On certain bases for Ariki-Koike algebras arising from canonical bases for $U_v(\mathfrak{sl}_m)$

Kiyotaka Ohkura and Toshiaki Shoji

(Received July 30, 2002)

Abstract. Frenkel, Khovanov and Kirillov showed that the parabolic Kazhdan-Lusztig basis of Iwahori-Hecke algebra associated to \mathfrak{S}_n can be obtained as the canonical basis of a weight subspace of $V^{\otimes n}$, where V is the vector representation of the quantum group $U_v(\mathfrak{sl}_m)$. In this paper, a similar problem for the case of Ariki-Koike algebra $\mathcal{H}_{n,r}$ is discussed. We construct a certain basis of $\mathcal{H}_{n,r}$, which is fixed by the involution and is closely related to the canonical basis of $V^{\otimes n}$, by making use of the representation of $\mathcal{H}_{n,r}$ on $V^{\otimes n}$. In the case where r=2, i.e., in the case of Iwahori-Hecke algebra of type B_n , this gives a basis different from the Kazhdan-Lusztig basis of $\mathcal{H}_{n,r}$.

AMS 1991 Mathematics Subject Classification. 17B37, 16G99.

 $Key\ words\ and\ phrases.$ Ariki-Koike algebra, quantum group, canonical basis, Kazhdan-Lusztig basis.

Contents

- 0. Introduction
- 1. Review on Ariki-Koike algebras
- 2. Involutions associated to $\mathcal{H}_{n,r}$ and $U_v(\mathfrak{sl}_m)$
- 3. Kazhdan-Lusztig basis and canonical basis
- 4. $\mathcal{H}_{n,r}$ -submodules of $V^{\otimes n}$
- 5. The case of Iwahori-Hecke algebras of type B_n

§0. Introduction

Let $U_v = U_v(\mathfrak{sl}_m)$ be the quantum group associated to the Lie algebra \mathfrak{sl}_m , and V the vector representation of U_v . Let \mathcal{H}_n be the Iwahori-Hecke algebra associated to the symmetric group \mathfrak{S}_n . Then the n-fold tensor space $V^{\otimes n}$

turns out to be a $U_v \otimes \mathcal{H}_n$ -module. Each weight subspace $V_{\lambda}^{\otimes n}$ of $V^{\otimes n}$ is \mathcal{H}_n -stable, and is naturally isomorphic to an induced module M_J from a linear representation of some parabolic subalgebra \mathcal{H}_J of \mathcal{H}_n . A parabolic Kazhdan-Lusztig basis on M_J was defined by Deodhar [D], by generalizing the notion of Kazhdan-Lusztig basis of \mathcal{H}_n introduced by Kazhdan and Lusztig [KL].

The notion of canonical basis for highest weight modules of U_v was introduced by Lusztig [L], which is a union of canonical bases for each weight subspace. In the case of highest weight module $V^{\otimes n}$, Frenkel, Khovanov and Kirillov [FKK] showed that the canonical basis of the weight subspace $V_{\lambda}^{\otimes n}$ coincides with the Kazhdan-Lusztig basis of M_J under the above isomorphism. Note that \mathcal{H}_n has a standard basis $\{T_{\sigma} \mid \sigma \in \mathfrak{S}_n\}$, and the Kazhdan-Lusztig basis of \mathcal{H}_n is characterized by the property that the transition matrix between this basis and the standard basis is of the unitriangular shape, and that it is fixed by a certain involution on \mathcal{H}_n , called the bar involution. In turn, $V^{\otimes n}$ has also a standard basis consisting of the tensor product of the given basis of V, and the canonical basis on $V^{\otimes n}$ is characterized by a certain involution ψ on it, together with some additional property related to the standard basis. The important step for proving the result in [FKK] is to show that these two involutions coincide with under the isomorphism $M_J \simeq V_{\lambda}^{\otimes n}$.

Let $W_{n,r}$ be the complex reflection group $\mathfrak{S}_n \ltimes (\mathbb{Z}/r\mathbb{Z})^n$, and $\mathcal{H}_{n,r}$ the associated cyclotomic Hecke algebra, i.e., the Ariki-Koike algebra associated to $W_{n,r}$. In the case where r=1, $\mathcal{H}_{n,r}\simeq\mathcal{H}_n$, and $\mathcal{H}_{n,r}$ is isomorphic to the Iwahori-Hecke algebra of type B_n if r=2. $\mathcal{H}_{n,r}$ contains \mathcal{H}_n as a subalgebra, and in [SS] the action of \mathcal{H}_n on $V^{\otimes n}$ was extended to the action of $\mathcal{H}_{n,r}$. Each weight space $V^{\otimes n}$ is again $\mathcal{H}_{n,r}$ -stable. The aim of this paper is to extend the result of [FKK] to the case of certain induced $\mathcal{H}_{n,r}$ -modules. One of our main results is Theorem 2.4, which asserts that the bar involution of $\mathcal{H}_{n,r}$ is compatible with the involution ψ on $V^{\otimes n}$. By making use of this fact, one can show, in Theorem 4.3, that the weight subspace $V_{\lambda}^{\otimes n}$ is isomorphic to an $\mathcal{H}_{n,r}$ -module M_J induced from a "non-parabolic" subalgebra \mathcal{H}_J of $\mathcal{H}_{n,r}$, and that the canonical basis of $V_{\lambda}^{\otimes n}$ determines a basis of M_J fixed by the bar involution of $\mathcal{H}_{n,r}$. This may be regarded as a non-parabolic analogue of the result of [FKK].

However, if one focuses on the $\mathcal{H}_{n,r}$ -module M_J induced from the parabolic subalgebra \mathcal{H}_J of $\mathcal{H}_{n,r}$, for example $\mathcal{H}_{n,r}$ itself, the situation is much more complicated. There is no natural notion of standard basis nor Kazhdan-Lusztig basis of $\mathcal{H}_{n,r}$ for r > 2. Moreover, M_J turns out to be a direct sum of various weight subspaces $V_{\lambda}^{\otimes n}$. In order to treat these cases, we make use of the new generators of $\mathcal{H}_{n,r}$ introduced by [S]. By using the direct sum decomposition $M_J = \bigoplus_{\lambda} V_{\lambda}^{\otimes n}$, one can define two bases of M_J inherited from the standard basis and the canonical basis of $\bigoplus_{\lambda} V_{\lambda}^{\otimes n}$. As a special case, we can construct two bases of $\mathcal{H}_{n,r}$ in Theorem 4.7; the one has a property that the action

of generators of $\mathcal{H}_{n,r}$ on this basis is explicitly described, and the other has a property that it is fixed by the bar involution on $\mathcal{H}_{n,r}$, and the transition matrix between these two bases is described by various parabolic Kazhdan-Lusztig polynomials of type A.

We remark that even in the case where r=2 (i.e., the case of Iwahori-Hecke algebras of type B_n), our basis does not coincide with the Kazhdan-Lusztig basis of $\mathcal{H}_{n,r}$. In section 5, we discuss the relationship between these two bases, with the standard basis and the Kazhdan-Lusztig basis of $\mathcal{H}_{n,r}$. In particular we show in Proposition 5.2 that the parabolic Kazhdan-Lusztig polynomials of type B_n can be determined uniquely by various parabolic Kazhdan-Lusztig polynomials of type A, together with the information on the transition matrix between the standard basis of $\mathcal{H}_{n,r}$ and the standard basis of $\bigoplus_{\lambda} V_{\lambda}^{\otimes n}$.

§1. Review on Ariki-Koike algebras

1.1. Let $K = \mathbb{Q}(v, u_1, \ldots, u_r)$ be a field of rational functions in variables v, u_1, \ldots, u_r . Let $W = W_{n,r}$ be the complex reflection group $\mathfrak{S}_n \ltimes (\mathbb{Z}/r\mathbb{Z})^n$, and $\mathcal{H}_{n,r}$ the Ariki-Koike algebra associated to W. $\mathcal{H}_{n,r}$ is the associative algebra over K with generators a_1, \ldots, a_n , and relations

$$(a_{1} - u_{1})(a_{1} - u_{2}) \cdots (a_{1} - u_{r}) = 0,$$

$$(a_{i} - v)(a_{i} + v^{-1}) = 0 \qquad (2 \le i \le n),$$

$$(1.1.1) \qquad a_{1}a_{2}a_{1}a_{2} = a_{2}a_{1}a_{2}a_{1},$$

$$a_{i}a_{i+1}a_{i} = a_{i+1}a_{i}a_{i+1} \qquad (2 \le i < n),$$

$$a_{i}a_{j} = a_{j}a_{i} \qquad (|i - j| \ge 2).$$

It is known that the subalgebra \mathcal{H}_n of $\mathcal{H}_{n,r}$ generated by a_2, \ldots, a_n is isomorphic to the Hecke algebra associated to the symmetric group \mathfrak{S}_n with standard generators.

1.2. Let $U_v = U_v(\mathfrak{sl}_m)$ be the quantum group associated to the Lie algebra \mathfrak{sl}_m with generators E_i, F_i, K_i $(1 \le i \le m-1)$ and standard relations. Apriori, U_v is an associative algebra over $\mathbb{Q}(v)$, but for later discussion, we regard them as an algebra over K by an extension of scalars.

Let V be an m-dimensional vector space over K with basis e_1, \ldots, e_m . The vector representation of U_v on V is defined by

$$E_i e_{i+1} = e_i, \quad E_i e_j = 0 \quad j \neq i+1,$$

 $F_i e_i = e_{i+1}, \quad F_i e_j = 0 \quad j \neq i,$

$$K_{i}e_{j} = \begin{cases} ve_{i} & j = i, \\ v^{-1}e_{i+1} & j = i+1, \\ e_{j} & j \neq i, i+1. \end{cases}$$

It is known that U_v has a Hopf algebra structure with comultiplication $\Delta: U_v \to U_v \otimes U_v$ given by

$$\Delta(K_i) = K_i \otimes K_i,$$

$$\Delta(E_i) = E_i \otimes 1 + K_i \otimes E_i,$$

$$\Delta(F_i) = F_i \otimes K_i^{-1} + 1 \otimes F_i.$$

For a positive integer n, we consider the tensor space $V^{\otimes n}$ on which $U_v^{\otimes n}$ acts naturally. We define inductively an algebra homomorphism $\Delta^{(k)}: U_v \to U_v^{\otimes k}$, by starting from $\Delta^{(2)} = \Delta$ and by putting $\Delta^{(k)} = (\Delta^{(k-1)} \otimes \mathrm{id}) \circ \Delta$ for each $k \geq 3$. By using $\Delta^{(n)}$, one can define an action of U_v on $V^{\otimes n}$.

1.3. In [Ji], Jimbo constructed an action of \mathcal{H}_n on $V^{\otimes n}$, commuting with the action of $U_v(\mathfrak{sl}_m)$. Let us fix integers m_1, \ldots, m_r such that $\sum m_i = m$, and consider a Levi subalgebra $\mathfrak{g} = \mathfrak{sl}_{m_1} \oplus \cdots \oplus \mathfrak{sl}_{m_r}$ of \mathfrak{sl}_m . The action of \mathcal{H}_n was extended by [SS] to the action of $\mathcal{H}_{n,r}$ on $V^{\otimes n}$ so that it commutes with the action of the subalgebra $U_v(\mathfrak{g})$ of $U_v(\mathfrak{sl}_m)$. We consider the decomposition $V = \bigoplus_i V_i$ with dim $V_i = m_i$. We assume that a basis $\{e_j^{(k)}\}$ $(1 \leq j \leq m_k)$ of V_k is chosen for $k = 1, \ldots, r$, and that

$$e_1^{(1)}, \dots, e_{m_1}^{(1)}, e_1^{(2)}, \dots, e_{m_2}^{(2)}, \dots, e_1^{(r)}, \dots, e_{m_r}^{(r)}$$

gives the basis e_1, \ldots, e_m of V in this order. The construction of the action of $\mathcal{H}_{n,r}$ on $V^{\otimes n}$ is given as follows. Let T be the element in $\operatorname{End}(V \otimes V)$ defined by

(1.3.1)
$$T(e_i \otimes e_j) = \begin{cases} ve_j \otimes e_i & \text{if } i = j, \\ e_j \otimes e_i & \text{if } i > j, \\ e_j \otimes e_i + (v - v^{-1})e_i \otimes e_j & \text{if } i < j. \end{cases}$$

Next we define a map $b: \{1, 2, ..., m\} \to \mathbb{N}$ by b(j) = k whenever $e_j \in V_k$. Let $wt: V \to V$ be a linear operator defined by $wt(e_j) = u_{b(j)}e_j$. Let us define linear operators, σ, S on $V^{\otimes 2}$ as follows.

$$\sigma(e_i \otimes e_j) = e_j \otimes e_i,$$

$$S(e_i \otimes e_j) = \begin{cases} T(e_i \otimes e_j) & \text{if } b(i) = b(j), \\ \sigma(e_i \otimes e_j) & \text{if } b(i) \neq b(j). \end{cases}$$

Using these operators, we define operators $T_i, \sigma_i, S_i, \omega_j \in \text{End } V^{\otimes n}$, $(2 \leq i \leq n)$, $(1 \leq j \leq n)$, by the condition,

(1.3.2)
$$T_{i} = \operatorname{id}_{V}^{\otimes(i-2)} \otimes T \otimes \operatorname{id}_{V}^{\otimes(n-i)},$$

$$\sigma_{i} = \operatorname{id}_{V}^{\otimes(i-2)} \otimes \sigma \otimes \operatorname{id}_{V}^{\otimes(n-i)},$$

$$S_{i} = \operatorname{id}_{V}^{\otimes(i-2)} \otimes S \otimes \operatorname{id}_{V}^{\otimes(n-i)},$$

$$\omega_{j} = \operatorname{id}_{V}^{\otimes(j-1)} \otimes wt \otimes \operatorname{id}_{V}^{\otimes(n-j)}.$$

We now define an operator T_1 on $V^{\otimes n}$ by

$$(1.3.3) T_1 = T_2^{-1} \cdots T_n^{-1} S_n \cdots S_2 \omega_1.$$

Then it is shown in [SS, Th.3.2] that $\tau: a_i \mapsto T_i$ $(1 \le i \le n)$ gives rise to a representation of $\mathcal{H}_{n,r}$ on $V^{\otimes n}$.

