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Abstract. This paper considers local convergence of secant methods for a non-
linear system of equations. The well-known local convergence theory has been
developed by Broyden, Dennis and Moré (1973). They used a norm inequality
such that the difference between two vectors transformed by some matrix is
bounded above by an order of one of the two. Instead, in the present paper, we
use an inequality that bounds the angle between the vectors. This inequality
has a merit of scale invariance whereas the norm inequality does not.
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§1. Introduction

We consider iterative methods for solving the system of nonlinear equations

F (x) = 0, x ∈ R
n,(1.1)

where F (x) = (F1(x), . . . , Fn(x))�, and each Fi : R
n → R is continuously

differentiable for i = 1, . . . , n. The best known iterative method for solving
this problem is Newton’s method. The method generates a sequence {xk}, for
a given x0 ∈ R

n, by the iteration

xk+1 = xk − F ′(xk)−1F (xk), k = 0, 1, . . . ,

where F ′(xk) denotes the n × n Jacobian matrix of F at xk whose (i, j)th
element is ∂Fi(xk)/∂xj . Newton’s method is locally convergent and very fast;
its rate of convergence is usually quadratic. However, one of the major draw-
backs of this method is that the Jacobian matrix is required at every iterate.
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Since F ′(xk) is often expensive to compute, it is approximated by a matrix
Bk, and a sequence {xk} is defined, for a given x0 ∈ R

n and B0 ∈ R
n×n, by

xk+1 = xk − B−1
k F (xk), k = 0, 1, . . . ,

where a new approximation Bk+1 is commonly obtained from Bk by using a
low-rank (usually rank-one or two) updating formula. Because Bk is intended
to be an approximation to the Jacobian F ′(xk), the next approximation Bk+1

is often required to satisfy the secant equation

Bk+1sk = yk,

where sk = xk+1 − xk and yk = F (xk+1) − F (xk). A method with such an
update is called a secant (or quasi-Newton) method. The choices of different
updates give different methods. These methods are closely related to the ones
for solving nonlinear minimization problems. Indeed, nonlinear equations can
easily be found in differentiable unconstrained minimization. In this case,
nonlinear equations to be solved are derived from the first-order necessary
conditions, namely, F is the gradient of some function to be minimized. For
more details, see a standard textbook, for example, Dennis and Schnabel [4].

Various secant methods for solving problem (1.1) and the minimization
problem have been proposed, and their convergence properties have been stud-
ied by many researchers. Among those, one of the well-known and remarkable
results is the one developed by Broyden, Dennis and Moré [1]. The theory
includes so-called bounded deterioration properties, originally investigated by
Dennis. This property plays a key role in a local convergence analysis for se-
cant methods. They used a norm inequality such that the difference between
two vectors suitably scaled by some matrix is bounded above by an order of
one of the two.

In the present paper, we give a bounded deterioration property based on
an inequality different from the norm inequality that Broyden, Dennis and
Moré [1] used. The underlying inequality has a very simple geometric meaning
that it bounds the angle between the suitably scaled vectors. Moreover, the
inequality has a merit that it is invariant to the size, while the norm inequality
does not. There is a case that the scale invariance enables us to simplify the
proof of a local convergence property of a structured secant method.

In Section 2, we describe our notation, basic properties and some assump-
tions employed. In Section 3, we deal with rank-one secant updates. We show
local superlinear convergence of the rank-one secant methods. Symmetry re-
quirement for updates arises naturally in the case for smooth unconstrained
minimization. However, rank-one updates are in general not symmetric. For
this reason, in Section 4, we consider symmetric rank-two secant updates. We
show local superlinear convergence of the rank-two secant methods.
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§2. Notation, Basic Properties and Assumptions

Throughout this paper, symbol I denotes the identity matrix of order n. Su-
perscripts � and −� denote, respectively, the transpose of a vector or a matrix
and the transpose of an inverse matrix. The latter equals the inverse of a trans-
posed matrix. Norm ‖ · ‖ denotes the l2-vector norm or its induced operator
norm. Norms ‖ · ‖F and ‖ · ‖M,N denote the Frobenius norm and a weighted
Frobenius norm defined as

‖A‖F ≡
√

tr(A�A) and ‖A‖M,N ≡ ‖NAM�‖F for A in R
n×n,

where M and N are nonsingular matrices in R
n×n. In particular, we denote

‖A‖M,M by ‖A‖M simply. We will use the following basic properties: for any
matrices A and B in R

n×n,

‖A�‖ = ‖A‖ ≤ ‖A‖F = ‖A�‖F,

‖A‖ ≤ ‖M−1‖‖N−1‖‖A‖M,N ,

‖AB‖F ≤ min
{
‖A‖‖B‖F, ‖A‖F‖B‖

}
≤ ‖A‖F‖B‖F.

For any nonsingular matrices M and N in R
n×n, we can take unique symmetric

positive definite matrices |M | and |N | in R
n×n such that

‖A‖|M |,|N | = ‖A‖M,N , ‖A‖|M | = ‖A‖M ,

where |M | denotes the absolute of M , i.e., |M | ≡ (M�M)1/2. However, we
will not assume in this paper that M and N are symmetric positive definite.

For vectors a and c in R
n with c�a �= 0, we define projection operators by

P (a, c) ≡ I − ac�

c�a
and Q(a, c) ≡ ac�

c�a
,(2.1)

and we abbreviate P (a, a) and Q(a, a) as P (a) and Q(a). Thus, by P (a) and
Q(a) for nonzero vector a in R

n, we mean

P (a) ≡ I − aa�

‖a‖2
and Q(a) ≡ aa�

‖a‖2
.(2.2)

Operators P (a) and Q(a) are both orthogonal projectors. Obviously, P (a, c)+
Q(a, c) = P (a) + Q(a) = I. For vectors a, r and c in R

n with c�a �= 0, we
define two functions given by

Φ1(a, r, c) ≡ rc�

c�a
,

Φ2(a, r, c) ≡ rc� + cr�

c�a
− a�r

(c�a)2
cc�.
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It is easily seen that each function Φi(a, ·, c) is linear in r, i.e., for any real
numbers t1, t2 and for any vectors r1, r2 in R

n, it holds that

Φi(a, t1r1 + t2r2, c) = t1Φi(a, r1, c) + t2Φi(a, r2, c).(2.3)

For r = Y a, where Y is any matrix in R
n×n, the function Φ1 is written as

Φ1(a, Y a, c) = Y Q(a, c).(2.4)

Similarly, we can verify by a direct calculation that, for r = Y a, where Y is
any symmetric matrix in R

n×n, the function Φ2 is written as

Φ2(a, Y a, c) = Y −
(

I − ca�

c�a

)
Y

(
I − ac�

c�a

)
(2.5)

= Y − P (a, c)�Y P (a, c).

