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On certain bases for Ariki-Koike algebras
arising from canonical bases for U, (sl,,)

Kiyotaka Ohkura and Toshiaki Shoji

(Received July 30, 2002)

Abstract. Frenkel, Khovanov and Kirillov showed that the parabolic
Kazhdan-Lusztig basis of Iwahori-Hecke algebra associated to &, can be ob-
tained as the canonical basis of a weight subspace of V®™, where V is the vector
representation of the quantum group U, (sl»). In this paper, a similar problem
for the case of Ariki-Koike algebra H,, , is discussed. We construct a certain
basis of H,,», which is fixed by the involution and is closely related to the
canonical basis of V®", by making use of the representation of H, , on V®™.
In the case where r = 2, i.e., in the case of Iwahori-Hecke algebra of type B,
this gives a basis different from the Kazhdan-Lusztig basis of Hy, r.
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§0. Introduction

Let U, = Uy(sl,,) be the quantum group associated to the Lie algebra sl,,,
and V the vector representation of U,. Let H,, be the Iwahori-Hecke algebra
associated to the symmetric group &,,. Then the n-fold tensor space V"
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turns out to be a U, ® H,-module. Each weight subspace V)\®" of V@™ is H,,-
stable, and is naturally isomorphic to an induced module M; from a linear
representation of some parabolic subalgebra H ; of H,. A parabolic Kazhdan-
Lusztig basis on M was defined by Deodhar [D], by generalizing the notion
of Kazhdan-Lusztig basis of H,, introduced by Kazhdan and Lusztig [KL].

The notion of canonical basis for highest weight modules of U, was in-
troduced by Lusztig [L], which is a union of canonical bases for each weight
subspace. In the case of highest weight module V®", Frenkel, Khovanov and
Kirillov [FKK] showed that the canonical basis of the weight subspace V,>"
coincides with the Kazhdan-Lusztig basis of M ; under the above isomorphism.
Note that H,, has a standard basis {1, | o € &,}, and the Kazhdan-Lusztig
basis of ‘H,, is characterized by the property that the transition matrix between
this basis and the standard basis is of the unitriangular shape, and that it is
fixed by a certain involution on H,,, called the bar involution. In turn, V®"
has also a standard basis consisting of the tensor product of the given basis
of V, and the canonical basis on V®" is characterized by a certain involution
1) on it, together with some additional property related to the standard basis.
The important step for proving the result in [FKK] is to show that these two
involutions coincide with under the isomorphism M ; ~ V/\®”.

Let Wy, be the complex reflection group &, x (Z/rZ)", and H,, the
associated cyclotomic Hecke algebra, i.e., the Ariki-Koike algebra associated
to Wy». In the case where r = 1, H,, , ~ H,, and H,, is isomorphic to the
Iwahori-Hecke algebra of type B, if r = 2. 'H,, , contains H,, as a subalgebra,
and in [SS] the action of H,, on V" was extended to the action of H,, . Each
weight space V®" is again H,, ,-stable. The aim of this paper is to extend
the result of [FKK] to the case of certain induced H,, ,-modules. One of our
main results is Theorem 2.4, which asserts that the bar involution of H,,, is
compatible with the involution ¢ on V®". By making use of this fact, one
can show, in Theorem 4.3, that the weight subspace V/\®” is isomorphic to an
H,, r-module M induced from a “non-parabolic” subalgebra H; of H, ,, and
that the canonical basis of V/\®” determines a basis of M; fixed by the bar
involution of H,, ,. This may be regarded as a non-parabolic analogue of the
result of [FKK].

However, if one focuses on the H,, ,-module M ; induced from the parabolic
subalgebra H; of H,,, for example H, , itself, the situation is much more
complicated. There is no natural notion of standard basis nor Kazhdan-Lusztig
basis of H,,, for » > 2. Moreover, M; turns out to be a direct sum of various
weight subspaces V/\®“. In order to treat these cases, we make use of the new
generators of H,,, introduced by [S]. By using the direct sum decomposition
My = @, V,>", one can define two bases of M, inherited from the standard
basis and the canonical basis of &, V)\®”. As a special case, we can construct
two bases of H,,, in Theorem 4.7; the one has a property that the action



BASES FOR ARIKI-KOIKE ALGEBRAS 147

of generators of H,,, on this basis is explicitly described, and the other has
a property that it is fixed by the bar involution on H,,,, and the transition
matrix between these two bases is described by various parabolic Kazhdan-
Lusztig polynomials of type A.

We remark that even in the case where r = 2 (i.e., the case of Iwahori-
Hecke algebras of type B,,), our basis does not coincide with the Kazhdan-
Lusztig basis of Hy, . In section 5, we discuss the relationship between these
two bases, with the standard basis and the Kazhdan-Lusztig basis of H,, . In
particular we show in Proposition 5.2 that the parabolic Kazhdan-Lusztig
polynomials of type B, can be determined uniquely by various parabolic
Kazhdan-Lusztig polynomials of type A, together with the information on
the transition matrix between the standard basis of H,, and the standard
basis of @, V.

81. Review on Ariki-Koike algebras

1.1. Let K = Q(v,uq,...,u,) be a field of rational functions in variables
v, U1, ..., U Let W = W, , be the complex reflection group &,, x (Z/rZ)",
and H,, the Ariki-Koike algebra associated to W. 'H,, is the associative
algebra over K with generators aq,...,ay,, and relations

(a1 —w)(ar —ug) -~ (a1 —u,) =0,

(¢ —v)(a;+v7") =0 (2<i<n),
(1.1.1) a1a20a1a2 = a2a10201,
;410 = Q4100541 (2 <i<n),
CLZ'CL]' = ajai (|7, —j| 2 2)
It is known that the subalgebra H,, of H, , generated by as,...,a, is isomor-

phic to the Hecke algebra associated to the symmetric group &,, with standard
generators.

1.2. Let U, = Uy(sly,) be the quantum group associated to the Lie
algebra sl,,, with generators F;, F;, K; (1 < i < m— 1) and standard relations.
Apriori, U, is an associative algebra over Q(v), but for later discussion, we
regard them as an algebra over K by an extension of scalars.