Let $\bar{v}: K \to K$ be the unique \mathbb{Q} -algebra involution such that $\bar{v} = v^{-1}$, $\bar{u}_i = u_i^{-1}$ for $i = 1, \ldots, r$. We say that a map ϕ on a K vector space X is antilinear if $\phi(\lambda x) = \bar{\lambda}\phi(x)$ for $\lambda \in K, x \in X$. One can check by (1.1.1) that there exists a unique antilinear \mathbb{Q} -algebra automorphism $a \mapsto \bar{a}$ on $\mathcal{H}_{n,r}$ such that $\bar{a}_i = a_i^{-1}$ $(1 \le i \le n)$. We call this map the bar involution on $\mathcal{H}_{n,r}$.

1.4. Recall that $\mathcal{H}_{n,r}$ has an alternative presentation given in [S, Th.3.7] as follows. (However, we remark that this presentation only admits a specialization of the type $\varphi: K \to K'$, where K' is a field such that $\varphi(\xi_i)$ are all distinct.) $\mathcal{H}_{n,r}$ is generated by $\{a_2, \ldots, a_n, \xi_1, \ldots, \xi_n\}$, subject to the following relations.

$$(a_{i} - v)(a_{i} + v^{-1}) = 0 (2 \le i \le n)$$

$$(\xi_{i} - u_{1}) \cdots (\xi_{i} - u_{r}) = 0 (1 \le i \le n)$$

$$(1.4.1) a_{i}a_{i+1}a_{i} = a_{i+1}a_{i}a_{i+1} (2 \le i \le n)$$

$$a_{i}a_{j} = a_{j}a_{i} (|i - j| \ge 2)$$

$$\xi_{i}\xi_{j} = \xi_{j}\xi_{i} (1 \le i, j \le n),$$

$$(1.4.2) a_j \xi_j = \xi_{j-1} a_j + \Delta^{-2} \sum_{c_1 < c_2} (u_{c_2} - u_{c_1})(v - v^{-1}) F_{c_1}(\xi_{j-1}) F_{c_2}(\xi_j),$$

$$(1.4.3) a_j \xi_{j-1} = \xi_j a_j - \Delta^{-2} \sum_{c_1 < c_2} (u_{c_2} - u_{c_1})(v - v^{-1}) F_{c_1}(\xi_{j-1}) F_{c_2}(\xi_j),$$

$$(1.4.4) a_j \xi_k = \xi_k a_j (k \neq j - 1, j),$$

where $\Delta = \prod_{i>j} (u_i - u_j)$ is the Vandermonde determinant with respect to the parameters u_1, \ldots, u_r , and the sum in (1.4.2) or (1.4.3) is taken for all integers $1 \le c_1, c_2 \le r$. For each integer $1 \le c \le r$, $F_c(X)$ is a certain polynomial in a

variable X with coefficients in $\mathbb{Z}[u_1, \ldots, u_r]$, defined in [S, 3.3.2]. Note that the generators a_2, \ldots, a_n above may be identified with the generators appeared in 1.1.

Under the representation $\tau: \mathcal{H}_{n,r} \to \text{End } V^{\otimes n}$, the generator ξ_i is mapped to ω_i for each i.

§2. Involutions associated to $\mathcal{H}_{n,r}$ and $U_v(\mathfrak{sl}_m)$

2.1 The operator T in (1.3.1) has its origin in the study of the universal R-matrix Θ attached to U_v . Let E be the orthogonal complement of $\sum \varepsilon_i$ in the Euclidean space \mathbb{R}^m with the standard basis $\varepsilon_1, \ldots, \varepsilon_m$. The root system Φ of \mathfrak{sl}_m is given by the set $\{\varepsilon_i - \varepsilon_j \mid 1 \leq i \neq j \leq m\}$ with $\Phi^+ = \{\varepsilon_i - \varepsilon_j \mid i < j\}$. Thus the root lattice $\mathbb{Z}\Phi$ is given by the \mathbb{Z} -submodule of E consisting of integral vectors. Let $(\ ,\)$ be the inner product of \mathbb{R}^m . The weight lattice Λ is given by the set of $\lambda \in E$ such that $(\lambda, \mu) \in \mathbb{Z}$ for any $\mu \in \Phi$. For $1 \leq i \leq m$, put $\bar{\varepsilon}_i = \varepsilon_i - \frac{1}{m} \sum_{j=1}^m \varepsilon_j \in \Lambda$. Then $\sum \bar{\varepsilon}_i = 0$, and $\bar{\varepsilon}_i$ is a weight with weight vector e_i . The weight lattice Λ is identified with the set $\mathbb{Z}^m/\mathbb{Z}(1,\ldots,1)$ by the correspondence $\lambda = \sum c_i \bar{\varepsilon}_i \leftrightarrow (c_1,\ldots,c_m)$. For a U_v -module M, we denote by M_λ the weight subspace of M corresponding to $\lambda \in \Lambda$.

Let U_v^+ (resp. U_v^-) be the subalgebra of U_v generated by E_i, K_i (resp. F_i, K_i), respectively. For each $\mu \in \mathbb{Z}\Phi, \mu \geq 0$, we denote by $U_\mu^+, U_{-\mu}^-$ the weight subspace of U_v^\pm with respect to μ or $-\mu$, respectively. Then there exists an element $\Theta_\mu \in U_{-\mu}^- \otimes U_\mu^+$ with $\Theta_0 = 1 \otimes 1$, for each μ , and $\Theta = \sum_{\mu \geq 0} \Theta_\mu$ (an element in a completion of $U_v \otimes U_v$, see [L, 4.1]) can be defined.

Let M and M' be finite dimensional U_v -modules. We fix an m-th root $v^{1/m}$ of v, and consider the extension field $K(v^{1/m})$ of K. (Accordingly, we regard U_v as the algebra over $K(v^{1/m})$ if needed). Following [Ja, 7.3, 7.9], we introduce a linear map $C' \in \operatorname{End} M \otimes M'$ (\widetilde{f} in the notation of [Ja]). We define a map $f: \Lambda \times \Lambda \to K(v^{1/m})^*$ by

$$f(\lambda,\mu) = (v^{1/m})^{-m(\lambda,\mu)}$$

for all $\lambda, \mu \in \Lambda$. Note that $(\lambda, \mu) \in \frac{1}{m}\mathbb{Z}$. In particular, we have

(2.1.1)
$$f(\bar{\varepsilon}_i, \bar{\varepsilon}_j) = v^{1/m - \delta_{ij}}.$$

Now C' is defined, for $\lambda, \mu \in \Lambda$, by

$$C'(x \otimes y) = f(\lambda, \mu)x \otimes y$$

for all $x \in M_{\lambda}$ and $y \in M_{\mu}$.

The element Θ induces a well-defined map $\Theta_{M,M'} \in \text{End } M \otimes M'$. It is known ([Ja, Th. 7.3]) that the map $\Theta_{M,M'}C'\sigma : M' \otimes M \to M \otimes M'$ gives

rise to an isomorphism of U_v -modules, where $\sigma: M' \otimes M \to M \otimes M'$ is the permutation of factors.

2.2 The bar involution on K can be extended obviously to an involution on $K(v^{1/n})$. The bar involution $^-$ on U_v is an antilinear \mathbb{Q} -algebra automorphism on U_v defined on the generators by

$$\overline{E}_i = E_i, \quad \overline{F}_i = F_i, \quad \overline{K}_i = K_i^{-1}.$$

The bar involution is extended to $U_v \otimes U_v$ by $\overline{x \otimes y} = \overline{x} \otimes \overline{y}$. Let $\overline{\Theta} = {}^- \circ \Theta \circ {}^-$ be the bar conjugate of Θ . Then it is known by [L, 4.1] that $\Theta \overline{\Theta} = 1 \otimes 1$.

We consider the special case where M=M'=V, and write $\Theta_{V,V}\in \operatorname{End}(V\otimes V)$ simply as Θ . Then as is well-known (cf. [FKK, Prop. 2.1]), we have

(2.2.1)
$$(\Theta C'\sigma)^{-1} = v^{-1/m}T.$$

More precisely, the action of C' and $\Theta = \sum \Theta_{\mu}$ on $V \otimes V$ are described as follows. Since $e_i \in V$ is a weight vector with weight $\bar{\varepsilon}_i \in \Lambda$, by the property of Θ_{μ} (cf. [Ja, Chap. 7]), we have

(2.2.2)
$$\Theta_{\mu}(e_i \otimes e_j) = \begin{cases} (v^{-1} - v)e_j \otimes e_i & \text{if } \mu = \varepsilon_i - \varepsilon_j \text{ with } i < j, \\ e_i \otimes e_j & \text{if } \mu = 0, \\ 0 & \text{otherwise.} \end{cases}$$

It follows that

(2.2.3)
$$\Theta(e_i \otimes e_j) = \begin{cases} e_i \otimes e_j & \text{if } i \geq j, \\ e_i \otimes e_j - (v - v^{-1})e_j \otimes e_i & \text{if } i < j. \end{cases}$$

Put $C = v^{-1/m}C'$. Then by (2.1.1), we have

(2.2.4)
$$C(e_i \otimes e_j) = \begin{cases} e_i \otimes e_j & i \neq j, \\ v^{-1}e_i \otimes e_j & i = j. \end{cases}$$

We define an antilinear involution ψ on $V^{\otimes n}$ inductively as follows: First define ψ on V by

$$\psi(\sum c_i e_i) = \sum \bar{c}_i e_i.$$

Next let W_1, W_2 be tensor powers of V, and assume that the involutions ψ on W_1, W_2 are already defined. We define ψ on $W_1 \otimes W_2$ by

$$\psi(w_1 \otimes w_2) = \Theta(\psi(w_1) \otimes \psi(w_2)).$$

Then it is shown in [L, 4.2.4, 27.3.6] that ψ on $V^{\otimes n}$ does not depend on the decomposition $V^{\otimes n} = W_1 \otimes W_2$, and it is compatible with the U_v -module structure of $V^{\otimes n}$ in the following sense: $\psi(ux) = \bar{u}\psi(x)$ for $u \in U_v, x \in V^{\otimes n}$.

In [FKK], Frenkel, Khovanov and Kirillov studied the relationship between Kazhdan-Lusztig basis of \mathcal{H}_n and canonical basis of U_v by making use of the $\mathcal{H}_n \otimes U_v$ -module $V^{\otimes n}$. In particular, they showed

Proposition 2.3 ([FKK, Prop. 2.4]). The bar involution of \mathcal{H}_n is compatible with the involution ψ on $V^{\otimes n}$, i.e., for any $a \in \mathcal{H}_n$, we have

$$\psi \circ a = \overline{a} \circ \psi.$$

The main objective in this section is to extend this result to the case of $\mathcal{H}_{n,r}$. We shall show that

Theorem 2.4. The bar involution on $\mathcal{H}_{n,r}$ is compatible with the involution ψ on $V^{\otimes n}$, i.e., for any $a \in \mathcal{H}_{n,r}$, we have

$$(2.4.1) \psi \circ a = \overline{a} \circ \psi.$$

2.5. The remainder of this section is devoted to the proof of Theorem 2.4. We denote by e_I with $I=(i_1,\ldots,i_n)$ the vector $e_{i_1}\otimes\cdots\otimes e_{i_n}$ of $V^{\otimes n}$. Hence $\{e_I\mid I\in [1,m]^n\}$ gives a basis of $V^{\otimes n}$. (Here [1,m] means the set $\{1,2,\ldots,m\}$). The symmetric group \mathfrak{S}_n acts on $[1,m]^n$ by permuting the factors, compatible with the action on $V^{\otimes n}$, i.e. $\sigma(e_I)=e_{\sigma I}$ for $\sigma\in\mathfrak{S}_n$. If we denote by $m_I(i)$ the multiplicity of i occurring in $I=(i_1,\ldots,i_n)$, then e_I is a weight vector of U_v -module $V^{\otimes n}$ with weight $\sum_i m_I(i)\bar{\varepsilon}_i$.