Furthermore, for vectors a, b and c in R
n with c�a �= 0 and X in R

n×n, we
define rank-one and rank-two update functions by

∆1(a, b, c,X) ≡ (b − Xa)c�

c�a
,(2.6)

∆2(a, b, c,X) ≡ (b − Xa)c� + c(b − Xa)�

c�a
− a�(b − Xa)

(c�a)2
cc�.(2.7)

Then clearly,

∆i(a, b, c,X) = Φi(a, b − Xa, c), i = 1, 2.(2.8)

Also note that ∆2 is symmetric. Letting Xi+ = X + ∆i(a, b, c,X), i = 1, 2,
we can readily verify that both of Xi+ satisfy the ‘secant’ equation X+a = b.
Therefore, X1+ and X2+ give, respectively, the rank-one and the symmetric
rank-two secant updates. The vector c in (2.6) or (2.7) is called the scale. We
note that ∆i (i = 1, 2) are invariant to the size of the scale c.

An ε-neighborhood of a ∈ R
n, denoted by N (a; ε), is an open ball centered

at a with radius ε, i.e., N (a; ε) ≡ {x ∈ R
n : ‖x − a‖ < ε }. Analogously, a

δ-neighborhood of A ∈ R
n×n induced by ‖ · ‖M,N is an open ellipsoid centered

at A with radius δ measured by ‖ · ‖M,N and is denoted by NM,N (A; δ), i.e.,
NM,N (A; δ) ≡ {X ∈ R

n×n : ‖X − A‖M,N < δ }. A δ-neighborhood NM (A; δ)
refers to NM,M (A; δ).

We make the following standard assumptions regarding F .

(A1) The function F : Ω ⊂ R
n → R

n is differentiable in an open convex subset
Ω.
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(A2) There exists a point x∗ in Ω such that F (x∗) = 0.

(A3) The Jacobian matrix F ′(x∗) ∈ R
n×n is nonsingular.

(A4) The derivative F ′ is locally Hölder continuous at x∗, i.e., there exist
constants ξ ≥ 0, p ∈ (0, 1] and εc > 0 such that for all x ∈ N (x∗; εc) ⊂ Ω,

‖F ′(x) − F ′(x∗)‖ ≤ ξ‖x − x∗‖p.(2.9)

It follows from (A1) and (A4) that for all u and v in N (x∗; εc),

‖F (u) − F (x∗) − F ′(x∗)(u − x∗)‖ ≤ ξ

p + 1
‖u − x∗‖p+1,(2.10)

‖F (u) − F (v) − F ′(x∗)(u − v)‖ ≤ ξσ(u, v)p‖u − v‖,(2.11)

where σ(u, v) ≡ max{‖u − x∗‖, ‖v − x∗‖}. See Lemma 4.1.12 in Dennis and
Schnabel [4] and Lemma 3.1 of Broyden, Dennis and Moré [1]. We write
σ(xk, xk+1) as σk for short.

§3. Superlinear Convergence of Rank-one Secant Methods

In this section, we prove local superlinear convergence of rank-one secant meth-
ods. We begin with a form convenient to estimate the difference between an
updated matrix and a target matrix by the weighted Frobenius norm.

Lemma 1. Let X ∈ R
n×n, and let a, b and c be vectors in R

n with c�a �= 0.
Let X be defined by the rank-one secant update

X = X + ∆1(a, b, c,X).(3.1)

Then, for any A, N ∈ R
n×n and any nonsingular M ∈ R

n×n, there hold

(a) E = EP (â) + Eâ

[
â

‖â‖2
− ĉ

ĉ�â

]�
+

N(b − Aa)(Mc)�

c�a
,

(b) E = EP (ĉ) + E

[
ĉ

‖ĉ‖2
− â

ĉ�â

]
ĉ� +

N(b − Aa)(Mc)�

c�a
,

where E := N(X −A)M�, E := N(X −A)M�, â := M−�a and ĉ := Mc.

Proof. From (3.1), we have

X − A = X − A + ∆1(a, b, c,X)
= X − A + Φ1(a, b − Xa, c) (by (2.8))
= X − A + Φ1(a,−(X − A)a + b − Aa, c)
= X − A − Φ1(a, (X − A)a, c) + Φ1(a, b − Aa, c) (by (2.3))
= X − A − (X − A)Q(a, c) + ∆1(a, b, c,A) (by (2.4), (2.8))
= (X − A)P (a, c) + ∆1, (by (2.1))
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where we have written ∆1(a, b, c,A) as ∆1 for short. Note that since ĉ�â =
(Mc)�(M−�a) = c�a �= 0, the vectors â and ĉ are both nonzero. Substituting
the above expression and noting that M−�P (a, c)M� = P (M−�a,Mc) =
P (â, ĉ), we obtain

E = N(X − A)M�

= N [(X − A)P (a, c) + ∆1]M�

= N(X − A)M� · M−�P (a, c)M� + N∆1M
�

= EP (â, ĉ) + N∆1M
�

= EP (â) + E[P (â, ĉ) − P (â)] + N∆1M
�

= EP (â) + E

[
− âĉ�

ĉ�â
+

ââ�

‖â‖2

]
+ N∆1M

�. (by (2.1) and (2.2))

This proves part (a). Adding and subtracting EP (ĉ) in place of EP (â) on the
right-hand side of the second last equation gives part (b). �

The next lemma gives basic estimates for later use, and corresponds to
Lemma 4.2 of Broyden, Dennis and Moré [1].

Lemma 2. Let M ∈ R
n×n be a nonsingular matrix. Let a and c be vectors in

R
n, and put â := M−�a and ĉ := Mc. If the inequality

1 −
(

ĉ�â

‖ĉ‖‖â‖
)2

≤ β2(3.2)

holds for some β ∈ [0, 1), then

(a)
∥∥∥∥â[ â

‖â‖2
− ĉ

ĉ�â

]�∥∥∥∥
F
≤ β√

1 − β2
,

(b)
∥∥∥∥[ ĉ

‖ĉ‖2
− â

ĉ�â

]
ĉ�
∥∥∥∥
F
≤ β√

1 − β2
.