Let V be an m-dimensional vector space over K with basis ey,...,en.
The vector representation of U, on V is defined by

Eieiy1=¢€;, FEiej=0 j#i+1,
Fie; =eiy1, Fiej =0 j#1,
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ve; j = ’i,
Kiej=qvlen  j=i+1,
e;j JF# i1+ 1.
It is known that U, has a Hopf algebra structure with comultiplication A :
U, — U, ® U, given by

A(K;) = K; ® K,
AF)=FeK '+1®F,.

For a positive integer n, we consider the tensor space V™ on which UZ"
acts naturally. We define inductively an algebra homomorphism AR U, —
U%k by starting from A®) = A and by putting A®) = (A®-D @ id) o A for
each k > 3. By using A(™, one can define an action of U, on V&,

1.3. 1In [Ji], Jimbo constructed an action of H,, on V®"  commuting with
the action of Uy,(sl,,). Let us fix integers myq,...,m, such that » m; = m,
and consider a Levi subalgebra g = sl,,, @ --- @ sl,,, of sl,,. The action of H,
was extended by [SS] to the action of H,,, on V®" so that it commutes with
the action of the subalgebra U,(g) of U,(sl,,). We consider the decomposition
V =, V; with dim V; = m;. We assume that a basis {egk)} (1 <j <my) of
Vi is chosen for k =1,...,r, and that

() I N IS IS 1
gives the basis e1, ..., e, of V in this order. The construction of the action of

Hp,r on VO™ is given as follows. Let T' be the element in End(V ® V') defined
by

ve; Q e; if ¢ = j,

(1.3.1) T(e; ® ej) =4¢ ®e; if i > 7,
ej®e+(v—vle ®e; if i < j.

Next we define a map b : {1,2,...,m} — N by b(j) = k whenever e; € Vj.

Let wt : V' — V be a linear operator defined by wt(e;) = uy(;)e;. Let us define
linear operators, o, S on V®? as follows.

O'(Bi X 6]') = 6]' X €;,

T(ei X 6]') if b(l) = b(j),

S(e; ®ej) = {a(ei ® e)) if b(i) # b(j).
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Using these operators, we define operators T}, 04, S;,w; € EndV®" (2 < i <
n), (1 < j < n), by the condition,

T =id2 ™ oT ©1dS" ),
(1.3.2) i =1d5 Y 9o @idp ™Y,
S; =id2 P 98 @idd ",
w; =1V @ut @ idp"
We now define an operator T} on V" by
(1.3.3) Ty =Ty - T;bS, - Sowr.

Then it is shown in [SS, Th.3.2] that 7 : a; — T; (1 < i < n) gives rise to a
representation of H,,, on V&".

Let ~ : K — K be the unique Q-algebra involution such that o = v=!, 4; =
ui_l fori=1,...,r. We say that a map ¢ on a K vector space X is antilinear
if p(A\x) = Ap(x) for A € K,z € X. One can check by (1.1.1) that there
exists a unique antilinear Q-algebra automorphism a — a on H,, , such that
a; = ai_l (1 <i < n). We call this map the bar involution on H,, ..

1.4. Recall that H,, , has an alternative presentation given in [S, Th.3.7]
as follows. (However, we remark that this presentation only admits a special-
ization of the type ¢ : K — K’ | where K’ is a field such that ¢(&;) are all
distinct.) Hy, , is generated by {ag, ..., an, &1, ..., &}, subject to the following
relations.

(a; —v)(a; + v 1) =0 (2<i<n)
(§i—w)- (& —ur)=0 (1<i<n)
(1.4.1) a;air10; = i110;0i+1 (2<i<n)
aiaj = aja; (li—jl =2)
&i&j = &&i (1<i,j<n),

(142) a6 =& 1a;+ A7) (e, — te,) (v — v ) Fey (§-1) Feu (€)),

c1<co

(1.4.3) ajfj_l = fjaj — A2 Z (Ucz - uq)(v - U_I)Fcl (gj—l)Fcz (fj),

c1<co

(1.4.4) ajgk = §kaj (k’ ?é ] - 1aj)7

where A =[], ;(u; —u;) is the Vandermonde determinant with respect to the
parameters uy, ..., u,, and the sum in (1.4.2) or (1.4.3) is taken for all integers
1 < e¢y,¢90 <. For each integer 1 < ¢ <r, F.(X) is a certain polynomial in a
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variable X with coefficients in Z[u1, . .., u,|, defined in [S, 3.3.2]. Note that the
generators ao, . .., a, above may be identified with the generators appeared in
1.1.

Under the representation 7 : H,, , — End V™, the generator &; is mapped
to w; for each 1.

§2. Involutions associated to H, , and U,(sl,,)

2.1 The operator T in (1.3.1) has its origin in the study of the universal R-
matrix © attached to U,. Let E be the orthogonal complement of )" ¢; in the
Euclidean space R™ with the standard basis €1, ..., &,,. The root system ® of
sl,, is given by the set {e; —¢; | 1 < i # j < m} with ®T = {g; —¢; | i < j}.
Thus the root lattice Z® is given by the Z-submodule of E consisting of integral
vectors. Let (, ) be the inner product of R™. The weight lattice A is given
by the set of A € F such that (\,u) € Z for any p € ®. For 1 < i < m,
put & =¢; — % Z;n:l ej € A. Then ) & =0, and &; is a weight with weight
vector e;. The weight lattice A is identified with the set Z™/Z(1,...,1) by the
correspondence A\ = Y ¢;& < (c1,...,¢p). For a U,-module M, we denote by
M), the weight subspace of M corresponding to A € A.

Let U} (resp. U, ) be the subalgebra of U, generated by E;, K; (resp.
F;, K;), respectively. For each pu € Z®,u > 0, we denote by UJ,U__M the
weight subspace of U;X with respect to y or —pu, respectively. Then there exists
an element O, € UZ, ® Ul with Op = 1 ® 1, for each pu, and © =3_ ;0
(an element in a completion of U, ® U,, see [L, 4.1]) can be defined.