We define an antilinear involution $\bar{}$ on $V^{\otimes n}$ by $\bar{x} = \sum_{I} \bar{c}_{I} e_{I}$ for $x = \sum_{I} c_{i} e_{I}$. Let Ψ_{i} be a linear map on $V^{\otimes n}$ defined by

$$\Psi_i = (\Delta^{(i-1)} \otimes 1)\Theta) \otimes 1^{\otimes (n-i)}.$$

Then it follows from the definition that the involution ψ can be expressed as

$$(2.5.1) \psi = \Psi_n \Psi_{n-1} \cdots \Psi_2 \circ \bar{} .$$

In order to describe the involution ψ , first we shall concentrate on the map $\Psi_n = (\Delta^{(n-1)} \otimes 1)\Theta$. We prepare some notation. By $z \mapsto z_{ij}$, we denote the embedding $U_v^{\otimes 2} \to U_v^{\otimes n}$ subject to the *i*-th and *j*-th factors, i.e., for $z = a \otimes b \in U_v \otimes U_v$, we put

$$z_{ij} = x_1 \otimes x_2 \otimes \cdots \otimes x_n$$

with $x_i = a, x_j = b$ and $x_k = 1$ for $k \neq i, j$.

For $\alpha, \beta \in \mathbb{Z}\Phi$ with $\alpha \geq \beta \geq 0$, we define $X_{\alpha,\beta}^i \in U_v^{\otimes n}$ by

$$(2.5.2) \quad X_{\alpha,\beta}^{i} = (1^{\otimes (n-i)} \otimes K_{\alpha}^{-1} \otimes 1^{\otimes (i-1)})(\Theta_{\alpha-\beta})_{n-i,n} \qquad (2 \le i \le n-1),$$

where $K_{\alpha} = \prod K_i^{m_i}$ if $\alpha = \sum_i m_i (\varepsilon_i - \varepsilon_{i+1})$. The following lemma is a generalization of [J, Lemma 7.4]. The proof is reduced to the case n=3 by making use of the relation $\Delta^{(n)} \otimes 1 = (\Delta \otimes 1^{\otimes (n-1)})(\Delta^{(n-1)} \otimes 1)$ (note that this relation is different from the defining relation for $\Delta^{(n)}$ in 1.2). The case n=3 follows from Lemma 7.4 in [J].

Lemma 2.6. For all $\mu \in \mathbb{Z}\Phi$ with $\mu \geq 0$, we have

$$(\Delta^{(n-1)} \otimes 1)\Theta_{\mu} = \sum (\Theta_{\mu-\nu_1})_{n-1,n} X_{\nu_1,\nu_2}^2 \cdots X_{\nu_{n-2},\nu_{n-1}}^{n-1},$$

where the sum is taken over all the sequences $\mu \geq \nu_1 \geq \cdots \geq \nu_{n-1} = 0$ such that $\nu_i \in \mathbb{Z}\Phi$.

2.7. We shall describe $\Psi_n = (\Delta^{(n-1)} \otimes 1)\Theta$. For $I = (i_1, \ldots, i_n)$, let (η_1, \ldots, η_n) be the sequence defined by $\eta_k = \varepsilon_{i_k}$. Let us define a linear map $\Theta_{k,n}^{\sharp}$ on $V^{\otimes n}$, for $k = 1, \ldots, n-1$, by

$$\Theta_{k,n}^{\sharp}(e_I) = \begin{cases} e_I & \text{if } i_k \ge i_n, \\ e_I + v^{-(\eta_k - \eta_n, \eta_{k+1} + \dots + \eta_{n-1})} (v^{-1} - v) e_{I'} & \text{if } i_k < i_n, \end{cases}$$

where I' = (k, n)I. (In the case where k = n - 1, we understand that the inner product in the second formula is equal to 0).

We have the following lemma.

Lemma 2.8. As operators on $V^{\otimes n}$, we have

$$(2.8.1) \qquad (\Delta^{(n-1)} \otimes 1)\Theta = \Theta_{n-1,n}^{\sharp} \Theta_{n-2,n}^{\sharp} \cdots \Theta_{1,n}^{\sharp}.$$

Proof. First we compute $X_{\alpha,\beta}^{n-k}(e_I)$ for $I=(i_1,\ldots,i_n)$. By (2.2.2) and (2.5.2), we see that

(2.8.2)

$$X_{\alpha,\beta}^{n-k}(e_I) = \begin{cases} v^{-(\alpha,\eta_{k+1})}(v^{-1} - v)e_{I'} & \text{if } \alpha - \beta = \eta_k - \eta_n > 0 \text{ and } i_k < i_n, \\ v^{-(\alpha,\eta_{k+1})}e_I & \text{if } \alpha = \beta, \\ 0 & \text{otherwise,} \end{cases}$$

with I' = (k, n)I.

Next we compute $(\Delta^{(n-1)} \otimes 1)\Theta(e_I)$. For a fixed $I = (i_1, \ldots, i_n)$, let \mathcal{P}_I be the set of subsets $\mathbf{p} = \{p_1 < \cdots < p_k\}$ of $\{1, \ldots, n-1\}$ such that $i_{p_k} < \cdots < i_{p_2} < i_{p_1} < i_n$. We put $k = |\mathbf{p}|$. For $\mathbf{p} \in \mathcal{P}_I$, let

$$I(\mathbf{p}) = (p_k, n) \cdots (p_2, n)(p_1, n)I = (n, p_1, p_2, \dots, p_k)I.$$

Then it follows from Lemma 2.6 and (2.8.2) that

$$(\Delta^{(n-1)} \otimes 1)\Theta(e_I) = \sum_{\mathbf{p} \in \mathcal{P}_I} v^{-c_{\mathbf{p}}} (v^{-1} - v)^{|\mathbf{p}|} e_{I(\mathbf{p})},$$

where

$$c_{\mathbf{p}} = (\eta_{p_1} - \eta_n, \eta_{p_1+1} + \dots + \eta_{p_2}) + (\eta_{p_2} - \eta_n, \eta_{p_2+1} + \dots + \eta_{p_3}) + \dots + (\eta_{p_k} - \eta_n, \eta_{p_k+1} + \dots + \eta_{n-1}).$$

On the other hand, the right hand side of (2.8.1) is easily computed. We have

$$\Theta_{n-1,n}^{\sharp}\Theta_{n-2,n}^{\sharp}\cdots\Theta_{1,n}^{\sharp}(e_I) = \sum_{\mathbf{p}\in\mathcal{P}_I} v^{-d_{\mathbf{p}}}(v^{-1}-v)^{|\mathbf{p}|}e_{I(\mathbf{p})}$$

with

$$d_{\mathbf{p}} = (\eta_{p_1} - \eta_n, \eta_{p_1+1} + \dots + \eta_{n-1}) + (\eta_{p_2} - \eta_{p_1}, \eta_{p_2+1} + \dots + \eta_{n-1}) + \dots + (\eta_{p_k} - \eta_{p_{k-1}}, \eta_{p_k+1} + \dots + \eta_{n-1}).$$

But then we have

$$d_{\mathbf{p}} = \sum_{j=1}^{k} (\eta_{p_j}, \eta_{p_j+1} + \dots + \eta_{p_{j+1}}) - (\eta_n, \eta_{p_1+1} + \dots + \eta_{n-1}),$$

where we use the convention that $p_{k+1} = n - 1$. This implies that $c_{\mathbf{p}} = d_{\mathbf{p}}$ for any $\mathbf{p} \in \mathcal{P}_I$, and the lemma follows.

2.9. For a fixed $1 \leq i, j \leq n$ with $i \neq j$, we define an embedding $\operatorname{End} V^{\otimes 2} \to \operatorname{End} V^{\otimes n}, x \mapsto x_{ij}$, in a similar way as in 2.5; x_{ij} denotes the transformation on $V^{\otimes n}$ which acts on i-th and j-th factors of $V^{\otimes n}$ via the map x, and acts trivially on other factors. Then it is easy to see for any $\sigma \in \mathfrak{S}_n$ that

(2.9.1)
$$\sigma x_{ij} \sigma^{-1} = x_{\sigma(i)\sigma(j)}.$$

In later discussions, we consider the operators Θ_{ij} , C_{ij} , T_{ij} , S_{ij} for Θ , C, T, $S \in \text{End } V^{\otimes 2}$, respectively. In particular, we note that $T_{i-1,i} = T_i$ (resp. $S_{i-1,i} = T_i$)

 S_i) for i = 2, ..., n in the notation of (1.3.2). We also note that $\Theta_{i-1,i} = \Theta_{i-1,i}^{\sharp}$ by (2.2.3) and 2.7. However, Θ_{ij}^{\sharp} does not mean the embedding in general.

Let $\overline{\Theta}_{ij}^{\sharp}$ be the linear transformation on $V^{\otimes n}$ defined by $\overline{\Theta}_{ij}^{\sharp} = {}^{-} \circ \Theta_{ij}^{\sharp} \circ {}^{-}$. Then $\overline{\Theta}_{ij}^{\sharp}$ coincides with the map defined in 2.7, but by replacing v by v^{-1} . The bar operation on $V^{\otimes 2}$ is compatible with the bar operation on Θ . It follows that $\overline{\Theta}_{ij} = {}^{-} \circ \Theta_{ij} \circ {}^{-}$. The following relations are easily verified.

(2.9.2)
$$\begin{array}{c} -\circ \omega_{i} \circ ^{-} = \omega_{i}^{-1}, \\ -\circ C_{ij} \circ ^{-} = C_{ij}^{-1}, \\ -\circ T_{ij} \circ ^{-} = T_{ji}^{-1}, \\ -\circ S_{ij} \circ ^{-} = S_{ji}^{-1}. \end{array}$$

For a pair k, n such that $1 \le k \le n - 1$, we put

$$D_{k,n} = \sigma_{k,n} C_{k,n} C_{k+1,n} \cdots C_{n-1,n},$$

where $\sigma_{k,n}$ denotes the cyclic permutation $(k, k+1, \ldots, n)$. We have the following lemma.

Lemma 2.10. For $1 \le k \le n - 1$, we have

$$(2.10.1) \overline{\Theta}_{k,n}^{\sharp} \overline{\Theta}_{k,n-1}^{\sharp} \cdots \overline{\Theta}_{k,k+1}^{\sharp} = D_{k,n} T_n T_{n-1} \cdots T_{k+1}.$$

Proof. First consider the case where k = n - 1. It follows from (2.2.1) that we have

(2.10.2)
$$T_n = (n-1, n)C_{n-1,n}^{-1} \overline{\Theta}_{n-1,n}^{\sharp}$$

since $\Theta \overline{\Theta} = 1$ and $\Theta_{n-1,n} = \Theta_{n-1,n}^{\sharp}$. Since $D_{n-1,n} = (n-1,n)C_{n-1,n} = C_{n-1,n}(n-1,n)$, we have $\overline{\Theta}_{n-1,n}^{\sharp} = D_{n-1,n}T_n$ as asserted.

Next we show that

(2.10.3)
$$\overline{\Theta}_{k,n}^{\sharp} D_{k,n-1} = D_{k,n} T_n \quad \text{for } 1 \le k \le n-2.$$

By (2.9.1) we have

$$(n-1,n)C_{k,n}C_{k+1,n}\cdots C_{n-1,n}T_n$$

$$= C_{k,n-1}C_{k+1,n-1}\cdots C_{n-2,n-1}C_{n-1,n}(n-1,n)T_n$$

$$= C_{k,n-1}C_{k+1,n-1}\cdots C_{n-2,n-1}\overline{\Theta}_{n-1,n}^{\sharp}.$$

The last formula follows from (2.10.2). In order to show (2.10.3), we have only to check that

$$\overline{\Theta}_{k,n}^{\sharp}\sigma_{k,n-1}C_{k,n-1}\cdots C_{n-2,n-1} = \sigma_{k,n-1}C_{k,n-1}\cdots C_{n-2,n-1}\overline{\Theta}_{n-1,n}^{\sharp}.$$

It is easy to evaluate the maps on both sides at e_I . For e_I with $I = (i_1, \ldots, i_n)$, they have the common values

$$v^{-(\eta_k+\eta_{k+1}+\cdots+\eta_{n-2},\eta_{n-1})}e_{I'}$$

if $i_{n-1} \geq i_n$, and

$$v^{-(\eta_k+\eta_{k+1}+\cdots+\eta_{n-2},\eta_{n-1})}e_{I'}+v^{-(\eta_k+\eta_{k+1}+\cdots+\eta_{n-2},\eta_n)}(v-v^{-1})e_{I''}$$

if $i_{n-1} < i_n$, with $I' = \sigma_{k,n-1}I$ and $I'' = \sigma_{k,n}I'$. This proves (2.10.3).

Now the lemma is immediate by substituting $\overline{\Theta}_{k,i}^{\sharp} = D_{k,i}T_iD_{k,i-1}^{-1}$ for $i \geq k+2$ by (2.10.3), and $\overline{\Theta}_{k,k+1}^{\sharp} = D_{k,k+1}T_{k+1}$ into the left hand side of (2.10.1).

By using Lemma 2.10, we can describe the involution ψ as follows.

