −Aλ(1 + µ∂ϕ)−1v, v− (1 + µ∂ϕ)−1v)

+ Re(Aλ(1 + µ∂ϕ)−1v, ∂ϕµ(v))

≥− α(1 − λα)−1µ−1‖v − (1 + µ∂ϕ)−1v‖2 − 2β(1 − 2λβ)−1ϕ((1 + µ∂ϕ)−1v)

≥− 2β(1 − 2λβ)−1
[
(µ/2)‖∂ϕµ(v)‖2 + ϕ((1 + µ∂ϕ)−1v)

]
= − 2β(1 − 2λβ)−1ϕµ(v).

(iii) ⇒ (iv). It suffices to note that Aλu → Au (λ ↓ 0) in H for every
u ∈ D(A).

(iv) ⇒ (v). Let v ∈ H and λ, µ > 0 with 2λβ < 1. Then we have

ϕµ(v)− ϕµ((1 + λA)−1v) ≥ Re(∂ϕµ((1 + λA)−1v), v− (1 + λA)−1v)

= λRe(∂ϕµ((1 + λA)−1v), A(1 + λA)−1v)

≥ −2λβϕµ((1 + λA)−1v).

(v) ⇒ (vi). Let v ∈ D(A), µ > 0, t ≥ 0 and n ∈ N with n > 2βt. Then we
have

ϕµ

((
1 +

t

n
A

)−n
v
)
≤

(
1− 2βt

n

)−n
ϕµ(v).
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Letting n→ ∞, we obtain (vi).
(vi) ⇒ (vii). Note that limµ↓0 ϕµ(v) = ϕ(v) for every v ∈ H .
(vii) ⇒ (i). Let v ∈ H and λ > 0 with 2λβ < 1. Take sufficiently small

t > 0 such that (λ/t)(e2βt − 1) < 1 and set

T (t) := S(t)P
D(A)

.

Then T (t) is Lipschitz continuous on H with constant eαt. Hence it follows
that (1 − T (t)) + (eαt − 1) is m-accretive in H : for w1, w2 ∈ H ,

Re((1 − T (t))w1 − (1 − T (t))w2, w1 − w2) ≥ −(eαt − 1)‖w1 −w2‖2,(2.4)

and R(1 + µ(1− T (t))) = H for µ > 0 with µ(eαt − 1) < 1 (see (2.1)). Noting
that (λ/t)(eαt − 1) < 1, we can define

vt := (1 + (λ/t)(1 − T (t)))−1v.

Writing as

vt =
t

t+ λ
v +

λ

t+ λ
T (t)vt,

we see from the convexity of ϕ and condition (vii) that

ϕ(vt) ≤ t

t+ λ
ϕ(v) +

λ

t+ λ
e2βtϕ(PD(A)vt).

Since ϕ(P
D(A)

vt) ≤ ϕ(vt) by assumption, we obtain

ϕ(vt) ≤
(
1 − λ

e2βt − 1
t

)−1
ϕ(v).

Since every lower semi-continuous convex function on H is also weakly lower
semi-continuous on H , it suffices to show that vt → (1+λA)−1v (t ↓ 0) weakly
inH . To this end let u ∈ D(A). Noting that (λ/t)(1−T (t))vt = (v−u)+(u−vt)
and T (t)u = S(t)u, we see from (2.4) with w1 and w2 replaced with vt and u

that (
1 − λ

eαt − 1
t

)
‖vt − u‖2 ≤ Re

(
v − u+ λ

S(t)u− u

t
, vt − u

)
.

This implies that {‖vt‖} is bounded as t ↓ 0. Hence there exist a sequence
{vtn} selected from {vt} and v0 ∈ H such that vtn → v0 (n → ∞) weakly in
H . So we have

(1 − λα)‖v0 − u‖2 ≤ Re(v − u − λAu, v0 − u),
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and hence

Re(λ−1(v − v0) − Au, v0 − u) ≥ −α‖v0 − u‖2.

Therefore it follows from Lemma 2.2 that v0 ∈ D(A) and λ−1(v − v0) = Av0.
This shows that v0 = (1 + λA)−1v. Since we could have started with any
sequence selected from {vt} instead of {vt} itself, it follows that vt → (1 +
λA)−1v (t ↓ 0) weakly in H and the proof is complete.

Remark 1. 1) When H is a real Hilbert space and α = β = 0, Theorem 2.3 is
proved in [5] (see also [4, Theoreme 4.4]).

2) When A is a linear operator and ∂ϕ is a selfadjoint operator, the same
results with applications to linear evolution equations of hyperbolic type are
established by [11] and Okazawa-Unai [12].