Moreover, for any A ∈ R
n×n and any b ∈ R

n,

(c)

∥∥∥∥∥(b − Aa)(Mc)�

c�a

∥∥∥∥∥
F

≤ ‖M‖√
1 − β2

‖b − Aa‖
‖a‖ .

Proof. We first note that since (3.2) holds for β ∈ [0, 1), ĉ�â = c�a is
nonzero. By using ‖xy�‖F = ‖x‖‖y‖ and (3.2), we have∥∥∥∥â[ â

‖â‖2
− ĉ

ĉ�â

]�∥∥∥∥2

F
= ‖â‖2

∥∥∥∥ â

‖â‖2
− ĉ

ĉ�â

∥∥∥∥2
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=
∥∥∥∥ â

‖â‖ − ‖â‖ĉ
ĉ�â

∥∥∥∥2

=
(‖ĉ‖‖â‖

ĉ�â

)2

− 1

≤ 1
1 − β2

− 1

=
β2

1 − β2
.

This proves part (a). Part (b) follows in the same way. For part (c), note
again that it holds from (3.2)

‖ĉ‖‖â‖
|ĉ�â| =

‖Mc‖‖M−�a‖
|c�a| ≤ 1√

1 − β2
.(3.3)

Using this and ‖a‖ ≤ ‖M�‖‖M−�a‖ = ‖M‖‖M−�a‖, we obtain∥∥∥∥∥(b − Aa)(Mc)�

c�a

∥∥∥∥∥
F

= ‖b − Aa‖ · ‖Mc‖
|c�a|

≤ ‖b − Aa‖ · 1√
1 − β2‖M−�a‖

≤ ‖b − Aa‖√
1 − β2

· ‖M‖
‖a‖ ,

which is the desired result. �

Remark 1. We note that parts (a) and (b) are, in fact, equivalent because one
becomes the other by interchanging â and ĉ provided inequality (3.2) holds.

Remark 2. It is clear that inequality (3.2) is equivalent to the following (see
also (3.3)):

| cos θ| ≡ |ĉ�â|
‖ĉ‖‖â‖ ≥

√
1 − β2,

where θ is the angle between ĉ and â. Hence, (3.2) states simply | sin θ| ≤ β.

Remark 3. In Broyden, Dennis and Moré [1], the following was assumed
instead of (3.2): for nonsingular symmetric matrix M , vectors a, c with a �= 0
and β ∈ [0, 1

3 ], it holds

‖ĉ − â‖ ≤ β‖â‖, i.e., ‖Mc − M−1a‖ ≤ β‖M−1a‖.(3.4)

It should be noted that inequality (3.4) implies (3.2). Indeed, we see

‖ĉ − â‖ ≤ β‖â‖ ⇔ ‖ĉ‖2 − 2ĉ�â + ‖â‖2 ≤ β2‖â‖2
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⇔ 2ĉ�â ≥ ‖ĉ‖2 + (1 − β2)‖â‖2

⇒ 2ĉ�â ≥ 2
√

1 − β2‖ĉ‖‖â‖

⇒ |ĉ�â|
‖ĉ‖‖â‖ ≥

√
1 − β2,

where the third implication follows from the arithmetic-geometric mean in-
equality. It is clear from the above that (3.4) is not implied by (3.2).

Note also that in (3.2) the roles of ĉ and â are equal, whereas in (3.4)
they are not. Moreover, (3.2) has a favorable property that it is invariant
under the sizing of a, c and M , i.e., a multiple of those, while (3.4) is not. In
proving some local convergence properties, if (3.2) is used in place of (3.4),
then the proof may be somewhat simplified. We point out here one such case.
Huschens [5, Theorem 3.1] proved that his structured quasi-Newton method
for nonlinear least squares problems converges quadratically to a solution in
the zero-residual case. In the proof, he used a sized weighting matrix Mτ (see
(3.7) of [5, p. 114]) and gave an estimate of the form

‖Mτ c − M−1
τ a‖ ≤ Kσ(x, x+)‖M−1

τ a‖,
where K is a positive constant (see (3.19) of [5, p. 116]). However, by using
an estimate such as (3.2), we will be able to remove the sizing of the weight-
ing matrix, and consequently, able to simplify the proof. Details are now in
preparation.

The following lemma states a so-called “bounded deterioration” property
of a rank-one secant update.

Lemma 3. Let M ∈ R
n×n be a nonsingular matrix, and let a and c be vectors

in R
n such that inequality (3.2) holds for some β ∈ [0, 1). Let X ∈ R

n×n and
b ∈ R

n. Then, the rank-one secant update X given by (3.1) is well-defined,
and for any A ∈ R

n×n and any nonsingular N ∈ R
n×n, it holds that

(a) ‖X − A‖M,N ≤
(

1 +
β√

1 − β2

)
‖X − A‖M,N +

‖M‖‖N‖√
1 − β2

‖b − Aa‖
‖a‖ .

Moreover, if ‖X − A‖M,N ≤ ρ for some ρ > 0, then the following hold:

(b) ‖X − A‖M,N ≤
(

1 +
β√

1 − β2

)
‖X − A‖M,N +

‖M‖‖N‖√
1 − β2

‖b − Aa‖
‖a‖

− 1
2ρ‖M−1‖2‖N−1‖2

(‖(X − A)a‖
‖a‖

)2

,

(c) ‖X − A‖M,N ≤
(

1 +
β√

1 − β2

)
‖X − A‖M,N +

‖M‖‖N‖√
1 − β2

‖b − Aa‖
‖a‖
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− 1
2ρ

(‖N(X − A)M�Mc‖
‖Mc‖

)2

.