Proposition 2.11. Let $\sigma_0 = (1, n)(2, n-1) \cdots$ be the longest length element in \mathfrak{S}_n , and put

$$\widehat{C} = \prod_{1 \le i < j \le n} C_{ij}.$$

(Note that the operators C_{ij} commute with each other). Then we have

$$\psi = {}^- \circ \sigma_0 \widehat{C} T_2(T_3 T_2) \cdots (T_n T_{n-1} \cdots T_2).$$

Proof. By (2.5.1) and Lemma 2.8, we have (cf. 2.9)

$$\begin{array}{l}
^{-} \circ \psi = ^{-} \circ (\Theta_{n-1,n}^{\sharp} \Theta_{n-2,n}^{\sharp} \cdots \Theta_{1,n}^{\sharp}) (\Theta_{n-2,n-1}^{\sharp} \Theta_{n-3,n-1}^{\sharp} \cdots \Theta_{1,n-1}^{\sharp}) \cdots (\Theta_{12}^{\sharp}) \circ ^{-} \\
= (\overline{\Theta}_{n-1,n}^{\sharp} \overline{\Theta}_{n-2,n}^{\sharp} \cdots \overline{\Theta}_{1,n}^{\sharp}) (\overline{\Theta}_{n-2,n-1}^{\sharp} \overline{\Theta}_{n-3,n-1}^{\sharp} \cdots \overline{\Theta}_{1,n-1}^{\sharp}) \cdots (\overline{\Theta}_{12}^{\sharp}).
\end{array}$$

It is clear that $\overline{\Theta}_{ij}^{\sharp}$ and $\overline{\Theta}_{i'j'}^{\sharp}$ commute with each other when $\{i,j\} \cap \{i',j'\} = \emptyset$. Hence we have

$$\overset{-}{\circ} \psi = (\overline{\Theta}_{n-1,n}^{\sharp})(\overline{\Theta}_{n-2,n}^{\sharp} \overline{\Theta}_{n-2,n-1}^{\sharp}) \cdots (\overline{\Theta}_{1,n}^{\sharp} \overline{\Theta}_{1,n-1}^{\sharp} \cdots \overline{\Theta}_{12}^{\sharp})$$

$$= (D_{n-1,n} T_n)(D_{n-2,n} T_n T_{n-1}) \cdots (D_{1,n} T_n T_{n-1} \cdots T_2),$$

where the second equality follows from Lemma 2.10. By definition of D_{ij} , and by using (2.9.1), the last formula is modified to

$$(2.11.1) \quad -\circ \psi = \sigma_0(C_{12}T_2)(C_{13}C_{23}T_3T_2)\cdots(C_{1,n}C_{2,n}\cdots C_{n-1,n}T_nT_{n-1}\cdots T_2).$$

Here we note that

(2.11.2) The product $C_{1,k}C_{2,k}\cdots C_{k-1,k}$ commutes with T_2,T_3,\ldots,T_{k-1} .

In fact, (2.11.2) is reduced to showing that $C_{a-1,k}C_{a,k}$ commutes with T_a , and this follows from the fact that $C_{a-1,k}C_{a,k}$ acts on the subspace of $V^{\otimes n}$ generated by e_I and $e_{(a-1,a)I}$ by a scalar multiplication $v^{-(\eta_{a-1}+\eta_a,\eta_k)}$.

Now, by using (2.11.2), (2.11.1) is further modified to

$$^{-} \circ \psi = \sigma_0 \cdot \prod_{i < j} C_{ij} \cdot T_2(T_3 T_2) \cdots (T_n \cdots T_2).$$

This proves the proposition.

2.12. We now proceed to the proof of Theorem 2.4. For the proof, it is enough to show (2.4.1) for the generators a_1, \ldots, a_n . By Proposition 2.3, we know already that (2.4.1) holds for a_2, \ldots, a_n . So, we have only to show it for a_1 , i.e., to show that

$$\psi T_1 = T_1^{-1} \psi.$$

We shall show (2.12.1). Let $\widehat{C} = \prod C_{ij}$ be as in Proposition 2.11. First we note that

(2.12.2) \widehat{C} commutes with T_{ij}, S_{ij}, σ for any $i \neq j$ and any $\sigma \in \mathfrak{S}_n$.

In fact, let $V_I^{\otimes n}$ be the subspace of $V^{\otimes n}$ generated by $\{e_{\sigma I} \mid \sigma \in \mathfrak{S}_n\}$ for a fixed $I = (i_1, \ldots, i_n)$. Then \widehat{C} acts on $V_I^{\otimes n}$ as a scalar multiplication by v^{-c} with $c = \sum_{i < j} (\eta_i, \eta_j)$. (2.12.2) follows from this.

By definition (1.3.3) and Proposition 2.11, we can write

(2.12.3)
$$\psi T_1 = Z\omega_1 \quad \text{with } Z = {}^- \circ \sigma_0 \widehat{C} T_2(T_3 T_2) \cdots (T_{n-1} \cdots T_2) S_n S_{n-1} \cdots S_2.$$

We show that

$$(2.12.4) Z = Z^{-1}.$$

In fact, by (2.9.2), (2.9.1) and (2.12.2), we have

$$Z^{-1} = {}^{-} \circ (S_{21}S_{32} \cdots S_{n,n-1})(T_{21}T_{32} \cdots T_{n-1,n-2}) \cdots (T_{21}T_{32})T_{21}\widehat{C}\sigma_0$$

= ${}^{-} \circ \sigma_0\widehat{C}(S_nS_{n-1} \cdots S_2)(T_nT_{n-1} \cdots T_3) \cdots (T_nT_{n-1})T_n.$

It is known by [SS, Lemma 3.8] that

$$(2.12.5) (S_n S_{n-1} \cdots S_2) T_j = T_{j-1} (S_n S_{n-1} \cdots S_2)$$

for $j = 3, \ldots, n$. Therefore we have

$$Z^{-1} = {}^{-} \circ \sigma_0 \widehat{C}(T_{n-1} \cdots T_2) \cdots (T_{n-1} T_{n-2}) T_{n-1} (S_n \cdots S_2).$$

Now by using the relations

$$(T_{n-1}T_{n-2}\cdots T_{n-a})T_i = T_{i-1}(T_{n-1}T_{n-2}\cdots T_{n-a})$$

for $i \geq n - a + 1$, which follows from the braid relations of \mathcal{H}_n , it is easy to see that

$$(T_{n-1}\cdots T_2)\cdots (T_{n-1}T_{n-2})T_{n-1}=T_2(T_3T_2)\cdots (T_{n-1}\cdots T_2).$$

Hence (2.12.4) holds.

Since ψ is an involution, by using (2.12.4), we have

$$T_1^{-1}\psi = (\psi T_1)^{-1} = \omega_1^{-1} Z^{-1} = \omega_1^{-1} Z.$$

Hence to prove (2.12.1), it is enough to show that $\omega_1^{-1}Z = Z\omega_1$. Note that $\sigma_0 \omega_1 \sigma_0^{-1} = \omega_n$ and that ω_n commutes with \widehat{C} and T_2, \ldots, T_{n-1} . Thus, by (2.9.2), we have

(2.12.6)
$$\omega_1^{-1} Z = {}^{-} \circ \sigma_0 \widehat{C} T_2(T_3 T_2) \cdots (T_{n-1} \cdots T_2) \omega_n (S_n \cdots S_2).$$

Here we note the following formula.

(2.12.7)
$$\omega_i S_i = S_i \omega_{i-1}$$
 for $i = 2, ..., n$.

In fact, it is enough to see the formula for the case where n=i=2, and $S_i = S$. Now ω_2 and ω_1 act as a (common) scalar multiplication on $e_i \otimes e_k$ and $e_k \otimes e_j$ if b(j) = b(k). S permutes $e_j \otimes e_k$ and $e_k \otimes e_j$ if $b(j) \neq b(k)$. (2.12.7) follows easily from these facts.

Now by applying (2.12.7), we have $\omega_n(S_n \cdots S_2) = (S_n \cdots S_2)\omega_1$. Hence (2.12.6) implies that $\omega_1^{-1}Z = Z\omega_1$, and (2.12.1) holds. The theorem is proved.

2.13. By making use of Theorem 2.4, combined with Proposition 2.11, one can describe the bar involution for generators $\{a_2,\ldots,a_n,\xi_1,\ldots,\xi_n\}$ of $\mathcal{H}_{n,r}$ given in 1.4.

Proposition 2.14. Let $\{a_2, \ldots, a_n, \xi_1, \ldots, \xi_n\}$ be the generators of $\mathcal{H}_{n,r}$ given in 1.4, and put $x = a_2(a_3a_2)\cdots(a_na_{n-1}\cdots a_2)$. Then we have

$$\bar{a}_i = a_i^{-1}$$
 $(2 \le i \le n),$
 $\bar{\xi}_j = x^{-1} \xi_{n-j+1}^{-1} x$ $(1 \le j \le n).$

$$\bar{\xi}_j = x^{-1} \xi_{n-j+1}^{-1} x \qquad (1 \le j \le n)$$

Proof. It is enough to show the formula for ξ_i . By Theorem 2.4, we have

$$\overline{\omega}_j = \psi^{-1} \circ \omega_j \circ \psi.$$

Note that ${}^-\circ\omega_j\circ{}^-=\omega_j^{-1}, \sigma_0\omega_j\sigma_0=\omega_{n-j+1},$ and that ω_j commutes with \widehat{C} . Then by Proposition 2.11, we see that

$$\psi^{-1} \circ \omega_j \circ \psi = X^{-1} \omega_{n-j+1}^{-1} X$$

with $X = T_2(T_3T_2)\cdots(T_nT_{n-1}\cdots T_2)$. Since the representation τ is faithful if we choose $m_k \geq n$ for $k = 1, \ldots, r$, and since $\tau(\xi_j) = \omega_j$, $\tau(x) = X$, this gives the required formula for ξ_j .

§3. Kazhdan-Lusztig basis and Canonical basis

3.1. Let W be a Weyl group with a set of generators S. We denote by \mathcal{H} the Hecke algebra associated to W. It is an associative algebra over $\mathbb{Q}(v)$ defined by generators a_s $(s \in S)$ and relations

$$(3.1.1) (a_s - v)(a_s + v^{-1}) = 0$$

together with usual braid relations. \mathcal{H} has a basis $\{a_w \mid w \in W\}$, where $a_w = a_{s_1} \cdots a_{s_q}$ for a reduced expression $w = s_1 \cdots s_q$.

For any subset J of S, we denote by W_J the parabolic subgroup in W generated by $s \in J$. Let W^J be the set of distinguished representatives in W/W_J . Hence W^J is the set of minimal elements w in wW_J with respect to the length l(w) of W. Let \mathcal{H}_J be the the subalgebra of \mathcal{H} generated by a_s with $s \in J$. Then \mathcal{H}_J is isomorphic to the Hecke algebra of W_J . Let φ be a homomorphism from \mathcal{H} to $\mathbb{Q}(v)$ defined by $a_s \mapsto v$ for any $s \in S$. We denote by φ_J the restriction of φ on \mathcal{H}_J . Let M_J be the induced \mathcal{H} -module $\mathrm{Ind}_{\mathcal{H}_J}^{\mathcal{H}} \varphi_J$. Then by Deodhar [D], it is known that M_J has a basis $\{m_w \mid w \in W^J\}$ with the following properties,

$$(3.1.2) a_s m_w = \begin{cases} m_{sw} + (v - v^{-1}) m_w & \text{if } l(sw) < l(w), \\ m_{sw} & \text{if } l(sw) > l(w), sw \in W^J, \\ v m_w & \text{if } l(sw) > l(w), sw \notin W^J, \end{cases}$$

and $a_w m_1 = m_w$ for an identity element $1 \in W$ and $w \in W^J$. Note that $w \in W^J$ and l(sw) < l(w) imply that $sw \in W^J$.

Let us define a bar involution on \mathcal{H} by $\overline{v} = v^{-1}$ and $\overline{a}_s = a_s^{-1}$ as in 1.3. We also define a bar involution on M_J by the condition that $\overline{m}_e = m_e$ and

that $\overline{hm} = \overline{hm}$ for $h \in \mathcal{H}$, $m \in M_J$. Let \leq be the partial order on W^J induced from the Bruhat order on W. The Kazhdan-Lusztig basis $\{C_w^J \mid w \in W^J\}$ of M_J was introduced by Kazhdan-Lusztig [KL] for $M_\emptyset \simeq \mathcal{H}$, and then extended by Deodhar [D] to the case M_J . They are characterized by the following two properties.

(3.1.3)
$$C_w^J \in m_w + \sum_{\substack{x \in W^J \\ x < w}} v^{-1} \mathbb{Z}[v^{-1}] m_x$$

$$(3.1.4) \overline{C}_w^J = C_w^J$$

The parabolic Kazhdan-Lusztig polynomial $P_{x,w}^J \in \mathbb{Z}[q]$ is defined, following Deodhar, in terms of the coefficient $p_{x,w}$ of m_x in the expression of C_w^J as follows.

$$p_{x,w} = q^{l(w)-l(x))/2} \overline{P_{x,w}^{J}}(q)$$
 with $v = q^{-1/2}$.

Note that in [KL], [D], \mathcal{H} is defined by the quadratic relation $(T_s-q)(T_s+1)$ for an indeterminate q instead of (3.1.1). Then the relationship with our situation is given as follows; $v=q^{-1/2}$, and our a_s corresponds to $-vT_s$ in their setup. In particular, our C_{σ}^J corresponds to $(-1)^{l(\sigma)}C_{\sigma}^J$ under the notation of [KL], [D], and our m_w corresponds to $(-v)^{l(w)}m_w$ of [D].