Let M and M’ be finite dimensional U,-modules. We fix an m-th root
v'/™ of v, and consider the extension field K (v'/™) of K. (Accordingly, we
regard U, as the algebra over K(v'/™) if needed). Following [Ja, 7.3, 7.9],

we introduce a linear map ¢’ € End M @ M’ (f in the notation of [Ja]). We
define a map f: A x A — K(v'/™)* by

FO ) = (@)
for all A\, u € A. Note that (A, u) € %Z. In particular, we have
(2.1.1) f(&i,&5) = vl/m0i,
Now (' is defined, for A\, u € A, by

C'lz®y)=fAmzey

for all z € M) and y € M,,.
The element © induces a well-defined map Oy € End M @ M'. Tt is
known ([Ja, Th. 7.3]) that the map Oy aC'oc : M' @ M — M ® M’ gives
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rise to an isomorphism of U,-modules, where o : M’ @ M — M ® M’ is the
permutation of factors.

2.2 The bar involution on K can be extended obviously to an involution
on K (v"/™). The bar involution ~ on U, is an antilinear Q-algebra automor-
phism on U, defined on the generators by

E;=E;, F;=F, K=K

The bar involution is extended to U, @ U, by 7@ y = Z®7%. Let @ = “0Oo~
be the bar conjugate of ©. Then it is known by [L, 4.1] that 60 =1 ® 1.

We consider the special case where M = M’ = V. and write Oyy €
End(V ® V) simply as ©. Then as is well-known (cf. [FKK, Prop. 2.1]), we
have

(2.2.1) (OC'o)t = v t/mr,

More precisely, the action of C' and © = Y- 60, on V ® V are described as
follows. Since e; € V is a weight vector with weight &; € A, by the property
of ©, (cf. [Ja, Chap. 7]), we have

(v —v)ej®e; if p=¢e; —ej with i < j,
(222) Ouei®ej) =1(e ®e; if p=0,
0 otherwise.

It follows that

€i®€j ifiZj,
e ®e;j—(v—vl)e; @ e iti <.

(2.2.3) Ole; ®ej) = {

Put C' = v~'/™C’. Then by (2.1.1), we have

e ® €; 1 75 j,
vl ® €j 1= 7.

(2.2.4) Clei®ej) = {

We define an antilinear involution 1 on V®" inductively as follows: First
define 1 on V by

?ﬁ(z cie;) = Z Ci€;.

Next let W1, W5 be tensor powers of V', and assume that the involutions ¢ on
W1, Wy are already defined. We define v on W7 ® Wy by

PY(w1 @ wa) = O(YP(wr) @ Y(w2)).
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Then it is shown in [L, 4.2.4, 27.3.6] that ¢ on V®" does not depend on the
decomposition V" = W; ® Ws, and it is compatible with the U,-module
structure of V®™ in the following sense: ¥(uz) = u(z) for u € U,z € V™.

In [FKK], Frenkel, Khovanov and Kirillov studied the relationship between
Kazhdan-Lusztig basis of H,, and canonical basis of U, by making use of the
H,, @ U,-module V™, In particular, they showed

Proposition 2.3 ([FKK, Prop. 2.4]). The bar involution of H,, is compat-
ible with the involution 1 on V®", i.e., for any a € H,, we have

Yoa=ao.

The main objective in this section is to extend this result to the case of
H,, . We shall show that

Theorem 2.4. The bar involution on H, , is compatible with the involution
Y on V" e, for any a € Hy,,, we have

(2.4.1) Yoa==ao.

2.5. The remainder of this section is devoted to the proof of Theorem
2.4. We denote by ey with I = (iy,...,i,) the vector ¢;, ® --- @ ¢;, of V&,
Hence {e; | I € [1,m|"} gives a basis of V®". (Here [1,m]| means the set
{1,2,...,m}). The symmetric group &,, acts on [1,m]™ by permuting the
factors, compatible with the action on V®" ie. o(e;) = e,; for 0 € &,,. If
we denote by m(i) the multiplicity of ¢ occurring in I = (41,...,4,), then es
is a weight vector of U,-module V" with weight >, my()&;.

We define an antilinear involution = on V®" by 7 = screr for v =
EI cier. Let U; be a linear map on V®" defined by

v, = (A ®1)0) @ 19070,
Then it follows from the definition that the involution ¢ can be expressed as
(2.5.1) Y=U,V, 1---¥yo .

In order to describe the involution 1, first we shall concentrate on the
map ¥, = (A(”_l) ® 1)©. We prepare some notation. By z — z;;, we denote
the embedding U®? — U®" subject to the i-th and j-th factors, i.e., for
z=a®belU,®U,, we put

Zij =1 QT Qxyp

with x; = a,z; = b and x = 1 for k # 4, .
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For o, 8 € Z® with o > 3 > 0, we define Xéﬁ € UZ" by
(252) X.5=(01°"D @K @1°0)(O0 p)nin (2<i<n-—1),

where K, = [[K;" if a = Y ., mi(e; — i41). The following lemma is a
generalization of [J, Lemma 7.4]. The proof is reduced to the case n = 3 by
making use of the relation A™ @ 1 = (A ® 12~D)(A=1) © 1) (note that
this relation is different from the defining relation for A in 1.2). The case
n = 3 follows from Lemma 7.4 in [J].

Lemma 2.6. For all p € Z® with > 0, we have
(A(n_l) ® 1)QM = Z(QM—VI)TL_L”X'%LVQ e Xgn_—lzﬂ/n—l’

where the sum is taken over all the sequences > vy > -+ > vp_1 = 0 such
that v; € Z.®.

2.7.  We shall describe ¥,, = (A™®D @ 1)0. For I = (i1,...,in), let
(M, ...,mn) be the sequence defined by 7, = ¢;,. Let us define a linear map
Q}in on Ve fork=1,...,n—1, by

# cr if Zk 2 /I:na
Qk,n(el) = — (=N M1+ FNn—1) (1, —1 g .
er -+ v~ Uk Mk+1 =1 (™ —v)ep if i, < ip,

where I' = (k,n)I. (In the case where k = n — 1, we understand that the
inner product in the second formula is equal to 0).
We have the following lemma.