Proof. As noted at the beginning of the proof of Lemma 2, c�a is nonzero,
and so X is well-defined and the expressions given in Lemma 1 can be used.
We prove part (b) only. Part (c) follows similarly from Lemma 1(b) and
Lemma 2(b)–(c). Part (a) follows more easily. Since, for any nonzero matrix
W in R

n×n and any nonzero vector u in R
n,∥∥∥∥W [

I − uu�

‖u‖2

]∥∥∥∥2

F
= ‖W‖2

F − 2tr
(

W�Wuu�

‖u‖2

)
+

‖Wuu�‖2
F

‖u‖4

= ‖W‖2
F − ‖Wu‖2

‖u‖2

≤
(
‖W‖F − ‖Wu‖2

2‖W‖F‖u‖2

)2

,

and since the quantity in the last parentheses is positive by ‖Wu‖ ≤ ‖W‖F‖u‖,
we have that for W with 0 < ‖W‖F ≤ ρ,

‖WP (u)‖F =
∥∥∥∥W [

I − uu�

‖u‖2

]∥∥∥∥
F
≤ ‖W‖F − ‖Wu‖2

2ρ‖u‖2
,(3.5)

which also holds for W = 0.
Note that ‖X−A‖M,N = ‖E‖F and ‖X−A‖M,N = ‖E‖F ≤ ρ with notations of
Lemma 1. Thus, all we need is to estimate the right-hand side of Lemma 1(a).
By using (3.5) for W = E and u = â and the estimates of Lemma 2(a) and
Lemma 2(c), we have

‖E‖F ≤ ‖EP (â)‖F +
∥∥∥∥Eâ

[
â

‖â‖2
− ĉ

ĉ�â

]�∥∥∥∥
F

+
∥∥∥∥N(b − Aa)(Mc)�

c�a

∥∥∥∥
F

≤ ‖E‖F − ‖Eâ‖2

2ρ‖â‖2
+ ‖E‖F

β√
1 − β2

+ ‖N‖ ‖M‖√
1 − β2

‖b − Aa‖
‖a‖

=
(

1 +
β√

1 − β2

)
‖E‖F − ‖Eâ‖2

2ρ‖â‖2
+

‖M‖‖N‖√
1 − β2

‖b − Aa‖
‖a‖ .(3.6)

But since
‖N(X − A)a‖ ≥ ‖(X − A)a‖

‖N−1‖
and ‖M−�a‖ ≤ ‖M−�‖‖a‖ = ‖M−1‖‖a‖, we get

‖Eâ‖
‖â‖ =

‖N(X − A)a‖
‖M−�a‖ ≥ ‖(X − A)a‖

‖N−1‖
1

‖M−1‖‖a‖
=

1
‖M−1‖‖N−1‖

‖(X − A)a‖
‖a‖ ,(3.7)
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and therefore, by substitution into (3.6), part (b) follows. �

The estimate (b) will be used later when showing superlinear convergence
of iterates. In the proof, the limit like lim ‖(X − A)a‖/‖a‖ = 0 follows, and
this property implies superlinearity of convergence. (See the last paragraph
in the proof of Theorem 2, and in particular, (3.19).) We could alternatively
use the estimate (c). To see this, first note that inequality (3.2) yields∥∥∥∥∥ ĉ

‖ĉ‖ − sgn(ĉ�â)
â

‖â‖

∥∥∥∥∥
2

= 2
(

1 − |ĉ�â|
‖ĉ‖‖â‖

)

≤ 2(1 −
√

1 − β2) =
2β2

1 +
√

1 − β2

≤ 2β2,

where sgn(ĉ�â) denotes the sign of ĉ�â, so that∥∥∥∥∥ ĉ

‖ĉ‖ − sgn(ĉ�â)
â

‖â‖

∥∥∥∥∥ ≤ √
2β.

Therefore, from this and ‖E‖ ≤ ‖E‖F ≤ ρ, we have

‖Eâ‖
‖â‖ =

∥∥∥∥E[ ĉ

‖ĉ‖ −
(

ĉ

‖ĉ‖ − sgn(ĉ�â)
â

‖â‖
)]∥∥∥∥

≤
∥∥∥∥Eĉ

‖ĉ‖
∥∥∥∥+ ‖E‖

∥∥∥∥ ĉ

‖ĉ‖ − sgn(ĉ�â)
â

‖â‖

∥∥∥∥∥
≤ ‖Eĉ‖

‖ĉ‖ +
√

2ρβ.

Thus, we know that if

‖N(X − A)M�Mc‖
‖Mc‖ =

‖Eĉ‖
‖ĉ‖ → 0

and if β → 0 (β will be taken to be such a quantity; see the proof of Theorem 1
below), then it holds that

‖N(X − A)a‖
‖M−�a‖ =

‖Eâ‖
‖â‖ → 0,

and hence, by (3.7),
‖(X − A)a‖

‖a‖ → 0.
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However, we prefer the estimate (b) because it is applicable more directly to
the proof of superlinear convergence, while (c) is rather complicated due to
the presence of the scale vector c unspecified.

The next proposition is essentially the same as Lemma 3.3 of Dennis and
Moré [2]. However, we give here a proof different from theirs; somewhat direct
and simpler one.

Proposition 1. Let {ak} and {bk} be two sequences of nonnegative numbers
such that

ak+1 ≤ (1 + α1bk)ak + α2bk, ∀k ≥ 0,(3.8)

where α1 and α2 are nonnegative constants that are not both zero. Then, the
sequence {(1 + ak)/ck} converges to some limit µ ≥ 0, where ck :=

∏k−1
j=0(1 +

αbj) (k ≥ 1), c0 := 1 and α := max{α1, α2}. If
∑∞

k=0 bk < ∞, then µ > 0
and {ak} converges. If

∑∞
k=0 bk = ∞ and µ > 0, then {ak} diverges to ∞. If∑∞

k=0 bk = ∞ and µ = 0, then {ak} may converge or diverge.

Proof. From (3.8), it follows that ak+1 ≤ (1 + αbk)ak + αbk. Adding
1 to both sides yields 1 + ak+1 ≤ (1 + αbk)(1 + ak), and dividing by ck+1

gives (1 + ak+1)/ck+1 ≤ (1 + ak)/ck. Namely, {(1 + ak)/ck} is a nonincreasing
sequence of positive numbers. Since it is of course bounded below by zero,
it converges to µ ≥ 0, say. For notational simplicity, we let dk :=

∑k−1
j=0 bj

(k ≥ 1) and d0 := 0. Note first that 1 + αdk ≤ ck ≤ exp(αdk). Indeed, the
left inequality follows from (1+αb0)(1+αb1) · · · (1+αbk−1) = 1+α(b0 + b1 +
· · ·+bk−1)+(α2b0b1 + · · ·), and the right inequality follows from the inequality
1 + x ≤ ex for x ≥ 0. Since α > 0 and since the sequences {ck} and {dk} are
both nondecreasing, it follows that they either both converge or both diverge
to ∞.