3.2. For $x, w \in W^J$ such that x < w, we denote by $\mu(x, w)$ the coefficient of $q^{(l(w)-l(x)-1)/2}$ in $P^J_{x,w}(q)$. Note that $\deg P^J_{x,w} \leq \frac{1}{2}(l(w)-l(x)-1)$. Let $s \in S$ be such that l(sw) < l(w) for $w \in W^J$. Then C^J_w is determined inductively, with respect to the Bruhat order, by

(3.2.1)
$$C_w^J = (a_s + v^{-1})C_{sw}^J - \sum_{\substack{y \in W^J, y \le sw \\ sy < y \text{ or } sy \notin W^J}} (-1)^{l(w)-l(y)} \mu(y, sw)C_y^J$$

Now the action of a_s on C_w^J is given as follows; for $s \in S$ and $w \in W^J$,

$$(3.2.2) a_s C_w^J = \begin{cases} -v^{-1} C_w^J + C_{sw}^J - \sum_{y < w \ sy \le y \text{ or } sy \notin W^J} (-1)^{l(w) - l(x)} \mu(y, w) C_y^J, \\ v C_w^J, \end{cases}$$

where the first equality occurs when sw > w and $sw \in W^J$, and the second occurs when sw < w or $sw \notin W^J$. In fact, (3.2.2) can be shown as in a similar way in [KL, 2.3] once we know that

$$(3.2.3) a_s C_w^J = v C_w^J \text{if } sw > w \text{ and } sw \not\in W^J.$$

We show (3.2.3). By comparing the coefficients of m_w on both sides, we see that (3.2.3) is equivalent to the identities,

(3.2.4)
$$P_{sx,w}^{J} = P_{x,w}^{J} \quad \text{if } sx \in W^{J}.$$

(Note that $sx \in W^J$ if sx < x and $x \in W^J$). Since we are in a setting u = -1 in the notation of [D], we have by [D, Prop. 3.4],

$$(3.2.5) P_{x.w}^J = P_{xw_I, ww_I}$$

for $x, w \in W^J$, where w_J is the longest element in W^J , and $P_{x,y}$ is the original Kazhdan-Lusztig polynomial for W. By our assumption, sw > w and $sw \not\in W^J$. Then there exists $s' \in W_J$ such that sw = ws' (e.g., [H, Lemma 7.2]), and we have $sww_J < ww_J$. It follows that $a_sC_{ww_J} = vC_{ww_J}$ by [KL, 2.3] (C_w is a Kazhdan-Lusztig basis for \mathcal{H}). This induces similar identities for P_{xw_J,ww_J} and P_{sxw_J,ww_J} as in (3.2.4). Now (3.2.4) follows from these identities in view of (3.2.5).

3.3. We assume that $W \simeq \mathfrak{S}_n$, and consider the $U_v \otimes \mathcal{H}_n$ -module $V^{\otimes n}$. The weights of U_v on $V^{\otimes n}$ are given by $\lambda = (\lambda_1, \dots, \lambda_m) \in \mathbb{Z}_{\geq 0}^m$ with $\sum \lambda_i = n$. The weight subspace $V_{\lambda}^{\otimes n}$ has a basis $\{e_I\}$, with $I = (i_1, \dots, i_n)$ such that $\sharp \{a \mid i_a = k\} = \lambda_k$. The involution ψ on $V^{\otimes n}$ stabilizes the subspace $V_{\lambda}^{\otimes n}$. Moreover $V_{\lambda}^{\otimes n}$ is an \mathcal{H}_n -submodule of $V^{\otimes n}$ generated by a single element $e_{I_{\lambda}}$, where

(3.3.1)
$$I_{\lambda} = (\underbrace{m, \dots, m}_{\lambda_m - \text{times}}, \dots, \underbrace{1, \dots, 1}_{\lambda_1 - \text{times}}).$$

Let $\mathfrak{S}_{\lambda} \simeq \mathfrak{S}_{\lambda_m} \times \cdots \times \mathfrak{S}_{\lambda_1}$ be the stabilizer of I_{λ} in \mathfrak{S}_n . Then \mathfrak{S}_{λ} is a parabolic subgroup W_J of \mathfrak{S}_n , and we denote by \mathcal{H}_{λ} the parabolic subalgebra \mathcal{H}_J corresponding to \mathfrak{S}_{λ} . It is easy to see that \mathcal{H}_n -module $V_{\lambda}^{\otimes n}$ is isomorphic to $M_J = \operatorname{Ind}_{\mathcal{H}_{\lambda}}^{\mathcal{H}_n} \varphi$.

Recall that $\{e_I \mid I \in [1, m]^n\}$ is the basis of $V^{\otimes n}$, which we call the standard basis of $V^{\otimes n}$. The canonical basis $\{b_I \mid I \in [1, m]^n\}$ of U_v -module $V^{\otimes n}$ is characterized by the following two properties ([L, Chap. 27]).

(3.3.2)
$$b_{I} \in e_{I} + \sum_{I'} v^{-1} \mathbb{Z}[v^{-1}] e_{I'},$$

$$\psi(b_{I}) = b_{I},$$

where the sum in the first formula is taken over all I' having the same weight as I.

It is shown in [FKK] that the map $f: m_{\sigma} \mapsto e_{\sigma(I_{\lambda})}$ gives an isomorphism $M_{J} \simeq V_{\lambda}^{\otimes n}$, which transfers the bar involution on M_{J} to the involution ψ on $V_{\lambda}^{\otimes n}$. We identify M_{J} with $V_{\lambda}^{\otimes n}$.

We define a partial order I < I' on $[1, m]^n$ as the transitive closure of the relation

$$(\ldots, a, \ldots, b, \ldots) < (\ldots, b, \ldots, a, \ldots)$$
 if $a > b$.

Then we have the following.

Lemma 3.4. Let $\sigma, \tau \in \mathfrak{S}_n^J$, and assume that $\sigma < \tau$. Then we have $\sigma(I_{\lambda}) < \tau(I_{\lambda})$.

Proof. The proof is reduced to the case where $\tau = \sigma s$ with a (not necessarily simple) reflection $s \in \mathfrak{S}_n$. So we assume that s is a transposition (p,q) with $1 \leq p < q \leq n$. Then it is easy to check that $\sigma^{-1}(p) < \sigma^{-1}(q)$ if $l(\sigma^{-1}) < l(s\sigma^{-1})$. If we write $I_{\lambda} = (i_1, \ldots, i_n)$, we have

$$\sigma(I_{\lambda}) = (\ldots, i_{\sigma^{-1}(p)}, \ldots, i_{\sigma^{-1}(q)}, \ldots), \quad \sigma s(I_{\lambda}) = (\ldots, i_{\sigma^{-1}(q)}, \ldots, i_{\sigma^{-1}(p)}, \ldots).$$

Now by (3.3.1) and by our assumption, we have $i_{\sigma^{-1}(q)} \leq i_{\sigma^{-1}(p)}$. The lemma follows from this.

The following special case is worth mentioning.

Lemma 3.5 ([FKK, Lemma 2.1]). Let $\sigma \in W^J$ and $s \in S$ be a transposition (i, i + 1). Let a and b be i-th and (i + 1)-th entries of $\sigma(I_{\lambda})$, respectively. Then we have

if
$$a > b$$
, then $s\sigma > \sigma$ and $s\sigma \in W^J$,
if $a = b$, then $s\sigma > \sigma$ and $s\sigma \notin W^J$,
if $a < b$, then $s\sigma < \sigma$.

The following result shows that the Kazhdan-Lusztig basis is obtained as a special case of the canonical basis of $V^{\otimes n}$.

Theorem 3.6 ([FKK, Th. 2.5]). Assume that $W \simeq \mathfrak{S}_n$. Then, under the identification $M_J \simeq V_{\lambda}^{\otimes n}$, we have for each $\sigma \in W^J$,

$$C_{\sigma}^{J} = b_{\sigma(I_{\lambda})}.$$

Combining Theorem 3.6 with Lemma 3.4, we have the following refinement of (3.3.2).

Corollary 3.7. Under the above notation, we have

$$b_I \in e_I + \sum_{I' < I} v^{-1} \mathbb{Z}[v^{-1}] e_{I'}.$$

The following corollary is also immediate from (3.2.2), Lemma 3.5 and Theorem 3.6.

Corollary 3.8. Let s = (a, a+1) be a transposition. Then for $I = (i_1, \ldots, i_n)$, we have

$$T_s b_I = v b_I$$
 if $i_a \le i_{a+1}$.

§4. $\mathcal{H}_{n,r}$ -submodules of $V^{\otimes n}$

4.1. We now return to the setup in section 1, and assume that $W = W_{n,r}$. We consider the $\mathcal{H}_{n,r}$ -module $V^{\otimes n}$ with the graded vector space $V = \bigoplus_{i=1}^r V_i$ as before. We prepare some notation in addition to 3.1. Let $S = \{s_1, \ldots, s_n\}$ be the set of generators of $W_{n,r}$, where $t_1 = s_1$ has order r, and s_2, \ldots, s_n are generators of \mathfrak{S}_n corresponding to transposition $(1,2),\ldots,(n-1,n)$. We define $t_i \in W_{n,r}$ by $t_i = s_i \cdots s_2 t_1 s_2 \cdots s_i$ for $i = 2,\ldots,n$. Then t_1,\ldots,t_n gives rise to a set of generators of the group $(\mathbb{Z}/r\mathbb{Z})^n$.

The basis vector of $V^{\otimes n}$ is given by e_I with $I=(i_1,\ldots,i_n)$ as before. By 1.3, e_I can also be written as $e_{j_1}^{(\varepsilon_1)}\otimes\cdots\otimes e_{j_n}^{(\varepsilon_n)}$. In this case, we write I as $I=(j_1^{(\varepsilon_1)},\ldots,j_n^{(\varepsilon_n)})$. The weight λ of U_v on $V^{\otimes n}$ is expressed as $\lambda=(\lambda_1,\ldots,\lambda_m)$ as in 3.3. In our situation, I determines a multi-composition $\boldsymbol{\lambda}=(\lambda^{(1)},\ldots,\lambda^{(r)})$, with $\lambda^{(k)}=(\lambda^{(k)}_1,\ldots,\lambda^{(k)}_{m_k})\in\mathbb{Z}^{m_k}_{\geq 0}$, such that $\sum_{j,k}\lambda^{(k)}_j=n$; the correspondence is given by $\lambda^{(k)}_j=\sharp\{a\mid j_a=j,\varepsilon_a=k\}$. If one ignores the superscripts of $\lambda^{(k)}_j$, $\boldsymbol{\lambda}$ reduces to λ . We call $\boldsymbol{\lambda}$ the weight of e_I . We denote by $V^{\otimes n}_{\boldsymbol{\lambda}}$ the subspace of $V^{\otimes n}$ generated by e_I whose weight is $\boldsymbol{\lambda}$. It is easy to check that the action of $\mathcal{H}_{n,r}$ on $V^{\otimes n}$ stabilizes the subspace $V^{\otimes n}_{\boldsymbol{\lambda}}$. For the weight $\boldsymbol{\lambda}$, put

$$(4.1.1) e_{\lambda^{(k)}} = \underbrace{e_{m_k}^{(k)} \otimes \cdots \otimes e_{m_k}^{(k)}}_{\lambda_{m_k}^{(k)} - \text{times}} \otimes \cdots \otimes \underbrace{e_1^{(k)} \otimes \cdots \otimes e_1^{(k)}}_{\lambda_1^{(k)} - \text{times}}$$

and define a vector $e_{\lambda} \in V_{\lambda}^{\otimes n}$ by

$$(4.1.2) e_{\lambda} = e_{\lambda(r)} \otimes e_{\lambda(r-1)} \otimes \cdots \otimes e_{\lambda(1)}.$$

The stabilizer of e_{λ} in \mathfrak{S}_n is isomorphic to

$$\mathfrak{S}_{\lambda} = \mathfrak{S}_{\lambda(r)} \times \mathfrak{S}_{\lambda(r-1)} \times \cdots \times \mathfrak{S}_{\lambda(1)}$$

with $\mathfrak{S}_{\lambda^{(k)}} = \mathfrak{S}_{\lambda_{m_k}^{(k)}} \times \cdots \times \mathfrak{S}_{\lambda_1^{(k)}}$. We define a subgroup W_{λ} of $W_{n,r}$ by $W_{\lambda} = \mathfrak{S}_{\lambda} \ltimes (\mathbb{Z}/r\mathbb{Z})^n$, i.e.,

$$W_{\lambda} \simeq W_{\lambda^{(r)}} \times W_{\lambda^{(r-1)}} \times \cdots \times W_{\lambda^{(1)}}$$

with $W_{\lambda^{(k)}} = W_{\lambda^{(k)}_{m_k},r} \times \cdots \times W_{\lambda^{(k)}_{1},r}$. Let \mathcal{H}_{λ} be the Ariki-Koike algebra associated to W_{λ} , i.e.,

$$\mathcal{H}_{\lambda} = \mathcal{H}_{\lambda^{(r)}} \otimes \mathcal{H}_{\lambda^{(r-1)}} \otimes \cdots \otimes \mathcal{H}_{\lambda^{(1)}}$$

with $\mathcal{H}_{\lambda^{(k)}} = \mathcal{H}_{\lambda_{m_k}^{(k)},r} \otimes \cdots \otimes \mathcal{H}_{\lambda_1^{(k)},r}$. One can regard \mathcal{H}_{λ} as a subalgebra of $\mathcal{H}_{n,r}$ in a natural way, by making use of generators $\{\xi_1,\ldots,\xi_n\}$ as discussed in [S, 4.2]. (For example, if a+b=n, then $\mathcal{H}_{a,r} \otimes \mathcal{H}_{b,r} \hookrightarrow \mathcal{H}_{n,r}$, where $\mathcal{H}_{a,r}$ (resp. $\mathcal{H}_{b,r}$) is the subalgebra of $\mathcal{H}_{n,r}$ generated by $s_2,\ldots,s_a,\xi_1,\ldots,\xi_a$, (resp. $s_{a+2},\ldots,s_n,\xi_{a+1},\ldots,\xi_n$), respectively.)