Lemma 2.8. As operators on VE", we have

(2.8.1) (AN g1e=e6_ &

n—1,n~"n—2mn

. Qg,n'

Proof. First we compute Xg_ﬁk(el) for I = (i1,...,iy). By (2.2.2) and (2.5.2),
we see that

(2.8.2)

2)_(‘3”7k+1)(11_1 —v)ey ifa—0=m—n,>0and i < i,
Xoger) = qum@mae, if o =p,

0 otherwise,

with I’ = (k,n)I.

Next we compute (A=Y @ 1)O(e;). For a fixed I = (iy,...,in), let
Pr be the set of subsets p = {p1 < -+ < pi} of {1,...,n — 1} such that
ipy < o0 <lpy <ip, <. Weput k= |p|. For pe Py, let

I(p) = (pk:n) -~ (p2, ) (pr,n)I = (n,p1,p2; - pi) 1.
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Then it follows from Lemma 2.6 and (2.8.2) that
(A(”_l) ®1)O(er) = Z v_cp(v_1 — v)‘p|el(p),
PEPr

where

Cp = (77171 = My Mpy+1 + -+ -+ 77]72)
+ (77;02 = Tins Tipa+1 +eee 77173)

On the other hand, the right hand side of (2.8.1) is easily computed. We have

@g—l,ngi—ln e ng(@]) = Z v (U_l - v)|p|el(p)
pPEPr

with

dp = (77p1 — M Mpy+1 + -+ -+ 77n—1)
+ (npz — Tlp1y Tlp2+1 + -+ nn—l)

But then we have

k

dp = Z(npjunpj-i-l 4+ 77pj+1) - (77n777p1+1 + -+ 77n—1)7
j=1

where we use the convention that pj; = n — 1. This implies that ¢, = dj, for
any p € Pr, and the lemma follows. O

2.9. For a fixed 1 < 4,57 < n with ¢ # j, we define an embedding
EndV®? — EndV®" z + x;j, in a similar way as in 2.5; x;; denotes the
transformation on V®" which acts on i-th and j-th factors of V®" via the
map x, and acts trivially on other factors. Then it is easy to see for any
o € G, that

(2.9.1) aajija_l = To(i)o(5)-

In later discussions, we consider the operators ©;;,C;;, T;;, S;; for ©,C,T, S €
End V®2, respectively. In particular, we note that Ti—1,;=T; (vesp. Si—1; =
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S;) fori = 2,...,n in the notation of (1.3.2). We also note that ©;_1; = o

i—1,i
by (2.2.3) and 2.7. However, @gj does not mean the embedding in general.
Let @ﬁj be the linear transformation on V" defined by @gj ="o @fj o,

Then éﬁj coincides with the map defined in 2.7, but by replacing v by v~1.
The bar operation on V®? is compatible with the bar operation on ©. It

follows that @ij =~ 06;j 0. The following relations are easily verified.
Towjo = wi_l,

(2.9.2) “oCio” =C,
“oTijo” =T;;,
ToSjj0 =551

For a pair k,n such that 1 <k <n —1, we put
Dk’,n = Uk,nck,nck+1,n te Cn—l,na

where o}, , denotes the cyclic permutation (k,k + 1,...,n). We have the
following lemma.

Lemma 2.10. For1 <k <n—1, we have
(2.10.1) @i,n@i,n_l = -@i,kﬂ =D pnTnTn—1-Tit1.

Proof. First consider the case where k = n — 1. It follows from (2.2.1) that we
have

(2.10.2) T = (n—1,n)C; 1,051
since ©0 = 1 and O,,_1, = @EL—Ln‘ Since Dyp—1 = (n — 1,n)Cp_1, =

i

Cr-1n(n—1,n), we have 6,_; ,

Next we show that

= D1, as asserted.

(2.10.3) 6 Din1 = DTy for1<k<n-—2
By (2.9.1) we have

(Tl -1, n)Ck,an—l—l,n T Cn—l,nTn
= Ck:,n—lck’-i-l,n—l ce Cn—Q,n—ICn—l,n(n -1, n)Tn

=i
= Crn-1Ck+1,n-1" " Cn—27n-10,_1 -

The last formula follows from (2.10.2). In order to show (2.10.3), we have only
to check that

@k;,no'k,n—lck,n—l T C'n—2,n—1 = Uk,n—lck,n—l T Cn—2,n—18n—1,n-
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It is easy to evaluate the maps on both sides at e;. For ey with I = (i1,...,1y),
they have the common values

U_(nk+77k+1+"'+77n72777n71)eI/

if 4,1 > ,, and
v_(nk+77k+1+"'+77n72777n71)61, + v_(ﬂk+77k+1+"'+77n72777n)(U _ v—l)epl

if 41 < i, with I' = oy 11 and I” = oy, I'. This proves (2.10.3).
Now the lemma is immediate by substituting @i,i = Dk,iTiD,;}_l for

i > k+2 by (2.10.3), and @,ﬁcykﬂ = Dy j+1Tk+1 into the left hand side of
(2.10.1). O

By using Lemma 2.10, we can describe the involution v as follows.

Proposition 2.11. Let op = (1,n)(2,n —1)--- be the longest length element
mn S, and put

c= I ¢
1<i<j<n
(Note that the operators Ci; commute with each other). Then we have
¥ ="000CTo(T5Ts) - (TyTh_1- - T).
Proof. By (2.5.1) and Lemma 2.8, we have (cf. 2.9)

“oy="0(6h_ 6 '“@ﬁ,n)(@fz—ln—l@i—&n—l e @g,n—l) e (9§2) o~

n—1ln~"n—-2mn

= (@i—l,n@i—ln e éﬁ,n)(@i—ln—léfl—&n—l e éﬁ,n—l) e (@tiQ)

It is clear that @gj and @g/j/ commute with each other when {7, j}n{#,j'} = 0.
Hence we have

“o¢p= (8, ,)(@ 5,0 ) (65,05 ,_1 - Bly)

n—1,n n—2n~n—2n—1
— (Dn—l,nTn)(Dn—2,nTnTn—1) e (Dl,nTnTn—l ce TQ)a
where the second equality follows from Lemma 2.10. By definition of D;;, and
by using (2.9.1), the last formula is modified to
(2.11.1)
T ot = 09(C12T2)(Ci3C28T5T) - - - (CinCop - - - Crmi I Tr—1 - - - T3).

