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A note on a theorem of A. Saeki and R. Ikehata
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Abstract. We extend the theorem of A. Saeki and R. Ikehata for the wave
equation with linear dissipation.
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1. Introduction

In this note we consider the wave equation of the form

(1.1) wy — Aw 4+ b(x)w, =0 in  (0,400) x Q,
(1.2) w(0,z) = wo(z), wi(0,2)=wi(x) in €Q,
(1.3) w(t,z) =0 on (0,4+00) x 09,

where N > 3, Q(C RY) is an unbounded domain with smooth boundary 9
and b(-) € C1() is a positive and bounded function: 0 < by < b(z) < by in
for some constants by and b;. In the following we denote L? = L?(Q2), H} =
HY(Q) et.c.. If we assume {wp,w;} € H} x L? then we know the following
estimate holds for the solutions w(t,-) € C°([0,00); HE) N C1([0,00); L?) of
(1.1) — (1.3):

L+ Ow®)E + [[w@)]|Z: +/0 {@+Dllwe (DI + [[Vw(r)l[Z: } dr

< Ci{llwol[fp + [JwnllZ:}

for some positive constant Cy (cf. Hirosawa-Nakazawa|[l]), where

(lwe @Iz + IVw®)[Z2)

DN =

lw(®)][% =

is the energy at time ¢(> 0).
Recently, A. Saeki and R. Ikehata showed the following
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Theorem 1 ([3]). (1) Assume {wo, w1} € HY N L% x L*!, where

2t = {r [ = [ @+ bl r@)Pas < o
Then the solutions w(t,-) of (1.1) — (1.3) satisfy the following inequalities:

(1.4) L+ ) [lw®)|E < Coll(wo, wi)llEaz2a w2,
L+ Bllw(®)72 < Csll(wo, wi)llFanp2nx2a

for some positive constants Cs and C3, where
| (wo, wi) [ np2axp2a = lwollfn + [[wol[F2a + [fwi]|F2a-

(2) Moreover assume that w1+ b(x)wg = 0. Then the following inequalities
hold:

(1.6) (L +8)* [lw®)|E < Call(wo, willFpnarza w2,

(1.7) (L4 2[[w®IIZ> < Csll(wo, w)l[Fapz1 2

for some positive constants Cy and Cs.
In this theorem, essential lemma is the following:

Lemma 2 ([3]). Under the same assumption as in Theorem 1 (1),

t
(1.8) HUKOH%24-jﬁIhvﬁﬁIiadeEC%H(woﬂvﬂ@mezlezl

for some positive constant Cyg.
We shall give the simple proof of Theorem 1 and its extension:

Theorem 3. (1) Under the same condition as in Theorem 1 (1),
(1.9)
t
(L+8)*[lw(®)|E + /0 {1+ 7 llwe(7)l[Z> + A+ D) [Vw(t)l[Z- } dr

< Crll(wo, wi)llFpr 2 g2
(1.10)  lim (1 +1)?|w(®)||% =0,

(L11) lim (1+)]|w(b)]32 =0,

hold for some positive constant C';.
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(2) Under the same assumption as in Theorem 1 (2),

(1.12)
(1+ ) Jw(®)||E + /0 {(C+ 1) we ()72 + 1+ 7)°|[Vw(®)|[72 } dr

< CSH(wOawl)”%{llelell’
(1.13)

t
(1 +8)?[[w(®)]IZ: +/0 (L +7)?|w(r)l[Z2d7
< Cs|(wo, wi)l[fpapzxpens
(L14) - Tim (1+8)%w(®)|[F =0,

(1.15) (L4 6)°*||w(®)][72 < Croll(wo, wi)|[fr1np2nxp2as
(1.16)  lim (1 + )3 Jw®)|22 =0,

hold for some positive constants Cg, Cg and C1y.

Remark. Obviously, we can treat (1.1) — (1.3) with N = 2 and the Cauchy
problem in RY with N > 3 ([3]).

2. Proof of Theorem 3 (1)

We assume that ¢(¢) and 1 (¢) are the smooth, non-decreasing and non—
negative functions of ¢t. Multiplying {pw; + 1w} the both sides of (1.1), and
integrating on €2, we obtain (c.f., Mochizuki-Nakazawa [2])

(2.1) % /QX(t,a:)dx + /Q Z(t,2)dz = 0,
where
(2.2)
X(t,x) = ? {wi(t,z) +|Vw(t,z)]*} + Y(t)w(t, 2)w(t, z)
n b($)¢(t)2— ¢t(t)w(t, )2,
(2.3)

2(t.2) = {p(oolt) = 252~ wio) o
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Firstly we shall show (1.9). Put ¢(t) = 2(% +1)? and ¥(t) = 3(% +1).
Then easy computations give

byolt) — P10 ) = o2,
vt~ 20 > 01 1)
Vi () _S(x)%(t) > _b(x);ﬁt(t) > Oy

for some positive constants C1, Ci2 and Ci3. Thus we have
(2.4)

/QZ(t,x)dx > Cra {(1+ ?[Jwe ()72 + (1 + 1)[Vw(®)][72 — [w(®)][7- }

for some positive constant C14. Next choosing n as 0 < n < 1, we find

x(tx) 2 L Pot) fun(t,2)? + Voot ) )

b@)p(t) —¢u(t)  w(®)* 1 o
+{ 2 27790(t)} (t,2)

As is easily seen, there exists a positive constant C75 such that

b(x)(t) — () () b(t)?