We can define a linear character $\varphi_n^{(k)}: \mathcal{H}_{n,r} \to K$ by

$$\varphi_n^{(k)}(a_i) = v \qquad (2 \le i \le n),$$

$$\varphi_n^{(k)}(\xi_j) = u_k \qquad (1 \le j \le n)$$

(cf. [S, (3.3.3), 5.2]), and define $\varphi_{\lambda^{(k)}}: \mathcal{H}_{\lambda^{(k)}} \to K$ by $\varphi_{\lambda^{(k)}} = \varphi_{\lambda^{(k)}_{m_k}}^{(k)} \otimes \cdots \otimes \varphi_{\lambda^{(k)}_1}^{(k)}$. Then we define a linear character $\varphi_{\lambda}: \mathcal{H}_{\lambda} \to K$ by

$$(4.1.4) \varphi_{\lambda} = \varphi_{\lambda(r)} \otimes \varphi_{\lambda(r-1)} \otimes \cdots \otimes \varphi_{\lambda(1)}$$

according to the embedding into $\mathcal{H}_{n,r}$ given in (4.1.3). Put $V_{\lambda}^{\otimes n} = M_{\lambda}$. Then we have the following result.

Proposition 4.2. Let the notations be as above.

(i) M_{λ} is generated by e_{λ} as $\mathcal{H}_{n,r}$ -module, and we have

$$M_{\lambda} = \mathcal{H}_{n,r} e_{\lambda} \simeq \operatorname{Ind}_{\mathcal{H}_{\lambda}}^{\mathcal{H}_{n,r}} \varphi_{\lambda}$$

as $\mathcal{H}_{n,r}$ -modules.

(ii) M_{λ} has a basis $\{e_{\sigma}\}$ indexed by the set \mathfrak{S}_{n}^{J} (here we regard \mathfrak{S}_{λ} as a parabolic subgroup $(\mathfrak{S}_{n})_{J}$ of \mathfrak{S}_{n}). The action of $\mathcal{H}_{n,r}$ on this basis is given as follows:

$$a_s e_{\sigma} = \begin{cases} e_{s\sigma} + (v - v^{-1})e_{\sigma} & \text{if } l(s\sigma) < l(\sigma), \\ e_{s\sigma} & \text{if } l(s\sigma) > l(\sigma), s\sigma \in \mathfrak{S}_n^J, \\ ve_{\sigma} & \text{if } l(s\sigma) > l(\sigma), s\sigma \notin \mathfrak{S}_n^J, \end{cases}$$

$$\xi_j e_{\sigma} = u_{\varepsilon(j,\sigma)} e_{\sigma}$$

where $\varepsilon(j,\sigma) \in \{1,\ldots,r\}$ is given as follows; write $e_{\lambda} = e_I$ as in 4.1, and put $\varepsilon(j,\sigma) = \varepsilon_j$ for $\sigma(I) = (j_1^{(\varepsilon_1)},\ldots,j_n^{(\varepsilon_n)})$.

(iii) There exists an involution $\bar{}$: $M_{\lambda} \to M_{\lambda}$ satisfying the property that $\overline{hm} = \bar{h}\overline{m}$ for $h \in \mathcal{H}_{n,r}, m \in M_{\lambda}$, and that $\bar{e}_{\sigma} = e_{\sigma}$ for $\sigma = 1$.

Proof. Let λ be the weight of e_{λ} as U_v -module. Then M_{λ} coincides with $V_{\lambda}^{\otimes n}$ and e_{λ} is nothing but $e_{I_{\lambda}}$ given in (3.3.1). Then by [FKK, Prop. 2.1], $V_{\lambda}^{\otimes n}$ is generated by $e_{I_{\lambda}}$ as \mathcal{H}_n -module, and is isomorphic to M_J as in 3.3, for a parabolic subgroup $\mathfrak{S}_{\lambda} = \mathfrak{S}_n^J$. In particular, we see that $M_{\lambda} = \mathcal{H}_{n,r}e_{\lambda}$, and that

$$\dim V_{\lambda}^{\otimes n} = |\mathfrak{S}_{n}^{J}| = \dim \operatorname{Ind}_{\mathcal{H}_{\lambda}}^{\mathcal{H}_{n,r}} \varphi_{\lambda}.$$

Since it is easy to see that Ke_{λ} is a one-dimensional \mathcal{H}_{λ} -module affording φ_{λ} , the first assertion follows.

Now we define a basis $\{e_{\sigma} \mid \sigma \in \mathfrak{S}_{n}^{J}\}$ in M_{λ} by using the basis $\{m_{\sigma}\}$ in M_{J} . Then we have $e_{\sigma} = m_{\sigma} = e_{\sigma(I_{\lambda})}$ by [FKK]. The first three formula in (ii) now follows from (3.1.2). The last formula in (ii) follows by considering the action of ω_{j} on $e_{\sigma(I_{\lambda})} \in V^{\otimes n}$.

The involution ψ on $V^{\otimes n}$ stabilizes the subspace $V_{\underline{\lambda}}^{\otimes n}$. We define the bar involution $\bar{}$ on $M_{\underline{\lambda}} = V_{\underline{\lambda}}^{\otimes n}$ in terms of ψ . Then we have $\overline{hm} = \overline{hm}$ by Theorem 2.4. Since $\psi(e_{\underline{\lambda}}) = e_{\underline{\lambda}}$, we have $\overline{e}_1 = e_1$. The proposition is proved.

The following result is an analogue to the case of $\mathcal{H}_{n,r}$ of the result of Frenkel, Khovanov and Kirillov (cf. Theorem 3.6) concerning the Kazhdan-Lusztig basis of \mathcal{H}_n and canonical basis of U_q , and also of the parabolic Kazhdan-Lusztig basis of Deodhar (cf. 3.1). But note that \mathcal{H}_{λ} is no longer a parabolic subalgebra of $\mathcal{H}_{n,r}$.

Theorem 4.3. Let $M_{\lambda} \simeq \operatorname{Ind}_{\mathcal{H}_{\lambda}}^{\mathcal{H}_{n,r}} \varphi_{\lambda}$ be the induced $\mathcal{H}_{n,r}$ -module. Then there exists a unique basis $\{b_{\sigma} \mid \sigma \in \mathfrak{S}_{n}^{J}\}$ in M_{λ} satisfying the following properties.

$$b_{\sigma} \in e_{\sigma} + \sum_{\substack{\tau \in \mathfrak{S}_{n}^{J} \\ \tau < \sigma}} v^{-1} \mathbb{Z}[v^{-1}] e_{\tau},$$
$$\overline{b}_{\sigma} = b_{\sigma}.$$

The coefficient $p_{\tau,\sigma}$ of e_{τ} in the expression of b_{σ} is given by the parabolic Kazhdan-Lusztig polynomial for the case of $\mathfrak{S}_n^J \subset \mathfrak{S}_n$ just as in 3.1.

Proof. By Theorem 3.6, canonical basis $\{b_{\sigma(I_{\lambda})} \mid \sigma \in \mathfrak{S}_{n}^{J}\}$ gives rise to a basis of $V_{\lambda}^{\otimes n}$, which corresponds to the parabolic Kazhdan-Lusztig basis $\{C_{\sigma}^{J}\}$ in M_{J} . Hence, if we define the basis $\{b_{\sigma}\}$ in $M_{\lambda} = V_{\lambda}^{\otimes n}$ in terms of $\{b_{\sigma(I_{\lambda})}\}$, the assertions in the theorem follow from 3.1 and Proposition 4.2.

4.4. We now pass to a more general situation. Take an integer $t \geq 0$ such that $t \leq m_k$ for $k = 1, \ldots, r$. Let $\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)})$ be an r-tuple of compositions as in 4.1, but here we assume that $\lambda^{(k)} = \emptyset$ for $k \neq r$, and that $\lambda^{(r)} = (\lambda_{t+1}^{(r)}, \ldots, \lambda_{m_r}^{(r)}) \in \mathbb{Z}_{\geq 0}^{m_r - t}$. We consider a pair $(\lambda; \mathbf{c})$, with $\mathbf{c} = (c_1, \ldots, c_t) \in \mathbb{Z}_{\geq 0}^t$ a composition such that $\sum_{j,k} \lambda_j^{(k)} + \sum_i c_i = n$. We put $c = \sum c_i$. We denote by $M_{\lambda,\mathbf{c}}$ the subspace of $V^{\otimes n}$ generated by e_I with $I = (j_1^{(c_1)}, \ldots, j_n^{(\varepsilon_n)})$ such that $\lambda_j^{(r)} = \sharp \{a \mid j_a = j, \varepsilon_a = r\}$ and that $c_i = \sharp \{a \mid j_a = i\}$. Then $M_{\lambda,\mathbf{c}}$ is a direct sum of various weight spaces $V_{\nu}^{\otimes n}$, and so has a structure of $\mathcal{H}_{n,r}$ -module. The decomposition of $M_{\lambda,\mathbf{c}}$ into $V_{\nu}^{\otimes n}$ is described more precisely as follows. Let ν be a pair $(\lambda; \mu)$, where λ is as above, and $\mu = (\mu^{(1)}, \ldots, \mu^{(r)})$ is an r-tuples of compositions $\mu^{(k)} = (\mu_1^{(k)}, \ldots, \mu_t^{(k)}) \in \mathbb{Z}_{\geq 0}^t$ such that $\sum_{k=1}^r \mu_i^{(k)} = c_i$ for $1 \leq i \leq t$. We denote by $\mathcal{P}_{\lambda,\mathbf{c}}$ the set of such $\nu = (\lambda; \mu)$. Note that ν can be written, by rearranging the entries, as $(\nu^{(1)}, \ldots, \nu^{(r)})$ with $\nu^{(r)} = (\mu_1^{(r)}, \ldots, \mu_t^{(r)}, \lambda_{t+1}^{(r)}, \ldots, \lambda_{m_r}^{(r)})$, and $\nu^{(k)} = (\mu_1^{(k)}, \ldots, \mu_t^{(k)}, 0, \ldots, 0)$ for $k \neq r$. Hence it determines an $\mathcal{H}_{n,r}$ -subspace $V_{\nu}^{\otimes n}$. It is easy to check that

$$M_{\lambda,\mathbf{c}} = \bigoplus_{\boldsymbol{\nu} \in \mathcal{P}_{\lambda,\mathbf{c}}} V_{\boldsymbol{\nu}}^{\otimes n}.$$

We shall investigate the $\mathcal{H}_{n,r}$ -module structure of $M_{\lambda,\mathbf{c}}$. For each $\boldsymbol{\nu} \in \mathcal{P}_{\lambda,\mathbf{c}}$, we define $e^{\boldsymbol{\nu}} \in V_{\boldsymbol{\nu}}^{\otimes n}$ by $e^{\boldsymbol{\nu}} = e_{\lambda} \otimes e^{\boldsymbol{\mu}}$, where $e_{\lambda} = e_{\lambda^{(r)}}$ is defined just as in (4.1.1), by restricting the factors in between $e_{m_r}^{(r)}$ and $e_{t+1}^{(r)}$. $e^{\boldsymbol{\mu}} \in V^{\otimes c}$ is defined by $e^{\boldsymbol{\mu}} = E_1 \otimes E_2 \otimes \cdots \otimes E_t$, with

$$(4.4.1) E_i = (e_{t-i+1}^{(1)})^{\mu_i^{(1)}} \otimes \cdots \otimes (e_{t-i+1}^{(r)})^{\mu_i^{(r)}} \in V^{\otimes c_i}.$$

Now e^{ν} can be written as $e^{\nu} = e_I$ for some I, and we denote by b^{ν} the canonical basis $b_I \in V_{\nu}^{\otimes n}$ corresponding to e_I . We define $m_{\lambda, \mathbf{c}} \in M_{\lambda, \mathbf{c}}$ by

$$(4.4.2) m_{\lambda, \mathbf{c}} = \sum_{\nu \in \mathcal{P}_{\lambda, \mathbf{c}}} b^{\nu}.$$

We define a subalgebra $\mathcal{H}_{\lambda,\mathbf{c}}$ of $\mathcal{H}_{n,r}$ by $\mathcal{H}_{\lambda,\mathbf{c}} = \mathcal{H}_{\lambda} \otimes \mathcal{H}_{\mathbf{c}}$, where $\mathcal{H}_{\lambda} = \mathcal{H}_{\lambda^{(r)}}$ is defined as in (4.1.3), by modifying the definition of $\mathcal{H}_{\lambda^{(r)}}$ appropriately, and $\mathcal{H}_{\mathbf{c}}$ is defined by

$$\mathcal{H}_{\mathbf{c}} = \mathcal{H}_{c_1} \otimes \cdots \otimes \mathcal{H}_{c_t}.$$

(Remember that \mathcal{H}_i is the Iwahori-Hecke algebra of type A_{i-1}). We define a linear character $\varphi_{\lambda,\mathbf{c}}$ of $\mathcal{H}_{\lambda,\mathbf{c}}$ by $\varphi_{\lambda,\mathbf{c}} = \varphi_{\lambda} \otimes \varphi_{\mathbf{c}}$, where $\varphi_{\lambda} = \varphi_{\lambda^{(r)}}$ is given as in (4.1.4). $\varphi_{\mathbf{c}}$ is given by $\varphi_{\mathbf{c}} = \varphi_{c_1} \otimes \cdots \otimes \varphi_{c_t}$, where φ_n is the linear character of \mathcal{H}_n defined by $\varphi_n(a_j) = v$ for all generators a_j .