Here we note that
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(2.11.2) The product C} ;Ca, - - - Cx—1 1 commutes with T5, T3, ..., Tj_.

In fact, (2.11.2) is reduced to showing that C,_; ;,C,  commutes with T,
and this follows from the fact that C,_; ,C, . acts on the subspace of yen
generated by ey and e(,_1 q); by a scalar multiplication v~ (a—1+0:7k)

Now, by using (2.11.2), (2.11.1) is further modified to

Toy =09 [[Cij - To(TsTa) -+ (T - - Th).
1<j
This proves the proposition. O
2.12. We now proceed to the proof of Theorem 2.4. For the proof, it is
enough to show (2.4.1) for the generators aq,...,a,. By Proposition 2.3, we

know already that (2.4.1) holds for ag, ..., a,. So, we have only to show it for
ai, i.e., to show that

(2.12.1) YTy =Ty M.

We shall show (2.12.1). Let C = [1Ci; be as in Proposition 2.11. First we
note that

(2.12.2) C commutes with Tij, Sij, o for any i # j and any o € &,,.

In fact, let VI®” be the subspace of V®" generated by {e,; | 0 € &,,} for

a fixed I = (i1,...,%,). Then C acts on VI®” as a scalar multiplication by v—¢
with ¢ =37, _;(mi,n;). (2.12.2) follows from this.
By definition (1.3.3) and Proposition 2.11, we can write

(2.12.3)
OTy = Zw;  with Z =~ 000CTo(T5Ts) -+ (Ta—1 - T5)SnSn1 - - - Sa.

We show that
(2.12.4) Z=2z"
In fact, by (2.9.2), (2.9.1) and (2.12.2), we have

Z7'="0(891832 Spn-1)(To1Ts2 - Tn—1n2) - (T Ts2) T Corg
=0 Uoé(SnSn—l T 52)(TnTn—1 te T3) T (TnTn—l)Tn

It is known by [SS, Lemma 3.8] that

(2'12'5) (SnSn—l e S2)T] = Tj_1(SnSn_1 cee Sg)
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for j =3,...,n. Therefore we have
72V ="000C(Tp1 - To) (Tao1Tp-2)Tp-1(Sp - - Sa).
Now by using the relations
(Th1Th2 - Tho)li =T (T Th2 - Tna)

for ¢ > n — a + 1, which follows from the braid relations of H,, it is easy to
see that

(Tn—l - T2) - (Tn—1Tn—2)Tn—1 = TQ(TgTQ) .. (Tn—l - T2)_

Hence (2.12.4) holds.
Since v is an involution, by using (2.12.4), we have

T =@wnh) =wtZz7 =w'Z.

Hence to prove (2.12.1), it is enough to show that w;'Z = Zw;. Note that

aowlao_l = w, and that w, commutes with C' and T5,...,T,_1. Thus, by
(2.9.2), we have

(2.12.6) wi'Z = 00oCTo(TsTy) - (Ty_1 -+ To)wn(Sn - -+ S2).
Here we note the following formula.
(2127) wiSZ- = Siwi_l for i = 2, ey n.

In fact, it is enough to see the formula for the case where n = i = 2, and
S; = S. Now wp and w; act as a (common) scalar multiplication on e; ® ey
and e ® e; if b(j) = b(k). S permutes e; ® e, and e, ® e; if b(j) # b(k).
(2.12.7) follows easily from these facts.

Now by applying (2.12.7), we have w,(Sy, ---S2) = (Sp -+ S2)wi. Hence
(2.12.6) implies that w;'Z = Zwy, and (2.12.1) holds. The theorem is proved.

2.13. By making use of Theorem 2.4, combined with Proposition 2.11,
one can describe the bar involution for generators {ag,...,an,&1,...,&} of
H,,» given in 1.4.

Proposition 2.14. Let {as,...,an,&1,...,&} be the generators of H,» given
in 1.4, and put x = ag(asaz) - - (apan—1---a2). Then we have
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Proof. 1t is enough to show the formula for £;. By Theorem 2.4, we have
w; =t owj o).

Note that " owjo ™ = wj_l, Oow;joy = Wp—j+1, and that w; commutes with C.

Then by Proposition 2.11, we see that

1p_1 owjoh = X_lw;ij_HX
with X = T5(T3T%) - - - (T, T—1 - - - T»). Since the representation 7 is faithful if
we choose my > n for k=1,...,r, and since 7(¢;) = wj, 7(x) = X, this gives
the required formula for §;. O

§3. Kazhdan-Lusztig basis and Canonical basis

3.1. Let W be a Weyl group with a set of generators S. We denote by H the
Hecke algebra associated to W. It is an associative algebra over Q(v) defined
by generators as (s € S) and relations

(3.1.1) (as —v)(as +v7 ) =0

together with usual braid relations. H has a basis {a, | w € W}, where
Ay = ag, +* - ag, for a reduced expression w = s1 - s4.

For any subset J of S, we denote by W the parabolic subgroup in W
generated by s € J. Let WY be the set of distinguished representatives in
W/W ;. Hence W+ is the set of minimal elements w in wW; with respect to
the length [(w) of W. Let H; be the the subalgebra of H generated by as
with s € J. Then H is isomorphic to the Hecke algebra of W;. Let ¢ be a
homomorphism from H to Q(v) defined by as — v for any s € S. We denote
by @ the restriction of ¢ on H ;. Let M; be the induced H-module Ind%} 0.
Then by Deodhar [D], it is known that M has a basis {m,, | w € W’} with
the following properties,

M + (V=07 )My, if I(sw) < l(w),
(3.1.2)  asmy = < Mgy if [(sw) > l(w),sw € W,
VM if 1(sw) > l(w),sw ¢ W,

and a,mi = my, for an identity element 1 € W and w € W+7. Note that
w € WY and I(sw) < I(w) imply that sw € W.