Now we present the main theorem in this section. Let ϕ be the indicator
function of a closed convex subset K of H . Then ϕµ and ∂ϕµ are given by

ϕµ(u) =
1
2µ

‖u− PKu‖2, ∂ϕµ(u) =
1
µ

(u− PKu)

(see [4, p. 46]). Therefore Theorem 2.3 yields the following

Theorem 2.4. Let A and {S(t)}t≥0 be as above. Let K be a closed convex
subset of H . Assume that P

D(A)
K ⊂ K. Then for β (≥ α) the following

conditions are equivalent :
(i) (1 + λA)−1K ⊂ K for λ > 0 with 2λβ < 1.
(ii) Re(Au, u− PKu) ≥ −β‖u− PKu‖2 for u ∈ D(A).
(iii) dist((1 + λA)−1v,K) ≤ (1 − 2λβ)−1/2dist(v, K) for v ∈ H and λ > 0

with 2λβ < 1.
(iv) dist(S(t)v, K) ≤ eβtdist(v, K) for v ∈ D(A) and t ≥ 0.
(v) S(t)(D(A)∩K) ⊂ K for t ≥ 0.

Remark 2. When H is a real Hilbert space and α = β = 0, Theorem 2.4 is
proved in [5] (see also [4, Proposition 4.5]).

§3. Applications

In this section we shall apply the abstract result prepared in Section 2 to
semigroups generated by nonlinear elliptic operators.

Let Ω be a bounded domain in R
N (N ≥ 1) with C1-boundary. Let A be

the m-accretive operator in H := L2(Ω; C) as defined by{
D(A) := {u ∈W 1,p

0 (Ω; C)∩H ; ∆pu, g(|u|2)u ∈ H},
Au := −∆pu+ g(|u|2)u for u ∈ D(A),

(3.1)
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where ∆pu := div(|∇u|p−2∇u) with p > 1 and g ∈ C([0,∞); R)∩C1((0,∞); R)
with

(d/ds)[g(s2)s] = g(s2) + 2s2g′(s2) ≥ 0 ∀ s > 0.

The proof of the m-accretivity of A is summarized as follows. First we intro-
duce two proper lower semi-continuous convex functions on H :

φ(u) :=




1
p

∫
Ω
|∇u(x)|p dx for u ∈W 1,p

0 (Ω; C) ∩H,
∞ otherwise,

ψ(u) :=




1
2

∫
Ω

G(|u(x)|2) dx for u ∈ H with G(|u|2) ∈ L1(Ω; R),

∞ otherwise,

where G(t) :=
∫ t
0 g(s) ds. Then their subdifferentials are given by

∂φ(u) = −∆pu, ∂ψ(u) = g(|u|2)u.
Next, applying the perturbation theory for nonlinear m-accretive operators
(see Brezis-Crandall-Pazy [6] and Okazawa [10]), we see that A = ∂φ+ ∂ψ is
m-accretive in H so that

A = ∂(φ+ ψ).(3.2)

Hence −A generates a nonlinear contraction semigroup {S(t)}t≥0 on H =
D(A).

As stated in Section 1, we give two examples of invariant sets under
{S(t)}t≥0. The first example is concerned with rectangularly-valued functions.
Namely, let aj, bj ≥ 0 (j = 1, 2). Then we consider the rectangle including the
origin in C:

I := {ζ = ξ + iη ∈ C; (ξ, η) ∈ [−a1, a2]×[−b1, b2]}.
In terms of I we have

K(a1, a2, b1, b2) = {u ∈ H ; u(x) ∈ I a.a. x ∈ Ω}
which may be regarded as a generalization of the positive cone L2

+.

Theorem 3.1. Let A be the operator as defined by (3.1) and {S(t)}t≥0 a
nonlinear contraction semigroup on H generated by −A. Then for aj, bj ≥ 0
(j = 1, 2), K(a1, a2, b1, b2) is invariant under {S(t)}t≥0:

S(t)K(a1, a2, b1, b2) ⊂ K(a1, a2, b1, b2) ∀ t ≥ 0.
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To prove Theorem 3.1 we have only to show that condition (ii) in Theorem
2.4 is satisfied. For the purpose we prepare two lemmas. First the projection
of C on I is expressed in the following form.

Lemma 3.2. Let I be as above. Then for ζ = ξ + iη ∈ C,

PIζ =
1
2
(|ξ + a1| − |ξ − a2| − a1 + a2) +

i

2
(|η + b1| − |η − b2| − b1 + b2).