Under these notations, we have the following result.

Proposition 4.5. $M_{\lambda, \mathbf{c}}$ is generated by $m_{\lambda, \mathbf{c}}$ as $\mathcal{H}_{n,r}$ -module, and we have

$$M_{\boldsymbol{\lambda},\mathbf{c}} = \mathcal{H}_{n,r} m_{\boldsymbol{\lambda},\mathbf{c}} \simeq \operatorname{Ind}_{\mathcal{H}_{\boldsymbol{\lambda},\mathbf{c}}}^{\mathcal{H}_{n,r}} \varphi_{\boldsymbol{\lambda},\mathbf{c}}, \qquad \psi(m_{\boldsymbol{\lambda},\mathbf{c}}) = m_{\boldsymbol{\lambda},\mathbf{c}}.$$

Proof. It is clear that $m_{\lambda, \mathbf{c}}$ is fixed by ψ . We show the first two equalities. First we note that

$$(4.5.1) hm_{\lambda,c} = \varphi_{\lambda,c}(h)m_{\lambda,c} \text{for } h \in \mathcal{H}_{\lambda,c}.$$

In fact to show (4.5.1), it is enough to see, for each $\nu \in \mathcal{P}_{\lambda, \mathbf{c}}$, that

(4.5.2)
$$hb^{\nu} = \begin{cases} \varphi_{\lambda}(h)b^{\nu} & \text{if } h \in \mathcal{H}_{\lambda}, \\ \varphi_{\mathbf{c}}(h)b^{\nu} & \text{if } h \in \mathcal{H}_{\mathbf{c}}. \end{cases}$$

We show (4.5.2). In view of (4.4.1) and Corollary 3.8, we see that $a_jb^{\nu} = vb^{\nu}$ for all generators $a_j \in \mathcal{H}_{c_i}$. This implies the second equality in (4.5.2). Next we consider the first equality. By (modified form of) (4.1.1), (4.1.2), together with (4.4.1), we see that $e^{\nu} = e_I$, where I is of the form $I = (i_1, \ldots, i_n)$ with $i_1 \geq i_2 \geq \cdots \geq i_{n-c}$, and with $i_{n-c} > i_k$ for all $c+1 \leq k \leq n$. Then by Corollary 3.7, b^{ν} is written as a linear combination of $e_{I'}$, where $e_{I'}$ is of the form $e_{\lambda} \otimes e^{\mu'}$, for some $e^{\mu'} \in V^{\otimes c}$. Then as in the case of Proposition 4.2, one can check that $he_{I'} = \varphi_{\lambda}(h)e_{I'}$ for $h \in \mathcal{H}_{\lambda}$. The first equality follows from this, and so (4.5.2) holds.

Next we show that

$$(4.5.3) M_{\lambda,c} = \mathcal{H}_{n,r} m_{\lambda,c}.$$

Let ζ be a primitive r-th root of unity. By the specialization $v \mapsto 1, u_i \mapsto \zeta^i$, $\mathcal{H}_{n,r}$ turns out to be the group algebra $\mathbb{C}W_{n,r}$. (Note that in order to apply the specialization argument, one has to replace $\mathcal{H}_{n,r}$ by its "integral form" defined over a subring $R_1 = \mathbb{Z}[v, v^{-1}, u_1, \dots, u_r, \Delta^{-1}]$ of K as in [S, 3.6]. Accordingly one needs to replace V by its R_1 -lattice with basis e_i . All the ingredients up to now make sense for this setup, and we use them freely without referring R_1 in the discussion below.)

Let $\overline{V} = \bigoplus \overline{V}_i$ be the \mathbb{C} -vector space with $\dim \overline{V}_i = m_i$. We denote by $\{\overline{e}_j^{(i)}\}$ the basis of V_i . Then the $\mathcal{H}_{n,r}$ -module $V^{\otimes n}$ is specialized to the $\mathbb{C}W_{n,r}$ -module $\overline{V}^{\otimes n}$. Let t_i be as in 4.1. Then the action of t_i on $\overline{V}^{\otimes n}$ is given by $t_i e_I = \zeta^{\varepsilon_i} e_I$ for $I = (j_1^{(\varepsilon_1)}, \dots, j_n^{(\varepsilon_n)})$, which is the specialization of ξ_i on $V^{\otimes n}$. The previous construction for $M_{\lambda,\mathbf{c}} = \bigoplus_{\nu} V_{\nu}^{\otimes n}$ makes sense, and by the specialization we have a $W_{n,r}$ -module $\overline{M}_{\lambda,\mathbf{c}} = \bigoplus_{\nu} \overline{V}_{\nu}^{\otimes n}$. Let $\overline{e}^{\nu}, \overline{b}^{\nu}, \overline{m}_{\lambda,\mathbf{c}}$ be the elements in $\overline{M}_{\lambda,\mathbf{c}}$ obtained from $e^{\nu}, b^{\nu}, m_{\lambda,\mathbf{c}}$ by the specialization.

To show (4.5.3), it is enough to see that

$$(4.5.4) \overline{M}_{\lambda,\mathbf{c}} = \mathbb{C}W_{n,r}\overline{m}_{\lambda,\mathbf{c}}.$$

We show (4.5.4). We prepare some notation. For $I=(j_1^{(\varepsilon_1)},\ldots,j_n^{(\varepsilon_n)})$, we call $\boldsymbol{\varepsilon}=(\varepsilon_1,\ldots,\varepsilon_n)$ the signature of e_I , and $\mathbf{j}=(j_1,\ldots,j_n)$ the foot of e_I . Put $\mathcal{U}=\mathbb{C}W_{n,r}\overline{m}_{\boldsymbol{\lambda},\mathbf{c}}$. Now $\overline{m}_{\boldsymbol{\lambda},\mathbf{c}}$ can be written as $\overline{m}_{\boldsymbol{\lambda},\mathbf{c}}=\sum_{\boldsymbol{\varepsilon}\in[1,r]^n}\overline{m}(\boldsymbol{\varepsilon})$, where $\overline{m}(\boldsymbol{\varepsilon})$ is a linear combination of vectors \overline{e}_I whose signature is $\boldsymbol{\varepsilon}$. Note that t_1,\ldots,t_n are generators of the subgroup $(\mathbb{Z}/r\mathbb{Z})^n$ of $W_{n,r}$, and $e_{j_1}^{(\varepsilon_1)}\otimes\cdots\otimes e_{j_n}^{(\varepsilon_n)}$ generates a one dimensional representation $\varphi_{\boldsymbol{\varepsilon}}$ of $(\mathbb{Z}/r\mathbb{Z})^n$ given by $t_i\mapsto\zeta^{\varepsilon_i}$. It follows that each $\overline{m}(\boldsymbol{\varepsilon})$ belongs to \mathcal{U} .

Let us consider the partial order < on $[1, m]^n$ defined in 3.3. Let $F(\varepsilon)$ be the set of vectors in $\overline{M}_{\lambda, \mathbf{c}}$ consisting of \overline{e}_I with signature ε , together with the vectors $e_{I'}$ obtained from those e_I by permuting the factors. Clearly $\bigcup_{\varepsilon} F(\varepsilon)$ gives rise to a basis of $\overline{M}_{\lambda, \mathbf{c}}$. We show, by backward induction on the partial order of the set of signatures, that $F(\varepsilon) \subset \mathcal{U}$. Take $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ and assume that $F(\varepsilon') \subset \mathcal{U}$ holds for any $\varepsilon' > \varepsilon$. Now $\overline{m}(\varepsilon)$ can be written as

$$(4.5.5) \overline{m}(\varepsilon) \in \overline{e}_I + \sum_{I'} \mathbb{C}\overline{e}_{I'},$$

where the foot \mathbf{j} of I is given by

(4.5.6)
$$\mathbf{j} = (\underbrace{m_r, \dots, m_r}_{\lambda_{m_r}^{(r)} - \text{times}}, \dots, \underbrace{t+1, \dots, t+1}_{\lambda_{t+1}^{(r)} - \text{times}}, \underbrace{t, \dots, t}_{c_1 - \text{times}}, \dots, \underbrace{1, \dots, 1}_{c_t - \text{times}}),$$

and $e_{I'}$ is a summand of some $b^{\nu} = b_{I''}$, not equal to e^{ν} . Thus $e_{I'}$ is obtained from $e_{I''}$ by permuting the factors. Note that $e_{I''}$ has the same foot as (4.5.6), and we have I' < I'' by Corollary 3.7. Let ε'' be the signature of I''. As in the proof of (4.5.2), one can write $e_{I''} = e_{\lambda} \otimes e^{\mu}$ and $e_{I'} = e_{\lambda} \otimes e^{\mu'}$. Since $(t, \ldots, t, \ldots, 1, \ldots, 1)$ is ordered decreasingly, the condition that I' < I'' implies that $\varepsilon < \varepsilon''$. It follows, by induction, that $e_{I''} \in \mathcal{U}$. By operating \mathfrak{S}_n , we see that $e_{I'} \in \mathcal{U}$ also. This implies that e_I and all its permutations of factors belong to \mathcal{U} . Hence we have $F(\varepsilon) \subset \mathcal{U}$. Thus (4.5.4), and so (4.5.3) holds.

It is easy to see that $\dim M_{\lambda,\mathbf{c}} = \dim \overline{M}_{\lambda,\mathbf{c}} = |W_{n,r}|/|W_{\lambda,\mathbf{c}}|$, where $W_{\lambda,\mathbf{c}}$ is the subgroup of $W_{n,r}$ corresponding to the subalgebra $\mathcal{H}_{\lambda,\mathbf{c}}$ of $\mathcal{H}_{n,r}$. Then (4.5.1) and (4.5.3) implies that $M_{\lambda,\mathbf{c}} \simeq \operatorname{Ind}_{\mathcal{H}_{\lambda,\mathbf{c}}}^{\mathcal{H}_{n,r}} \varphi_{\lambda,\mathbf{c}}$. The proposition is proved.

4.6. The space $M_{\lambda,\mathbf{c}}$ can be decomposed into a direct sum of weight spaces $V_{\nu}^{\otimes n}$. Hence in view of Proposition 4.2 and Theorem 4.3, $M_{\lambda,\mathbf{c}}$ have bases inherited from the basis $\{e_I\}$ and $\{b_I\}$ of various $V_{\nu}^{\otimes n}$. In particular, a bar involution on $M_{\lambda,\mathbf{c}}$ can be defined, and one obtains a basis invariant under the bar involution.

Here we consider the special case where $M_{\lambda,\mathbf{c}}$ is isomorphic to the regular representation of $\mathcal{H}_{n,r}$. Hence we assume that $\lambda = \emptyset$, and $\mathbf{c} = (1^n)$. So

 $\mathcal{H}_{\lambda,\mathbf{c}} \simeq K$ and $\varphi_{\lambda,\mathbf{c}} = 1_K$. $\mathcal{P}_{\lambda,\mathbf{c}}$ is in bijection with the set $[1,r]^n$, and the vector $e^{\boldsymbol{\nu}} \in V_{\boldsymbol{\nu}}^{\otimes n}$ corresponding to $\boldsymbol{\nu} \in \mathcal{P}_{\lambda,\mathbf{c}}$ in 4.4 is given by

(4.6.1)
$$e^{\boldsymbol{\nu}} = e_n^{(\varepsilon_1)} \otimes e_{n-1}^{(\varepsilon_2)} \otimes \cdots \otimes e_1^{(\varepsilon_n)}$$

under the correspondence $\nu \leftrightarrow \varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \in [1, r]^n$. The basis of $V_{\nu}^{\otimes n}$ is obtained by permuting the factors of e^{ν} . If we write $e^{\nu} = e_I$ and $e_{\sigma(I)} = e_{\sigma,\varepsilon}$, then $\{e_{\sigma,\varepsilon} \mid \sigma \in \mathfrak{S}_n\}$ forms a basis of $V_{\nu}^{\otimes n}$, and

$$\{e_{\sigma,\varepsilon} \mid \sigma \in \mathfrak{S}_n, \varepsilon \in [1,r]^n\}$$

gives rise to a basis of $M_{\lambda,\mathbf{c}}$. We define a partial order on the set $\{(\sigma,\varepsilon) \mid \sigma \in \mathfrak{S}_n\}$ (for a fixed ε) as follows. Let $\tau_0 \in \mathfrak{S}_n$ be an element such that $e^{\nu} = e_{\tau_0(I)}$, where $I = (i_1, \ldots, i_n)$ with $i_1 \geq \cdots \geq i_n$. Then we put $(\tau, \varepsilon) < (\sigma, \varepsilon)$ if $\tau \tau_0 < \sigma \tau_0$.

We write $m_0 = m_{\lambda,\mathbf{c}} = \sum b^{\nu}$ as in (4.4.2). Then the map $h \mapsto hm_0$ gives an isomorphism $\mathcal{H}_{n,r} \cong M_{\lambda,\mathbf{c}}$. We denote by the same symbol the basis of $\mathcal{H}_{n,r}$ obtained from the basis $\{e_{\sigma,\varepsilon}\}$ of $M_{\lambda,\mathbf{c}}$. Since m_0 is ψ -invariant, it follows from Theorem 2.4 that the bar involution on $\mathcal{H}_{n,r}$ can be identified, under the above isomorphism, with the involution ψ on $M_{\lambda,\mathbf{c}}$. Let $\{b_{\sigma,\varepsilon}\}$ be the basis of $\mathcal{H}_{n,r}$ obtained by transferring the canonical basis of $M_{\lambda,\mathbf{c}}$ attached to $\{e_{\sigma,\varepsilon}\}\subset M_{\lambda,\mathbf{c}}$. Then the following result is immediate from Theorem 4.3.