Let us define a bar involution on H by 7 = v~! and @s = a;! as in 1.3.
We also define a bar involution on Mj; by the condition that m. = m, and

1
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that hm = hm for h € H, m € M. Let < be the partial order on W+ induced
from the Bruhat order on W. The Kazhdan-Lusztig basis {C; | w € W7} of
M was introduced by Kazhdan-Lusztig [KL] for My ~ H, and then extended
by Deodhar [D] to the case M;. They are characterized by the following two

properties.

(3.1.3) Clemy+ Y v 'Zvm,
zeWJ
r<w

(3.1.4) cl=c.

The parabolic Kazhdan-Lusztig polynomial Pg;{ w € Zlq] is defined, follow-
ing Deodhar, in terms of the coefficient p, ., of m, in the expression of C;ﬂ] as
follows.

pew = ¢ TVEPT (q)  withw =g

Note that in [KL], [D], H is defined by the quadratic relation (T5—q)(7s+1)
for an indeterminate ¢ instead of (3.1.1). Then the relationship with our
situation is given as follows; v = ¢ /2, and our ay corresponds to —vT}
in their setup. In particular, our C corresponds to (—1)"?)C?7 under the
notation of [KL], [D], and our m,, corresponds to (—v)"®)m,, of [D].

3.2. For z,w € W’ such that 2 < w, we denote by u(z,w) the coefficient
of ¢tw)=lx)=1)/2 iy, Pg;{w(q). Note that deg Pg‘iw < 3(l(w)—l(z)—1). Let s € S

be such that I(sw) < l(w) for w € W7. Then C;} is determined inductively,
with respect to the Bruhat order, by

321)  Cl=(a+0v 0L, - > (=)W u(y,sw)C;)

yew’ y<sw
sy<y or sygw’

Now the action of as on Czi is given as follows; for s € S and w € W,

_U_lczi + ng - Z (_l)l(w)_l(x):u(yv w)ngv

J _ <
(322) agcw - sy<y :(l/)r ,;UyQWJ
vC,

where the first equality occurs when sw > w and sw € W, and the second
occurs when sw < w or sw ¢ W, In fact, (3.2.2) can be shown as in a similar
way in [KL, 2.3] once we know that

(3.2.3) asCl =vC?  if sw > w and sw g W,
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We show (3.2.3). By comparing the coefficients of m,, on both sides, we
see that (3.2.3) is equivalent to the identities,
(3.2.4) Pl,=Pl, ifszew’

sT,W

(Note that sz € W if sz <  and 2 € W). Since we are in a setting u = —1
in the notation of [D], we have by [D, Prop. 3.4],

(3.2.5) Pg}],w = Prw;ww,

for x,w € W, where wy is the longest element in W, and P, , is the original
Kazhdan-Lusztig polynomial for W. By our assumption, sw > w and sw ¢
W+. Then there exists s’ € Wy such that sw = ws’ (e.g., [H, Lemma 7.2]),
and we have sww; < wwy. It follows that a;Cyy, = vCyy, by [KL, 2.3] (Cy
is a Kazhdan-Lusztig basis for H). This induces similar identities for Py, ww,
and Psgy ; ww, as in (3.2.4). Now (3.2.4) follows from these identities in view
of (3.2.5).

3.3. We assume that W ~ &,,, and consider the U, ® H,-module
V@ The weights of U, on V" are given by A = (A1, -+, \p) € Z7, with
>~ Xi = n. The weight subspace V,.*" has a basis {e;}, with I = (i1,...,in)
such that f{a | i, = k} = A\g. The involution ¢ on V™ stabilizes the subspace
V)\®”. Moreover V)\®" is an H,,-submodule of V®" generated by a single element
er,, where

(3.3.1) Iy=(m,...,m,...,1,... 1).
—— ~——
Am —times A1 —times

Let G\ ~ G,,, X --- x 6), be the stabilizer of I in &,. Then &, is a
parabolic subgroup W; of G,,, and we denote by H ), the parabolic subalgebra
‘Hj corresponding to &,. It is easy to see that H,,-module V)\®” is isomorphic
to My = Ind%;‘ ®.

Recall that {e; | I € [1,m]"} is the basis of V®" which we call the
standard basis of V®". The canonical basis {b; | I € [1,m]"} of U,-module
V@™ is characterized by the following two properties ([L, Chap. 27]).

(3.3.2) breer+ Z’U_IZ[U_I]ep,
I/

Y(br) = by,

where the sum in the first formula is taken over all I’ having the same weight
as I.

It is shown in [FKK] that the map f : m, — ey(;,) gives an isomorphism
My ~ V)\®”, which transfers the bar involution on M to the involution 3 on
V#". We identify M; with V.
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We define a partial order I < I’ on [1,m]™ as the transitive closure of the
relation

(coosay.yby o)< (biaybyya,. ) ifa >b.
Then we have the following.

Lemma 3.4. Let 0,7 € &, and assume that o < 7. Then we have o(Iy) <
T(Iy).

Proof. The proof is reduced to the case where 7 = os with a (not necessarily
simple) reflection s € &,,. So we assume that s is a transposition (p,q) with
1 < p < g <n. Then it is easy to check that o~!(p) < o7 1(q) if I(c7!) <
I(so™1). If we write I = (i1,...,i,), we have

O'(I)\) = ( - ,ia—1(p), RN ,ia—l(q),. .. ), O’S(IA) = ( .. ,ia—l(q),. .. ,ia—l(p), RN )

Now by (3.3.1) and by our assumption, we have i,-1(4) < i5-1(p). The lemma
follows from this. O

The following special case is worth mentioning.