Since (PK(a1,a2,b1,b2)u)(x) = PI(u(x)) for a.a. x ∈ Ω, we can obtain the expres-
sion for PK(a1,a2,b1,b2) by virtue of Lemma 3.2. Next we have

Lemma 3.3. Let u ∈W 1,p
0 (Ω; C). Then PK(a1,a2,b1,b2)u ∈W 1,p

0 (Ω; C) and

∇(PK(a1,a2,b1,b2)u) = δa1,a2(Reu)∇(Re u) + iδb1,b2(Imu)∇(Imu),

where δc1,c2(v) is given by

δc1,c2(v) :=




1 if − c1 < v < c2,

1/2 if v = −c1, c2,
0 if v < −c1, c2 < v.

Proof. Let v ∈W 1,p
0 (Ω; R) and for c1, c2 ≥ 0 set

f(s) :=
1
2
(|s+ c1| − |s− c2| − c1 + c2).

Then it suffices to show that f(v) ∈ W 1,p
0 (Ω; R) and ∇(f(v)) = δc1,c2(v)∇v.

Since |f(v)| ≤ |v|, it follows that f(v) ∈ Lp(Ω; R). For ε > 0 define

fε(s) :=
1
2
(
((s+ c1)2 + ε)1/2 − ((s− c2)2 + ε)1/2 − (c21 + ε)1/2 + (c22 + ε)1/2

)
.

Then we see from the chain rule that fε(v) ∈W 1,p
0 (Ω; R) and

∇(fε(v)) =
1
2

(
v + c1

((v + c1)2 + ε)1/2
− v − c2

((v − c2)2 + ε)1/2

)
∇v.

Noting that

fε(v) → f(v) and ∇(fε(v)) → δc1,c2(v)∇v (ε ↓ 0) in Lp(Ω; R),

we can conclude that f(v) ∈W 1,p
0 (Ω; R) and ∇(f(v)) = δc1,c2(v)∇v.

Now we are in a position to complete
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Proof of Theorem 3.1. Put K := K(a1, a2, b1, b2) and let u ∈ D(A) ⊂W
1,p
0 (Ω;

C). Since |∇(PKu)| ≤ |∇u| by Lemma 3.3, we have

Re(−∆pu, u− PKu) =
∫

Ω
|∇u|p−2(|∇u|2 − Re(∇u · ∇(PKu))) dx ≥ 0.(3.3)

On the other hand, noting that g ≥ 0 and |PKu| ≤ |u|, we obtain

Re(g(|u|2)u, u− PKu) =
∫

Ω

g(|u|2)(|u|2 − Re(uPKu)) dx ≥ 0.(3.4)

Adding (3.3) and (3.4) yields that Re(Au, u−PKu) ≥ 0. Therefore the asser-
tion follows from Theorem 2.4 (ii) ⇒ (v).

The second example is concerned with sectorially-valued functions. Namely,
let 0 ≤ θ ≤ π/2. Then we consider the sector in C:

Σ := {z ∈ C; | arg z| ≤ θ}.

In terms of Σ we have

K(θ) = {u ∈ H ; u(x) ∈ Σ a.a. x ∈ Ω}

which may be also regarded as a generalization of the positive cone L2
+.

Theorem 3.4. Let A be the operator as defined by (3.1) and {S(t)}t≥0 a
nonlinear contraction semigroup on H generated by −A. Then for 0 ≤ θ ≤
π/2, K(θ) is invariant under {S(t)}t≥0:

S(t)K(θ) ⊂ K(θ) ∀ t ≥ 0.

As in the proof of Theorem 3.1, we prove Theorem 3.4 by using Theorem
2.4. To see this we need two lemmas. First we can easily obtain

Lemma 3.5. Let 0 ≤ θ ≤ π/2. Then for z ∈ C,

PΣz =




z on Σ = {z ∈ C; | arg z| ≤ θ},
(1/2)(z + e2iθz) on Σ1 := {z ∈ C; θ < arg z < θ + π/2},
0 on Σ2 := {z ∈ C; θ + π/2 ≤ | arg z| ≤ π},
(1/2)(z + e−2iθz) on Σ3 := {z ∈ C; −(θ + π/2) < arg z < −θ}.

In view of Lemma 3.5 we can obtain the expression for (PK(θ)u)(x) = PΣ(u(x)).
It would be difficult to use the approximating argument for PK(θ)u as in the
proof of Lemma 3.3; nevertheless, we can obtain
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Lemma 3.6. Let u ∈W
1,p
0 (Ω; C). Then PK(θ)u ∈W 1,p

0 (Ω; C) and

∂xj(PK(θ)u) =




∂xju on Ω \⋃3
k=1 Ωj, k,

(1/2)(∂xju+ e2iθ∂xju) on Ωj, 1,

0 on Ωj, 2,

(1/2)(∂xju+ e−2iθ∂xju) on Ωj, 3,

where Ωj, k (k = 1, 2, 3) are disjoint subsets of Ω.