Theorem 4.7. There exists a unique basis $\{b_{\sigma,\varepsilon} \mid \sigma \in \mathfrak{S}_n, \varepsilon \in [1,r]^n\}$ of $\mathcal{H}_{n,r}$ satisfying the following properties.

$$b_{\sigma,\varepsilon} \in e_{\sigma,\varepsilon} + \sum_{\substack{\tau \in \mathfrak{S}_n \\ (\tau,\varepsilon) < (\sigma,\varepsilon)}} v^{-1} \mathbb{Z}[v^{-1}] e_{\tau,\varepsilon},$$

The coefficient $p_{(\tau,\varepsilon),(\sigma,\varepsilon)}$ of $e_{\tau,\varepsilon}$ in the expression of $b_{\sigma,\varepsilon}$ is described by the parabolic Kazhdan-Lusztig polynomials of type A for the weight space $V_{\boldsymbol{\nu}}^{\otimes n}$ under the correspondence $\boldsymbol{\nu} \leftrightarrow \varepsilon$ in (4.6.1).

§5. The case of Iwahori-Hecke algebras of type B_n

5.1. We consider the case where $W = W_{n,2}$ is the Weyl group of type B_n . We specify the parameters of $\mathcal{H}_{n,2}$ by putting $u_1 = -v^{-1}, u_2 = v$, so that $\mathcal{H}_{n,2}$ is the Hecke algebra \mathcal{H} of W as given in 3.1. We discuss the relationship between Kazhdan-Lusztig basis of \mathcal{H} and the previous basis.

Let us consider the subalgebra $\mathcal{H}_{\lambda,\mathbf{c}}$ of \mathcal{H} as in 4,4, and assume that $\mathcal{H}_{\lambda,\mathbf{c}}$ is the subalgebra \mathcal{H}_J associated to a parabolic subgroup W_J of W. We also assume that the linear character $\varphi_{\lambda,\mathbf{c}}:\mathcal{H}_J\to K$ in 4.4 is of the form φ_J in 3.1 (hence $\lambda=(\lambda^{(1)};\lambda^{(2)})=(-;k)$ for some $k\geq 0$). Then the \mathcal{H} -submodule $M_{\lambda,\mathbf{c}}=\bigoplus V_{\nu}^{\otimes n}$ of $V^{\otimes n}$ can be identified with M_J in 3.1, where $m_{\lambda,\mathbf{c}}\in M_{\lambda,\mathbf{c}}$ corresponds to $m_e\in M_J$. By Theorem 2.4 and Proposition 4.5, the bar involution on M_J given in 3.1 coincides with the involution ψ on $M_{\lambda,\mathbf{c}}$. We shall compare various bases on M_J . Put $m_{\sigma}=T_{\sigma}m_e$ for $\sigma\in W^J$. Then $\mathcal{M}=\{m_{\sigma}\mid\sigma\in W^J\}$ gives a basis of M_J . Let $\mathcal{C}=\{C_{\sigma}^J\mid\sigma\in W^J\}$ be the Kazhdan-Lusztig basis of M_J given in 3.1. We also put $\mathcal{E}=\{e_I\mid I\in\mathcal{I}_J\}$ and $\mathcal{B}=\{b_I\mid I\in\mathcal{I}_J\}$ the bases of M_J arising from the standard basis and the canonical basis of $\bigoplus_{\nu}V_{\nu}^{\otimes n}$. For a two bases $X=(x_i)$ and $Y=(y_j)$ of M_J indexed by the set $\mathcal{I}_J\simeq W^J$, we denote by $M(X,Y)=(a_{ij})$ the transition matrix from X to Y given by

$$y_i = \sum_{j \in \mathcal{I}} a_{ji} x_j.$$

Put

$$P_B = M(\mathcal{M}, \mathcal{C}), \quad P_A = M(\mathcal{E}, \mathcal{B}), \quad X = M(\mathcal{B}, \mathcal{C}), \quad Y = M(\mathcal{E}, \mathcal{M}).$$

We define a total order on W^J which is compatible with the converse of the Bruhat order on W^J , and consider the matrix $P_B = (p_{\tau,\sigma})_{\tau,\sigma \in W^J}$ with respect to this order. Then P_B is a lower unitriangular matrix. Moreover, $p_{\tau,\sigma} \in v^{-1}\mathbb{Z}[v^{-1}]$, and $p_{\tau,\sigma}$ represents the parabolic Kazhdan-Lusztig polynomials of type B_n associated to W_J up to a power of v. If we fix a total order on the set \mathcal{I}_J compatible with the weight decomposition $M_J = \bigoplus_{\boldsymbol{\nu}} V_{\boldsymbol{\nu}}^{\otimes n}$, the matrix P_A is a block-wise diagonal matrix, and diagonal blocks correspond to the weights on M_J . The diagonal block $P_A^{\boldsymbol{\nu}}$ corresponding to the weight $\boldsymbol{\nu}$ is the matrix of the parabolic Kazhdan-Lusztig polynomials of type A associated to the parabolic subgroup $\mathfrak{S}_{\boldsymbol{\nu}}$ (up to powers of v), where $\mathfrak{S}_{\boldsymbol{\nu}}$ is the stabilizer of $e^{\boldsymbol{\nu}}$ in \mathfrak{S}_n .

We have the following.

Proposition 5.2. The matrices P_A, P_B, X, Y satisfy the following relation.

$$(5.2.1) P_B = Y^{-1} P_A X.$$

Moreover, the matrices P_B and X are determined uniquely by P_A and Y. In other words, the parabolic Kazhdan-Lusztig polynomials of type B_n can be determined by various parabolic Kazhdan-Lusztig polynomials of type A and by the matrix Y.

Proof. It is clear that P_A , P_B , X, Y satisfy (5.2.1). We show that P_A and Y determine P_B and X uniquely. Write the equation (5.2.1) as

$$(5.2.2) P_B X^{-1} = Y^{-1} P_A$$

and consider (5.2.2) as the matrix equation with unknown matrices P_B and X. We fix a bijection $W^J \simeq \mathcal{I}_J$, and write the matrices as $P_B = (p_{ij}), X^{-1} = (x_{ij})$ with $i, j \in \mathcal{I}_J$ along the order inherited from the order on W^J . Here $p_{ij} \in v^{-1}\mathbb{Z}[v^{-1}]$ and $x_{ij} \in \mathbb{Q}(v)$ such that $\bar{x}_{ij} = x_{ij}$. We determine the matrices P_B and X^{-1} row wisely. Suppose that the first (i-1)-rows of P_B and X^{-1} are determined. Since P_B is lower unitriangular, one can write

(5.2.3)
$$\sum_{j=1}^{i-1} p_{ij} \mathbf{x}_j + \mathbf{x}_i = \boldsymbol{\alpha}_i,$$

where \mathbf{x}_j (resp. α_j) denotes the *j*-th row of X^{-1} (resp. $Y^{-1}P_A$), respectively. By applying the bar involution on (5.2.3), and by subtracting each other, one has

(5.2.4)
$$\sum_{j=1}^{i-1} (p_{ij} - \bar{p}_{ij}) \mathbf{x}_j = \boldsymbol{\alpha}_i - \overline{\boldsymbol{\alpha}}_i.$$

Here $\mathbf{x}_1, \dots, \mathbf{x}_{i-1}, \alpha_i - \overline{\alpha}_i$ are known vectors. Since $\mathbf{x}_1, \dots, \mathbf{x}_{i-1}$ are linearly independent, (5.2.4) determines $d_{ij} = p_{ij} - \overline{p}_{ij}$ uniquely. But since $p_{ij} \in v^{-1}\mathbb{Z}[v^{-1}]$, d_{ij} determines p_{ij} uniquely. Thus the *i*-th row of P_B is determined. By substituting p_{ij} into (5.2.3), the *i*-th row \mathbf{x}_i is also determined. Thus the matrices P_B and X^{-1} are determined.

5.3. The bases $\{e_{\sigma,\varepsilon}\}$ and $\{b_{\sigma,\varepsilon}\}$ appeared in Theorem 4.7 are nothing but the bases \mathcal{E} and \mathcal{B} , respectively. In order to relate these bases to the Kazhdan-Lusztig basis, it is essential to know about the matrix X since the matrix Y is more or less simpler than X. It would be an interesting problem to study the matrix X. One might expect that X has a relatively simple form compared to the matrix P_B . We give below a simple example of the matrix X, i.e., the relation between parabolic Kazhdan-Lusztig basis and the canonical basis.

Assume that W is the Weyl group of type B_n , and let W_J be the parabolic subgroup of type B_{n-1} . We put $J = \{t_1, s_2, \ldots, s_{n-1}\}$. Then the distinguished representatives W^J are given as

$$W^{J} = \{s_{i} \cdots s_{n} \mid 2 \le i \le n+1\} \cup \{s_{i} \cdots s_{2} t_{1} s_{2} \cdots s_{n} \mid 1 \le i \le n\}$$

under the convention that $s_1 = s_{n+1} = 1$. Assume that $V = V_1 \oplus V_2$ with $\dim V_1 = 1$, $\dim V_2 = 2$. We fix bases $e_1^{(1)}$ of V_1 and $e_1^{(2)}$, $e_2^{(2)}$ of V_2 , respectively.

We also write $e_3 = e_2^{(2)}, e_2 = e_1^{(2)}, e_1 = e_1^{(1)}$. Let us consider $M_{\lambda,\mathbf{c}}$ as in 4.4, where $\lambda = (\lambda^{(1)}, \lambda^{(2)}) = (-; n-1)$ and $\mathbf{c} = (1)$ (i.e., t=1). Then $M_{\lambda,\mathbf{c}}$ is isomorphic to the induced representation $\operatorname{Ind}_{\mathcal{H}_J}^{\mathcal{H}} \varphi_J$, where \mathcal{H}_J is the parabolic subalgebra of $\mathcal{H} = \mathcal{H}_{n,2}$ of type B_{n-1} and φ_J is as in 3.1. It can be decomposed into the direct sum of weight spaces $M_{\lambda,\mathbf{c}} = V_{\nu}^{\otimes n} \bigoplus V_{\nu'}^{\otimes n}$, where $\nu = (0, 1, n-1), \nu' = (1, 0, n-1)$ as weights for U_v . We define, for $1 \leq i \leq n$, I_i, I_i' by

$$I_{i} = (\underbrace{2^{(2)}, \dots, 2^{(2)}}_{i-1\text{-times}}, 2^{(1)}, 2^{(2)}, \dots, 2^{(2)}),$$

$$I'_{i} = (\underbrace{2^{(2)}, \dots, 2^{(2)}}_{i-1\text{-times}}, 1^{(1)}, 2^{(2)}, \dots, 2^{(2)}).$$

Then $b^{\nu} = b_{I_n} = e_{I_n}$ and $b^{\nu'} = b_{I'_n} = e_{I'_n}$, and we have $m_{\lambda, \mathbf{c}} = b_{I_n} + b_{I'_n}$. The Kazhdan-Lusztig basis C^J_{σ} for $\sigma \in W^J$ can be expressed in terms of canonical basis, as

$$C_{\sigma}^{J} = \begin{cases} b_{I_{i-1}} + b_{I'_{i-1}} & \text{if } \sigma = s_{i} \cdots s_{n}, \\ (v^{i} + v^{-i})b_{I_{1}} - b_{I_{i+1}} + b_{I'_{i+1}} & \text{if } \sigma = s_{i} \cdots s_{2} t s_{2} \cdots s_{n}. \end{cases}$$

This determines the matrix X completely.

References

- [D] V.V. Deodhar; On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra, 111, (1987), 483-506.
- [FKK] I. B. Frenkel, M. G. Khovanov, and A. A. Kirillov, Jr; Kazhdan-Lusztig polynomials and canonical basis, Transformation Groups, 3, No.4, (1998), 321-336.
- [H] J. E. Humphreys; Reflection groups and Coxeter groups, Cambridge University Press, Cambridge 1990.
- [Ja] J. C. Jantzen; Lectures on quantum groups, Graduate Studies in Math., 6, AMS, 1995.
- [Ji] M. Jimbo, A q-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys. **11**, (1986), 247–252.
- [KL] D. Kazhdan and G. Lusztig; Representations of Coxeter groups and Hecke algebras, Invent. Math. **53**, (1979), 165-184.

- [L] G. Lusztig, Introduction to Quantum Groups, Progress in Math. 110, Birkhäuser, Boston 1993.
- [S] T. Shoji; A Frobenius formula for the characters of Ariki-Koike algebras. J. Algebra **226**, (2000), 818–856.
- [SS] M. Sakamoto and T. Shoji; Schur-Weyl reciprocity for Ariki-Koike algebras, J. Algebra 221, (1999), 293-314.

Kiyotaka Ohkura Department of Mathematics, Science University of Tokyo Noda, Chiba 278-8510, Japan

Toshiaki Shoji Department of Mathematics, Science University of Tokyo Noda, Chiba 278-8510, Japan