— > - > -C
2 2n¢(t) 2np(t) 0

holds. From this, we have

(2.5) /QX(t,w)dw > Che {(1+0)?[[w(®)|[E — [lw®)[F2} -
On the other hand,
(2.6) / X(0,z)dz < Cu7 (|Jwol |7 + [|w1]]72)

Q

Integrating (2.1) over [0,t] and using (2.4), (2.5), (2.6) and Lemma 2, we
obtain (1.9).
Next we shall show (1.10). By (1.9), we find

ltim+inf(1 + )2 ]|w(t)||3 = 0.

Integration the both sides of

% L+ [lw®E} =20+ O)llw®llE — (1 +1)? /Q b(x)w(t, x)*dx,
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where we have used

on [t1,ta] (0 <t; <tg < +00) gives

@7 A+t el = O+ ) lle(t)]]E]
<2 [Cr Il o [0 )

Using (1.9), we find the right hand side of (2.7) tends to 0 as ¢; and t; — 400
and conclude (1.10).
Finally we shall show (1.11). Lemma 2 gives

lim mf(1 + Hlw(t)]|72 = 0.
From
d 2 2
T {@+D)[fw®)][72} = w72 + 2(1 + ) (w(t), w (t)) L2,
where (-,-)z> denotes the inner product in L?, we obtain
|(1+ t2)[[w(t2) |72 — (1 + t2)[[w(t1)][7:]

t2 t2
32/ Hw(7‘)|igd7‘+/ (1+7‘)2|\wt(7‘)\|%2d7—>0

tl tl
as t; and ty — 400 by Lemma 2 and (1.9), where we have used
1201 + ) (w(t), we (1)) 2| < [Jw(t)[[Z> + (1 + ) [Jwe (t)][Z2-
3. Proof of Theorem 3 (2)

Firstly we shall show (1.12) and (1.13). We put ¢(t) = (% + t)* and

P(t) = 3(% +t)3. Easy computations give

br)et) — 9 () > Cru1 + 1),

W(t) — 10 > Cio(1 4 1)°,

Pu(t) — b(a) e (t)
2

> —Cao(1+1)?
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for some positive constants Cig, C19 and Cyg. Thus we have

/ Z(t,x)dx
Q
(3.1)

> Cor { (1 + )Y Jwe ()2 + (1 + ([ Vw22 — (1 + ) w(®)][Z2}

for some positive constant Co;.
Similarly as in section 2, there exists a positive constant Cy5 such that

b)) — () _ B()* _

— (1 +t)?
5 2no() = Caa(1+1)
holds. From this, we have
(3:2) /QX(tjw)dx > Coa {(1+ 1) [w®)|[F — 1+ 1) [w(®)][72} -

Integrating (2.1) over [0,¢] and using (3.1), (3.2) and (2.6), we obtain

U+ @I + [ {0+ 7) (DI + 1+ 7T ar
(3.3)
2 2 2 2 2 2
< Oy <|\w0\|H1 HlhunlBs + 1+ Pl + [ |\w<T>|deT) |
Put .
u(t,m):/o w(T, x)dT.

Noting the assumption wi (z) 4 b(x)wy(x) = 0, we find u satisfies (1.1) — (1.3)
with «(0,z) = 0 and u;(0,2) = wo(x). Applying Theorem 3 (1), (1.9) and
noting u(t, x) = w(t,x), we obtain

t
(3.4) (1+t)2|\w(t)||%2+/0 (14+7)?[[w(r)[72dr < Cos||(wo, w)l[Fpp2 sz

(3.3) and (3.4) give (1.12) and (1.13).
Next, we shall show (1.14). (1.12) gives

ltimjnf(l + ) |w(t)||% = 0.
Integration the both sides of

S+ 0 )2}

=41+ )3 |wt)||% — (1 +1)* /RN b(x)wy(t, z)*dx
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over [t1,t2] (0 <t; <ty < 00) gives

(1 t2) ()l — (1 + 1) lw(ts)| 5]

to
§4/ (1+7’)3Hw(7')|2Ed7'+1)1/ (14 74wy (7)|Padr — 0

t1 t1
as t; and ty — 400 by (1.12) and conclude (1.14).
Next we shall show (1.15). Put (t) = 0 and (t) = (1+¢)3. Then we have

() (we (), w(t)) 2| < Cos {1+ 1) [we (W)L + (1 + ) [lw(t)l[Z2}

b(z)(t) — e(t)
2
From these we obtain

/ X(t,z)dx
Q
(3.5)

> Cog(1+ 1) |[w(®)[[72 — Cao {(1+ ) |[we (1) [F2 + (1 + )% |lw(D)]72 }
Moreover,
(3.6) /QZ(t,w)dx > —Cs {(L+1)°Jwe (D][Z2 + (L + 1) Jw(t)][ 2 }

Integrating the both sides of (2.1) over [0,¢] and using (3.5), (3.6) and (2.6),
we obtain

(L + )| lw(®)][7-
< 032{(1 + 1) lweOI[Z2 + 1+ 6)?[lw(®)| L

> Oar(1 +1)° — Cog(1 + 1)

t t
+ [Pl + [ 02wl fadr + ool + s

Noting (1.12) and (1.13), we have (1.15).
Finally, we shall show (1.16). By (1.13), we find

1tim+inf(1 +1)3||w(t)]|22 = 0.
Integration the both sides of

A+l
=3(1+ t)?|w(t)| 22 + 2(1 + )% (we (), w(t)) g2
over [t1,t2] (0 <t; <ty < 400) gives
(

(1 t2) fwt2) 72 — (14 t2)* lw(ty)] 17|

to to
§4/ <1+T>2\|w<r>|rizdr+/ (14 1) e (1) [2adr — 0
t1 t1

as t; and ty — 400 by (1.12) and (1.13).
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