Lemma 3.5 ([FKK, Lemma 2.1]). Let 0 € W’ and s € S be a transposi-
tion (i,i+1). Let a and b be i-th and (i + 1)-th entries of o(Iy), respectively.
Then we have

ifa>b, thenso>o and soc € W,

ifa="b, thensoc>a andsoc g W,

ifa <b, then so <o.

The following result shows that the Kazhdan-Lusztig basis is obtained as
a special case of the canonical basis of V",

Theorem 3.6 ([FKK, Th. 2.5]). Assume that W ~ &,,. Then, under the
identification My ~ V)\®”, we have for each o € W,

O(;] == bU(IA) .

Combining Theorem 3.6 with Lemma 3.4, we have the following refinement
of (3.3.2).

Corollary 3.7. Under the above notation, we have

br €er+ Z v Z[v ey
I'<I
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The following corollary is also immediate from (3.2.2), Lemma 3.5 and
Theorem 3.6.

Corollary 3.8. Let s = (a,a+1) be a transposition. Then for I = (i1,...,i,),
we have

Tsby = vbr  if iq <idgy1-

§4. M, ,-submodules of V®"

4.1. We now return to the setup in section 1, and assume that W = W,, ..
We consider the H,, ,-module V®" with the graded vector space V = @’Zle Vi

as before. We prepare some notation in addition to 3.1. Let S = {s1,...,s,}
be the set of generators of W, ., where t; = s; has order r, and s»,...,s,
are generators of &,, corresponding to transposition (1,2),...,(n —1,n). We

define t; € Wy, by t; = s;---sat182---s; forit =2,...,n. Thenty,...,t, gives
rise to a set of generators of the group (Z/rZ)™.
The basis vector of V®" is given by ey with I = (i1,...,4,) as before.

By 1.3, ey can also be written as eg-fl) Q- ® eg-i"). In this case, we write

Ias I = (jfl), . ,j,(f")). The weight A of U, on V®" is expressed as A =
(A1,-..,Am) as in 3.3. In our situation, I determines a multi-composition A =
AD, A0, with A® = (AP AR)) € 2%, such that 30, AN = n;
the correspondence is given by )\gk) =t{a | jo = j,ea = k}. If one ignores the
superscripts of )\gk), A reduces to A. We call X the weight of e;. We denote

by Vf@“ the subspace of V®" generated by e; whose weight is A. It is easy
to check that the action of H, , on V@n stabilizes the subspace Vf@". For the
weight A, put

(k) (k)

(4.1.1) ew=ell g . ele oo w6
AlR) —times AR _times

and define a vector ey € V/?" by

(4.1.2) ex =€y Veyr-1) Q- Qeyaq.

The stabilizer of ey in &,, is isomorphic to

G =6, X Gy p-1) X -+ X Gy
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with &) = 6)\57,:]1 X - X GAgk)' We define a subgroup Wy of W, , by
Wy =6 % (Z/rZ)", ie.,

Wi = Wyoy X Wye—1) X -+« X Wy
with Wyx) = W)\g:})c,r X eee X W)\gk)m. Let Hx be the Ariki-Koike algebra
associated to Wy, i.e.,
(4.1.3) Hx =Hyom @ Hye-1) @ -+ @ Hy
with Hyw = HAS:;,T Q- ® H)\gk)m. One can regard Hy as a subalgebra of

Hp» in a natural way, by making use of generators {{i,...,§,} as discussed
in [S, 4.2]. (For example, if a + b = n, then H,, ® Hp, — Hy,r, where Hg
(resp. Hp,) is the subalgebra of H,, , generated by sa,...,54,&1,...,&, (resp.
Sat2y -+ SnyEat1s- -+ En), TESPECtively.)

We can define a linear character cp,(lk) : Hpyr — K by

P(a)=v  (2<i<n),

o) =w (1<j<n)
k k
(cf. [S, (3.3.3), 5.2]), and define @ &) : Hyx) — K by oy = (p;g)f,l - - ~®g0§\§2€).
Then we define a linear character ¢y : Hy — K by
(4.1.4) PA =P @ Ppe-1) © - @ Py

according to the embedding into H,, given in (4.1.3). Put V> = M. Then
we have the following result.

Proposition 4.2. Let the notations be as above.

(i) My is generated by ex as Hy .-module, and we have
Hn 7
My = ’Hn,rek ~ IndHA’ ©x
as Hy r-modules.

(ii) Mx has a basis {e,} indeved by the set & (here we regard Gy as a
parabolic subgroup (Sy); of 6,). The action of H,, on this basis is
given as follows:

eso + (v —v" Ve, if l(so) < (o),
sy = § €so if I(so) > 1(0),s0 € &,
vey if l(so) > 1(0),s0 ¢ &7,
gjea' = Ug(j,0)€0)
where e(j,0) € {1,...,r} is given as follows; write ex = ey as in 4.1,

and put £(j,0) = ¢; for o(I) = (™), 5.
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(iii) There ezists an involution ~ : My — My satisfying the property that
hm = hm for h € Hy,m € My, and that e, = e, for o = 1.

Proof. Let X\ be the weight of ey as U,-module. Then M} coincides with V)\®”
and ey is nothing but e, given in (3.3.1). Then by [FKK, Prop. 2.1], V,&"
is generated by ej, as H,-module, and is isomorphic to M; as in 3.3, for a
parabolic subgroup 6, = 6;{. In particular, we see that My = H,, ,ex, and
that

dim V" = |&;)] = dim Ind};"" px.

Since it is easy to see that Key is a one-dimensional Hy-module affording ¢y,
the first assertion follows.

Now we define a basis {e, | ¢ € &/} in My by using the basis {m,} in
M. Then we have e, = m, = e,(1,) by [FKK]. The first three formula in (ii)
now follows from (3.1.2). The last formula in (ii) follows by considering the
action of wj on ey(r,) € yen,

The involution ¢ on V®" stabilizes the subspace Vf@”. We define the bar
involution =~ on M) = V/?” in terms of 9. Then we have hm = him by Theorem
2.4. Since 1(ex) = ex, we have é; = e;. The proposition is proved. O

The following result is an analogue to the case of H, , of the result of
Frenkel, Khovanov and Kirillov (cf. Theorem 3.6) concerning the Kazhdan-
Lusztig basis of H,, and canonical basis of U,, and also of the parabolic
Kazhdan-Lusztig basis of Deodhar (cf. 3.1). But note that Hy is no longer a
parabolic subalgebra of H,, ;.