Proof. Let u ∈W 1,p
0 (Ω; C). It then follows that for ϕ ∈ C∞

0 (Ω; C),

−
∫

Ω

(PK(θ)u)(x) ∂xjϕ(x) dx = − lim
h↓0

∫
Ω

PΣ(u(x))
ϕ(x)− ϕ(x− hej)

h
dx

= lim
h↓0

∫
Ω

PΣ(u(x+ hej)) − PΣ(u(x))
h

ϕ(x) dx

= lim
h↓0

∫
Ω
[I1(x, h) + I2(x, h)]ϕ(x) dx,

where Σ is the same as in Lemma 3.5 and

I1(x, h) :=
1
h

[
PΣ(u(x + hej)) − PΣ

(
u(x) + h∂xju(x)

)]
,

I2(x, h) :=
1
h

[
PΣ

(
u(x) + h∂xju(x)

)− PΣ(u(x))
]
.

From the dominated convergence theorem it suffices to compute limh↓0 I1(x, h)
and limh↓0 I2(x, h) for a.a. x ∈ Ω. Since the projection is nonexpansive, we
have

|I1(x, h)| ≤
∣∣∣∣u(x+ hej) − u(x)

h
− ∂xju(x)

∣∣∣∣ → 0 (h ↓ 0).

On the other hand, we can compute limh↓0 I2(x, h) as follows:
Case i) u(x) ∈ C\(∂Σ ∪ ∂Σ2). We see that for sufficiently small h > 0,

I2(x, h) =




∂xju if u(x) ∈ Σ\∂Σ,
(1/2)(∂xju + e2iθ∂xju) if u(x) ∈ Σ1,

0 if u(x) ∈ Σ2\∂Σ2,

(1/2)(∂xju + e−2iθ∂xju) if u(x) ∈ Σ3.

Case ii) u(x) ∈ ∂Σ ∪ ∂Σ2. In this case, I2(x, h) depends on the argument
of the complex number ∂xju(x): for sufficiently small h > 0,

I2(x, h) =




∂xju if u(x) + h∂xju(x) ∈ Σ,
(1/2)(∂xju + e2iθ∂xju) if u(x) + h∂xju(x) ∈ Σ1,

0 if u(x) + h∂xju(x) ∈ Σ2,

(1/2)(∂xju + e−2iθ∂xju) if u(x) + h∂xju(x) ∈ Σ3.

Therefore we can obtain the assertion.
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Now we can complete

Proof of Theorem 3.4. Let u ∈ D(A). Then it follows from Lemmas 3.5 and
3.6 that |PK(θ)u| ≤ |u| and |∇(PK(θ)u)| ≤ |∇u|. Therefore in the same way as
in the proof of Theorem 3.1 we can obtain

Re(Au, u− PK(θ)u) ≥ 0.(3.5)

Thus condition (ii) in Theorem 2.4 is satisfied and hence the proof is complete.

Finally, we shall show that K(θ) is invariant under semigroups of type α
which are not necessarily contractions. Let α ≥ 0. Since A = (A − α) + α is
m-accretive in H , it follows that −(A−α) generates a nonlinear C0-semigroup
{U(t)}t≥0 of type α on H . Then we have

Theorem 3.7. Let {U(t)}t≥0 be a nonlinear C0-semigroup of type α on H
generated by −(A − α), where A is the same as in Theorem 3.4. Then K(θ)
is invariant under {U(t)}t≥0:

U(t)K(θ) ⊂ K(θ) ∀ t ≥ 0.

Proof. First we note that for u ∈ H ,

Re(u, u− PK(θ)u) = ‖u− PK(θ)u‖2.(3.6)

In fact, let z ∈ C. Then we see from Lemma 3.5 that Re(zPΣz) = |PΣz|2 and
hence Re(z(z − PΣz)) = |z − PΣz|2. Setting z = u(x) and integrating it over
Ω, we can obtain (3.6). Next let u ∈ D(A). Then (3.5) and (3.6) yield that

Re((A− α)u, u− PK(θ)u) ≥ −α‖u− PK(θ)u‖2.

Therefore the assertion follows from Theorem 2.4 (ii) ⇒ (v).

Remark 3. Let A and {U(t)}t≥0 be the same as above. Since A = ∂(φ+ψ) by
(3.2), we can prove the smoothing effect such that U(t) : H = D(A) → D(A)
for every t > 0 in the same way as in the real space case [4]. Hence for every
u0 ∈ H , u(t) := U(t)u0 is a unique strong solution to the initial-boundary
value problem


∂u

∂t
− div(|∇u|p−2∇u) + g(|u|2)u− αu = 0, (x, t) ∈ Ω × (0,∞),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞),
u(x, 0) = u0(x), x ∈ Ω.

Theorem 3.7 implies that u(t) ∈ K(θ) if u0 ∈ K(θ).
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