Assume now that
∑∞

k=0 bk < ∞. Then {dk} converges, and so does {ck}.
Let limk→∞ ck = c ≥ 1. Since (1 + ak)/ck ≥ 1/ck, by letting k → ∞, this
yields µ ≥ 1/c > 0. Therefore, by the ratio test, {1 + ak} converges, and so
does {ak}.

Assume next that
∑∞

k=0 bk = ∞, i.e., limk→∞ dk = ∞. Then, limk→∞ ck =
∞. If µ > 0, then again by the ratio test, limk→∞(1 + ak) = ∞, and so
limk→∞ ak = ∞. If µ = 0, then we cannot conclude whether {ak} converges
or not. �

Remark 4. If α1 = α2 = 0 in (3.8), then it is obvious that {ak} is convergent.

Remark 5. As stated at the end of the proposition, no conclusion on the
convergence or divergence of {ak} can be drawn from the fact that

∑∞
k=0 bk =

∞ and µ = 0. The following example shows that either case can actually
occur.
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Example. Let α1 = α2 = 1 and bk ≡ 1 (k ≥ 0). Let a1,k = 1/k and a2,k = k
for k ≥ 1, and let a1,0 and a2,0 be any nonnegative numbers. Then, it is easy to
check that both {ai,k} satisfy (3.8). Since ck = 2k, that (1 + ai,k)/ck → 0 = µ
is obvious, and of course

∑∞
k=0 bk = ∞. The sequence {a1,k} converges to zero,

while the sequence {a2,k} diverges to ∞.

Suppose that F : Ω ⊂ R
n → R

n satisfies assumption (A1). Let x∗ ∈ Ω (not
necessarily F (x∗) = 0), and let Ds and Da be (open) neighborhoods of x∗. We
say that v satisfies the scale condition (SC) in a on Ds if:

(SC) there exist constants Ks ≥ 0, q ∈ (0, 1] and a nonsingular matrix M ∈
R

n×n such that, for all distinct x, x+ ∈ Ds, it holds that√√√√1 −
(

v�a

‖Mv‖‖M−�a‖

)2

≤ Ksσ(x, x+)q.(3.9)

We say that y satisfies the approximation condition (AC) on Da if:

(AC) there exist constants Ka ≥ 0 and r ∈ (0, 1] such that, for all distinct
x, x+ ∈ Da and s = x+ − x, it holds that

‖y − F ′(x∗)s‖ ≤ Kaσ(x, x+)r‖s‖.(3.10)

Typically, v is a function of s, y and B, e.g., v = s, and y is a function of x
and x+, e.g., y = F (x+) − F (x). It should be noted that if v = a, then (3.9)
holds for M = I. Also note that if y = F (x+) − F (x) as usual, then (3.10)
holds on N (x∗; εc) from (2.11).

We show a bounded deterioration inequality for a rank-one secant update,
which plays an important role in proving Q-linear convergence of iterates in
Theorem 2.

Theorem 1. Suppose that F : Ω ⊂ R
n → R

n satisfies assumption (A1). Let
Ds and Da be neighborhoods of x∗ in Ω. Assume that v satisfies the scale
condition (SC) in s with M ∈ R

n×n and q ∈ (0, 1] on Ds, and that y satisfies
the approximation condition (AC) with r ∈ (0, 1] on Da. Let B+ be a rank-one
secant update defined by

B+ = B + ∆1(s, y, v,B),

where ∆1 is given by (2.6). Then, there exists a neighborhood Db of x∗ such
that, for all distinct x, x+ ∈ Db ⊂ Ds∩Da, B+ is well-defined and the following
bounded deterioration inequality holds:

‖B+ − F ′(x∗)‖M,N(3.11)
≤ (1 + αsσ(x, x+)q)‖B − F ′(x∗)‖M,N + αaσ(x, x+)r,
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where N ∈ R
n×n is any nonsingular matrix, and αs and αa are some nonneg-

ative constants.

Proof. Since v satisfies the scale condition (SC) in s on Ds, there exists
a constant Ks ≥ 0 satisfying (3.9) with s replacing a. Also since y satisfies
the approximation condition (AC) on Da, there exists a constant Ka ≥ 0
satisfying (3.10). Let β′ ∈ (0, 1) be a constant. Choose an εb > 0 so small
that Ksε

q
b ≤ β′ and N (x∗; εb) ⊂ Ds. Set Db := N (x∗; εb) ∩Da. Then, Db is a

neighborhood of x∗ and Db ⊂ Ds ∩Da. Now, let x, x+ ∈ Db with x �= x+. For
brevity, let σ = σ(x, x+). Note that Ksσ

q ≤ Ksε
q
b ≤ β′ < 1. From this and

(3.9), inequality (3.2) holds for a = s, c = v and β = Ksσ
q. Hence, we can

apply Lemma 3 to X = B+, X = B, b = y and A = F ′(x∗). (For N ∈ R
n×n,

we can take any nonsingular matrix.) It follows from Lemma 3(a) and (3.10)
that

‖B+ − F ′(x∗)‖M,N

≤
(

1 +
Ksσ

q√
1 − (Ksσq)2

)
‖B − F ′(x∗)‖M,N +

‖M‖‖N‖√
1 − (Ksσq)2

‖y − F ′(x∗)s‖
‖s‖

≤
(

1 +
Ksσ

q√
1 − β′2

)
‖B − F ′(x∗)‖M,N +

‖M‖‖N‖√
1 − β′2 Kaσ

r.

Therefore, we have (3.11) with nonnegative constants

αs =
Ks√

1 − β′2 and αa =
Ka‖M‖‖N‖√

1 − β′2 . �

We are ready to prove local superlinear convergence of rank-one secant
methods.