Theorem 4.3. Let My ~ Ind%i”“ ©x be the induced H,, ,.-module. Then there
exists a unique basis {by | 0 € &} in My satisfying the following properties.

by € €5 + Z U_IZ[’U_I]eT,

TEG]
T<0

The coefficient pr, of er in the expression of by is given by the parabolic
Kazhdan-Lusztig polynomial for the case of &) C &,, just as in 3.1.

Proof. By Theorem 3.6, canonical basis {by(1,) | o € &} gives rise to a basis
of V", which corresponds to the parabolic Kazhdan-Lusztig basis {C} in
M. Hence, if we define the basis {by} in Mx = V™ in terms of {by(;,)}, the
assertions in the theorem follow from 3.1 and Proposition 4.2. U
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4.4. We now pass to a more general situation. Take an integer ¢ > 0
such that ¢t < my, for k = 1,...,r. Let A = (AW, ... A")) be an r-tuple
of compositions as in 4.1, but here we assume that \*) = @ for k # r,
and that A\ = (A,E’Ql,...,A,(J;Z) € Z’gg_t. We consider a pair (A;c), with

¢ = (c1,...,¢) € ZL a composition such that ik )\gk) +> ¢ =n We
put ¢ = > ¢;. We denote by My . the subspace of V& generated by e
with I = (jial),...,jﬁfn)) such that )\§7~) = #{a | jo = j,ea = r} and that
¢ = #H{a | jo = i}. Then My is a direct sum of various weight spaces
V& and so has a structure of H, r-module. The decomposition of M)y . into
V& is described more precisely as follows. Let v be a pair (A;u), where
A is as above, and p = (,u(l), e ,u(r)) is an r-tuples of compositions ,u(k) =
(,ugk), e ,ugk)) € Z4, such that >, _, ,LLZ(.k) = ¢; for 1 < i < t. We denote by
Pxc the set of such v = (A;u). Note that v can be written, by rearrang-
ing the entries, as (v, ... v with v(") = (,ugr), e ,,ul(f), )\g_)l, . ,)\,(72),

and v®) = ( gk), . ,;é’“’,o, ...,0) for k # r. Hence it determines an H,, ,-
subspace V™. Tt is easy to check that

Mye= € v

VvEPH ¢

We shall investigate the H,, ,-module structure of My . For each v € Py ,
we define ¥ € VI by e = ey ® e¥, where ey = e, is defined just as in
(4.1.1), by restricting the factors in between eﬁ,ﬁi and egi)l. et € V¢ is defined

by et =F ® Fr ® --- ® E;, with

) . (r) .
(4.4.1) Ei= (D, )m @@, ) evee,

Now e¥ can be written as e¥ = e; for some I, and we denote by b” the

canonical basis by € V2" corresponding to e;. We define mxc € Mxc by

(4.4.2) Mac= » W
I/E'PA,C
We define a subalgebra Hy ¢ of Hy, » by Hac = HA®Hc, where Hy = H )
is defined as in (4.1.3), by modifying the definition of H, appropriately, and
H is defined by

(4.4.3) He=He, @ @ He,.

(Remember that H; is the Iwahori-Hecke algebra of type A;_1). We define a
linear character ¢y ¢ of Hxc by ¥ac = @ ® ¢c, Wwhere p = ¢, is given as
in (4.1.4). pc is given by @e = pe, @ -+ ® ¢, Where @, is the linear character
of 'H,, defined by ¢y, (a;) = v for all generators a;.

Under these notations, we have the following result.
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Proposition 4.5. M) . is generated by mx ¢ as Hy, ,-module, and we have

Hn,’l‘
MA,C = Hn,rmk,c = Ind')-{)\ < Pre ¢(m>\,c) =MmMxc-

Proof. 1t is clear that my  is fixed by . We show the first two equalities.
First we note that

(4.5.1) hmxec = prc(h)mre for h € Hxe.

In fact to show (4.5.1), it is enough to see, for each v € Py ¢, that

14 f
. {QDA(h)b if h € Ha,

(4.5.2) :
(MW’ ifh € He.

We show (4.5.2). In view of (4.4.1) and Corollary 3.8, we see that a;b” =
vb” for all generators a; € H,,. This implies the second equality in (4.5.2).
Next we consider the first equality. By (modified form of) (4.1.1), (4.1.2), to-
gether with (4.4.1), we see that e¥ = ey, where I is of the form I = (iy,...,1iy)
with 41 > 49 > -+ > i,_¢, and with 4,,_. > i for all c+ 1 < k <n. Then by
Corollary 3.7, b¥ is written as a linear combination of ey, where e is of the
form ey ® e”, for some e* € V®¢. Then as in the case of Proposition 4.2, one
can check that hey = px(h)ep for h € Hx. The first equality follows from
this, and so (4.5.2) holds.

Next we show that

(4.5.3) M = HprMa -

Let ¢ be a primitive r-th root of unity. By the specialization v — 1,u; — (',
H,,r turns out to be the group algebra CW,, ,.. (Note that in order to apply the
specialization argument, one has to replace H,, , by its “integral form” defined
over a subring Ry = Z[v,v" ! uy,...,u., A71] of K asin [S, 3.6]. Accordingly
one needs to replace V by its Ri-lattice with basis e;. All the ingredients up
to now make sense for this setup, and we use them freely without referring Ry
in the discussion below.)

Let V = @Vi be the C-vector space with dimV; = m;. We denote
by {ég-l)} the basis of V;. Then the H, ~module V®" is specialized to the
CW,, -module Ve Let t; be asin 4.1. Then the action of ¢; on V" s given
by t;e; = (%iey for I = (jfl), - ,j