Theorem 2. Suppose that F : Ω ⊂ R
n → R

n satisfies assumptions (A1)–
(A4). Assume that for some neighborhoods Ds, Da of x∗, v and y satisfy,
respectively, the scale condition (SC) in s with M ∈ R

n×n on Ds, and the
approximation condition (AC) on Da. Then, there exist constants ε, δ > 0
such that, for x0 ∈ N (x∗; ε) and B0 ∈ NM,N (F ′(x∗); δ), where N ∈ R

n×n is
any constant nonsingular matrix, the sequence {xk} generated by

xk+1 = xk − B−1
k F (xk), Bk+1 = Bk + ∆1(sk, yk, vk, Bk), k = 0, 1, . . .

is well-defined, and converges Q-superlinearly to x∗.

Proof. We follow essentially the same arguments as those used in Theorem
3.2 of Broyden, Dennis and Moré [1]. We first note from assumptions that the
conclusions of Theorem 1 hold. Let N ∈ R

n×n be a given nonsingular matrix,
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and let λ ∈ (0, 1) be fixed. Set γ ≥ ‖F ′(x∗)−1‖ and η ≥ ‖M−1‖‖N−1‖. By
assumption (A4), there exist constants ξ ≥ 0, p ∈ (0, 1] and εc > 0 such that
for all x ∈ N (x∗; εc) ⊂ Ω, inequality (2.9) holds. Choose positive numbers ε
and δ such that

ε ≤ min{1, εc},(3.12)

γ(1 + λ)
( ξ

p + 1
εp + 2ηδ

)
≤ λ,(3.13)

2δαsε
q

1 − λq
+

αaε
r

1 − λr
≤ δ,(3.14)

where constants αs and αa are given in Theorem 1. Set N1 = N (x∗; ε) and
N2 = NM,N (F ′(x∗); 2δ). From (3.12), we have N1 ⊂ N (x∗; εc). If necessary
further restrict ε so that N1 ⊂ Db, where Db is given in Theorem 1. Any
B ∈ N2 is nonsingular. Indeed, we first note that

‖B − F ′(x∗)‖ ≤ ‖M−1‖‖N−1‖‖B − F ′(x∗)‖M,N < 2ηδ.(3.15)

From this, and by noting from (3.13) that 2(1 + λ)γηδ ≤ λ holds, it follows
that

‖F ′(x∗)−1[B − F ′(x∗)]‖ ≤ ‖F ′(x∗)−1‖‖B − F ′(x∗)‖ < 2γηδ ≤ λ

1 + λ
< 1.

Thus, by the Banach perturbation lemma, B is nonsingular and

‖B−1‖ ≤ ‖F ′(x∗)−1‖
1 − ‖F ′(x∗)−1[B − F ′(x∗)]‖ ≤ γ(1 + λ).(3.16)

We next show that (x,B) ∈ N1 ×N2 implies ‖x+ −x∗‖ ≤ λ‖x−x∗‖, and thus
x+ ∈ N1, where x+ := x − B−1F (x). Since x ∈ N1 ⊂ Ω and B ∈ N2, x+ is
well-defined and

x+ − x∗ = x − x∗ − B−1F (x)
= −B−1{F (x) − F (x∗) − F ′(x∗)(x − x∗) − [B − F ′(x∗)](x − x∗)}.

By (3.16), (2.10), (3.15) and (3.13), it holds that

‖x+ − x∗‖ ≤ ‖B−1‖{‖F (x) − F (x∗) − F ′(x∗)(x − x∗)‖
+ ‖B − F ′(x∗)‖‖x − x∗‖}

≤ γ(1 + λ)
( ξ

p + 1
‖x − x∗‖p+1 + 2ηδ‖x − x∗‖

)
≤ γ(1 + λ)

( ξ

p + 1
εp + 2ηδ

)
‖x − x∗‖

≤ λ‖x − x∗‖ < λε < ε.
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Thus, x+ ∈ N1. Moreover, if x+ = x, then x = x∗ = x+.
Now, we prove by induction on k that if (x0, B0) ∈ N1 ×NM,N (F ′(x∗); δ),

then, for all k ≥ 0, (xk, Bk) ∈ N1×N2 whenever xk �= x∗. (If finite convergence
occurs, then the algorithm will terminate successfully, and the matrix Bk will
not be generated any more.) This obviously holds for k = 0 from the choice of
the initial point and matrix. Assume that (xk, Bk) ∈ N1×N2 and xk �= x∗ for
k = 0, . . . , j. We want to prove that (xj+1, Bj+1) ∈ N1×N2. We have already
seen above that xj+1 ∈ N1 follows from the assumption (xj , Bj) ∈ N1 × N2.
So, we need only to prove that Bj+1 ∈ N2. From the hypotheses of induction,
it follows that ‖xk+1 − x∗‖ ≤ λ‖xk − x∗‖ and xk+1 �= xk for k = 0, . . . , j.
Hence, by Theorem 1, it follows that for all k = 0, . . . , j, Bk+1 is well-defined
and the following bounded deterioration inequality holds:

‖Bk+1 − F ′(x∗)‖M,N ≤ (1 + αsσ
q
k)‖Bk − F ′(x∗)‖M,N + αaσ

r
k.(3.17)

Since Bk ∈ N2 and σk = ‖xk − x∗‖ ≤ λk‖x0 − x∗‖ < λkε, we have

‖Bk+1 − F ′(x∗)‖M,N ≤ ‖Bk − F ′(x∗)‖M,N + 2δαsσ
q
k + αaσ

r
k

≤ ‖Bk − F ′(x∗)‖M,N + 2δαsλ
kqεq + αaλ

krεr.

Summing both sides from k = 0 to j and using (3.14), we obtain

‖Bj+1 − F ′(x∗)‖M,N ≤ ‖B0 − F ′(x∗)‖M,N + 2δαsε
q

j∑
k=0

λqk + αaε
r

j∑
k=0

λrk

< δ +
2δαsε

q

1 − λq
+

αaε
r

1 − λr

≤ 2δ.

Accordingly, Bj+1 ∈ N2. At the same time, we have shown that the sequence
{xk} is well-defined and converges at least Q-linearly to x∗ with rate λ.

We finally show superlinearity of the convergence. As we obtained (3.17)
from (3.11) of Theorem 1, if we use a strong bounded deterioration inequality
obtained by applying Lemma 3(b) with ρ = 2δ instead of Lemma 3(a) in the
proof of Theorem 1, then we have

‖Bk+1 − F ′(x∗)‖M,N(3.18)
≤ (1 + αsσ

q
k)‖Bk − F ′(x∗)‖M,N + αaσ

r
k

− 1
4δ‖M−1‖2‖N−1‖2

(‖(Bk − F ′(x∗))sk‖
‖sk‖

)2

.

Since σk < λkε ≤ 1 for all k ≥ 0, we know that
∞∑

k=0

max{σq
k, σ

r
k} =

∞∑
k=0

σ
min{q,r}
k < +∞.
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Hence, by setting ak = ‖Bk−F ′(x∗)‖M,N , bk = max{σq
k, σ

r
k}, α1 = αs and α2 =

αa in Proposition 1, it follows that ‖Bk −F ′(x∗)‖M,N converges. Rearranging
terms of (3.18) and using η ≥ ‖M−1‖‖N−1‖, we have

1
4δη2

(‖(Bk − F ′(x∗))sk‖
‖sk‖

)2

≤ ‖Bk − F ′(x∗)‖M,N − ‖Bk+1 − F ′(x∗)‖M,N + 2δαsσ
q
k + αaσ

r
k.

By passing to the limit k → ∞, we conclude that

lim
k→∞

‖(Bk − F ′(x∗))sk‖
‖sk‖ = 0,(3.19)

which is the Dennis-Moré condition [2] for a convergent sequence {xk} to
converge Q-superlinearly to x∗. �

Remark 6. We observe from the arguments through this section that the
right weighting matrix N appearing in the definition of the norm ‖ ·‖M,N does
not affect our convergence analysis at all.

§4. Superlinear Convergence of Rank-two Secant Methods

In the context of unconstrained minimization, the Jacobian F ′ to be approxi-
mated becomes the Hessian of the objective function in question, and is usu-
ally symmetric. Hence, it is reasonable that approximate Hessian matrices are
also generated so as to be symmetric. This leads us to imposing symmetry
on update matrices. In this section, we deal with symmetric rank-two secant
updates. As in the previous section, we start our analysis by giving a form
convenient to bound an error of a rank-two secant update.

Lemma 4. Let X ∈ R
n×n, and let a, b and c be vectors in R

n with c�a �= 0.
Let X be defined by the rank-two secant update

X = X + ∆2(a, b, c,X).(4.1)

Then, for any A ∈ R
n×n such that X − A is symmetric, X − A is also sym-

metric, and it holds that

E = PEP + PED + D�EP + D�ED + M∆2(a, b, c,A)M�,(4.2)

where M ∈ R
n×n is any nonsingular matrix and

(a) P = P (â), D = Q(â) − Q(â, ĉ) = â

[
â

‖â‖2
− ĉ

ĉ�â

]�
or
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(b) P = P (ĉ), D = Q(ĉ) − Q(â, ĉ) =
[

ĉ

‖ĉ‖2
− â

ĉ�â

]
ĉ�

with E := M(X − A)M�, E := M(X − A)M�, â := M−�a and ĉ := Mc.

Remark 7. Equation (4.2) can also be written in the simpler forms as follows:

(i) E = PEP + ED + D�E + â�Eâ

[
ĉĉ�

(ĉ�â)2
− ââ�

‖â‖4

]
+ M∆2M

�,

(ii) E = PEP + ED + D�E +
(

â�Eâ

(ĉ�â)2
− ĉ�Eĉ

‖ĉ‖4

)
ĉĉ� + M∆2M

�,

where P and D are given by (a) for (i) or (b) for (ii), and ∆2 = ∆2(a, b, c,A).
To see this, we have only to note that

−QED − D�EQ + D�ED = Q(â, ĉ)�EQ(â, ĉ) − QEQ,

where Q = Q(â) or Q(ĉ). However, the form (4.2) will be convenient for the
norm estimation because the estimate of D�ED in (4.2) can be obtained more
easily and directly than that of the last but one term in (i) or (ii).

Proof of Lemma 4. It is obvious that for any nonsingular matrix M ,
ĉ = Mc and â = M−�a are both nonzero since ĉ�â = c�a �= 0. Since by
assumption X − A is symmetric, we have

X − A = X − A + ∆2(a, b, c,X)
= X − A + Φ2(a, b − Xa, c) (by (2.8))
= X − A + Φ2(a,−(X − A)a + b − Aa, c)
= X − A − Φ2(a, (X − A)a, c) + Φ2(a, b − Aa, c) (by (2.3))
= P (a, c)�(X − A)P (a, c) + ∆2(a, b, c,A). (by (2.5), (2.8))

By substituting this and using M−�P (a, c)M� = P (â, ĉ), it follows that

E = M(X − A)M�

= M [P (a, c)�M−1 · M(X − A)M� · M−�P (a, c) + ∆2(a, b, c,A)]M�

= P (â, ĉ)�EP (â, ĉ) + M∆2M
�

= [P (â) + Q(â) − Q(â, ĉ)�]E[P (â) + Q(â) − Q(â, ĉ)] + M∆2M
�

= (P + D�)E(P + D) + M∆2M
�

= PEP + PED + D�EP + D�ED + M∆2M
�,

where ∆2 = ∆2(a, b, c,A) as before. This yields case (a). Replacing P (â) +
Q(â) by P (ĉ) + Q(ĉ) in the third last equation gives case (b). �

The next lemma is a result analogous to Lemma 3 for a rank-two secant
update.
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Lemma 5. Let M ∈ R
n×n be a nonsingular matrix, let β ∈ [0, 1), and let

vectors a and c in R
n such that inequality (3.2) holds. Let X ∈ R

n×n, b ∈ R
n,

and define X by the rank-two secant update (4.1). Then, for any A ∈ R
n×n

such that X − A is symmetric, it holds that

(a) ‖X − A‖M ≤
(
1 +

β√
1 − β2

)2

‖X − A‖M +
2‖M‖2

1 − β2

‖b − Aa‖
‖a‖ .

Moreover, if ‖X − A‖M ≤ ρ for some ρ > 0, then the following hold:

(b) ‖X − A‖M ≤
(
1 +

β√
1 − β2

)2

‖X − A‖M +
2‖M‖2

1 − β2

‖b − Aa‖
‖a‖

− 1
2ρ‖M−1‖4

(‖(X − A)a‖
‖a‖

)2

,

(c) ‖X − A‖M ≤
(
1 +

β√
1 − β2

)2

‖X − A‖M +
2‖M‖2

1 − β2

‖b − Aa‖
‖a‖

− 1
2ρ

(‖M(X − A)M�Mc‖
‖Mc‖

)2

.

Proof. We use the same notations as in Lemma 4. We prove part (b)
only. Parts (a) and (c) follow similarly, actually more easily. By noting that
‖P‖ = 1 because P is an orthogonal projector, it follows from (4.2) that

‖E‖F ≤ ‖EP‖F + 2‖D‖‖E‖F + ‖D‖2‖E‖F + ‖M∆2M
�‖F.(4.3)

Similar to Lemma 3(b), the first term on the right-hand side of (4.3) can be
estimated by using (3.5) as follows:

‖EP‖F ≤ ‖E‖F − 1
2ρ‖M−1‖4

(‖(X − A)a‖
‖a‖

)2

.(4.4)

To estimate the last term M∆2M
�, note that ∆2 can be written as

∆2(a, b, c,A) =
(b − Aa)c�

c�a
+

c(b − Aa)�

c�a
P (a, c).

Since M−�P (a, c)M� = P (â, ĉ), we have from Lemma 2(c) and (3.3) that

‖M∆2M
�‖F ≤

∥∥∥∥M (b − Aa)(Mc)�

c�a

∥∥∥∥
F

+
∥∥∥∥Mc(b − Aa)�

c�a
MP (â, ĉ)

∥∥∥∥
F

≤ ‖M‖
∥∥∥∥ (b − Aa)(Mc)�

c�a

∥∥∥∥
F
(1 + ‖P (â, ĉ)‖)

≤ ‖M‖2√
1 − β2

‖b − Aa‖
‖a‖

(
1 +

‖ĉ‖‖â‖
|ĉ�â|

)
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≤ ‖M‖2√
1 − β2

(
1 +

1√
1 − β2

)‖b − Aa‖
‖a‖

≤ 2‖M‖2

1 − β2

‖b − Aa‖
‖a‖ ,

where in the third inequality we used ‖P (a, c)‖ = ‖a‖‖c‖/|a�c| (see Lemma 8.5
of Dennis and Moré [3]). Substituting this and (4.4) into (4.3), and using
Lemma 2(a) (or 2(b)), we have

‖E‖F ≤ (1 + ‖D‖)2‖E‖F − 1
2ρ‖M−1‖4

(‖(X − A)a‖
‖a‖

)2

+ ‖M∆2M
�‖F

≤
(

1 +
β√

1 − β2

)2

‖E‖F − 1
2ρ‖M−1‖4

(‖(X − A)a‖
‖a‖

)2

+
2‖M‖2

1 − β2

‖b − Aa‖
‖a‖ ,

which is the desired result. �

As in the rank-one case, this lemma yields a bounded deterioration inequal-
ity for a symmetric rank-two secant update as follows.

Theorem 3. Suppose that F : Ω ⊂ R
n → R

n satisfies assumption (A1), and
that F ′(x∗) is symmetric. Let Ds and Da be neighborhoods of x∗ in Ω. Assume
that v satisfies the scale condition (SC) in s with M ∈ R

n×n and q ∈ (0, 1] on
Ds, and that y satisfies the approximation condition (AC) with r ∈ (0, 1] on
Da. Let B+ be a rank-two secant update defined by

B+ = B + ∆2(s, y, v,B),

where B is symmetric and ∆2 is given by (2.7). Then, there exists a neigh-
borhood Db of x∗ such that, for all distinct x, x+ ∈ Db ⊂ Ds ∩ Da, B+ is
well-defined and the following bounded deterioration inequality holds:

‖B+ − F ′(x∗)‖M ≤ (1 + αsσ(x, x+)q)‖B − F ′(x∗)‖M + αaσ(x, x+)r,

where αs and αa are some nonnegative constants.

Proof. The proof is almost the same as the one given for Theorem 1. Fix
a scalar β′ ∈ (0, 1), and take Db as in the proof of Theorem 1. Let x, x+ ∈ Db

with x �= x+. Since Ksσ
q ≤ β′ < 1 where σ = σ(x, x+), inequality (3.9)

implies that (3.2) holds for a = s, c = v and β = Ksσ
q. This allows us to

apply Lemma 5 to X = B+, X = B, b = y and A = F ′(x∗). From Lemma 5(a)
and (3.10), we obtain the desired inequality with

αs = Ks

(
2√

1 − β′2 +
β′

1 − β′2

)
and αa =

2Ka‖M‖2

1 − β′2 . �
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Finally, we present a superlinear convergence result for the symmetric rank-
two secant update methods.

Theorem 4. Suppose that F : Ω ⊂ R
n → R

n satisfies assumptions (A1)–
(A4), and that F ′(x∗) is symmetric. Assume that for some neighborhoods
Ds, Da of x∗, v and y satisfy, respectively, the scale condition (SC) in s with
M ∈ R

n×n on Ds, and the approximation condition (AC) on Da. Then, there
exist constants ε, δ > 0 such that, for x0 ∈ N (x∗; ε) and symmetric B0 ∈
NM (F ′(x∗); δ), the sequence {xk} generated by

xk+1 = xk − B−1
k F (xk), Bk+1 = Bk + ∆2(sk, yk, vk, Bk), k = 0, 1, . . . ,

is well-defined, and converges Q-superlinearly to x∗.

Proof. We can prove the theorem in a way similar to the proof of Theorem 2
by using Theorem 3 instead of Theorem 1, so we omit the proof. �

§5. Concluding Remarks

In this paper, we have shown that a certain inequality can take the place of a
norm inequality used in Broyden, Dennis and Moré [1] in proving local super-
linear convergence of rank-one and rank-two secant methods. Our inequality
requires that the angle between the scale c and a step a suitably scaled by
some matrix M approaches zero. It has a merit of invariance to scalar sizing,
while the norm inequality does not.
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[3] J. E. Dennis, Jr. and J. J. Moré, Quasi-Newton methods, motivation and theory,
SIAM Review 19 (1977), 46–89.

[4] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, New Jersey, 1983.

[5] J. Huschens, On the use of product structure in secant methods for nonlinear
least squares problems, SIAM Journal on Optimization 4 (1994), 108–129.



CONVERGENCE OF SECANT METHODS 59

Hideho Ogasawara
Department of Mathematical Information Science, Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-0825, Japan
E-mail : hoga@rs.kagu.tus.ac.jp


