
SUT Journal of Mathematics
Vol. 38, No. 2 (2002), 145–173
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Abstract. Frenkel, Khovanov and Kirillov showed that the parabolic
Kazhdan-Lusztig basis of Iwahori-Hecke algebra associated to �n can be ob-
tained as the canonical basis of a weight subspace of V ⊗n, where V is the vector
representation of the quantum group Uv(��m). In this paper, a similar problem
for the case of Ariki-Koike algebra Hn,r is discussed. We construct a certain
basis of Hn,r, which is fixed by the involution and is closely related to the
canonical basis of V ⊗n, by making use of the representation of Hn,r on V ⊗n.
In the case where r = 2, i.e., in the case of Iwahori-Hecke algebra of type Bn,
this gives a basis different from the Kazhdan-Lusztig basis of Hn,r.
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§0. Introduction

Let Uv = Uv(slm) be the quantum group associated to the Lie algebra slm,
and V the vector representation of Uv. Let Hn be the Iwahori-Hecke algebra
associated to the symmetric group Sn. Then the n-fold tensor space V ⊗n
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turns out to be a Uv ⊗Hn-module. Each weight subspace V ⊗n
λ of V ⊗n is Hn-

stable, and is naturally isomorphic to an induced module MJ from a linear
representation of some parabolic subalgebra HJ of Hn. A parabolic Kazhdan-
Lusztig basis on MJ was defined by Deodhar [D], by generalizing the notion
of Kazhdan-Lusztig basis of Hn introduced by Kazhdan and Lusztig [KL].

The notion of canonical basis for highest weight modules of Uv was in-
troduced by Lusztig [L], which is a union of canonical bases for each weight
subspace. In the case of highest weight module V ⊗n, Frenkel, Khovanov and
Kirillov [FKK] showed that the canonical basis of the weight subspace V ⊗n

λ

coincides with the Kazhdan-Lusztig basis of MJ under the above isomorphism.
Note that Hn has a standard basis {Tσ | σ ∈ Sn}, and the Kazhdan-Lusztig
basis of Hn is characterized by the property that the transition matrix between
this basis and the standard basis is of the unitriangular shape, and that it is
fixed by a certain involution on Hn, called the bar involution. In turn, V ⊗n

has also a standard basis consisting of the tensor product of the given basis
of V , and the canonical basis on V ⊗n is characterized by a certain involution
ψ on it, together with some additional property related to the standard basis.
The important step for proving the result in [FKK] is to show that these two
involutions coincide with under the isomorphism MJ � V ⊗n

λ .
Let Wn,r be the complex reflection group Sn � (Z/rZ)n, and Hn,r the

associated cyclotomic Hecke algebra, i.e., the Ariki-Koike algebra associated
to Wn,r. In the case where r = 1, Hn,r � Hn, and Hn,r is isomorphic to the
Iwahori-Hecke algebra of type Bn if r = 2. Hn,r contains Hn as a subalgebra,
and in [SS] the action of Hn on V ⊗n was extended to the action of Hn,r. Each
weight space V ⊗n is again Hn,r-stable. The aim of this paper is to extend
the result of [FKK] to the case of certain induced Hn,r-modules. One of our
main results is Theorem 2.4, which asserts that the bar involution of Hn,r is
compatible with the involution ψ on V ⊗n. By making use of this fact, one
can show, in Theorem 4.3, that the weight subspace V ⊗n

λ is isomorphic to an
Hn,r-module MJ induced from a “non-parabolic” subalgebra HJ of Hn,r, and
that the canonical basis of V ⊗n

λ determines a basis of MJ fixed by the bar
involution of Hn,r. This may be regarded as a non-parabolic analogue of the
result of [FKK].

However, if one focuses on the Hn,r-moduleMJ induced from the parabolic
subalgebra HJ of Hn,r, for example Hn,r itself, the situation is much more
complicated. There is no natural notion of standard basis nor Kazhdan-Lusztig
basis of Hn,r for r > 2. Moreover, MJ turns out to be a direct sum of various
weight subspaces V ⊗n

λ . In order to treat these cases, we make use of the new
generators of Hn,r introduced by [S]. By using the direct sum decomposition
MJ =

⊕
λ V

⊗n
λ , one can define two bases of MJ inherited from the standard

basis and the canonical basis of
⊕

λ V
⊗n
λ . As a special case, we can construct

two bases of Hn,r in Theorem 4.7; the one has a property that the action
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of generators of Hn,r on this basis is explicitly described, and the other has
a property that it is fixed by the bar involution on Hn,r, and the transition
matrix between these two bases is described by various parabolic Kazhdan-
Lusztig polynomials of type A.

We remark that even in the case where r = 2 (i.e., the case of Iwahori-
Hecke algebras of type Bn), our basis does not coincide with the Kazhdan-
Lusztig basis of Hn,r. In section 5, we discuss the relationship between these
two bases, with the standard basis and the Kazhdan-Lusztig basis of Hn,r. In
particular we show in Proposition 5.2 that the parabolic Kazhdan-Lusztig
polynomials of type Bn can be determined uniquely by various parabolic
Kazhdan-Lusztig polynomials of type A, together with the information on
the transition matrix between the standard basis of Hn,r and the standard
basis of

⊕
λ V

⊗n
λ .

§1. Review on Ariki-Koike algebras

1.1. Let K = Q(v, u1, . . . , ur) be a field of rational functions in variables
v, u1, . . . , ur. Let W = Wn,r be the complex reflection group Sn � (Z/rZ)n,
and Hn,r the Ariki-Koike algebra associated to W . Hn,r is the associative
algebra over K with generators a1, . . . , an, and relations

(a1 − u1)(a1 − u2) · · · (a1 − ur) = 0,

(ai − v)(ai + v−1) = 0 (2 ≤ i ≤ n),
a1a2a1a2 = a2a1a2a1,

aiai+1ai = ai+1aiai+1 (2 ≤ i < n),
aiaj = ajai (|i− j| ≥ 2).

(1.1.1)

It is known that the subalgebra Hn of Hn,r generated by a2, . . . , an is isomor-
phic to the Hecke algebra associated to the symmetric group Sn with standard
generators.

1.2. Let Uv = Uv(slm) be the quantum group associated to the Lie
algebra slm with generators Ei, Fi,Ki (1 ≤ i ≤ m− 1) and standard relations.
Apriori, Uv is an associative algebra over Q(v), but for later discussion, we
regard them as an algebra over K by an extension of scalars.

Let V be an m-dimensional vector space over K with basis e1, . . . , em.
The vector representation of Uv on V is defined by

Eiei+1 = ei, Eiej = 0 j �= i+ 1,
Fiei = ei+1, Fiej = 0 j �= i,
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Kiej =


vei j = i,

v−1ei+1 j = i+ 1,
ej j �= i, i+ 1.

It is known that Uv has a Hopf algebra structure with comultiplication ∆ :
Uv → Uv ⊗ Uv given by

∆(Ki) = Ki ⊗Ki,

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei,

∆(Fi) = Fi ⊗K−1
i + 1 ⊗ Fi.

For a positive integer n, we consider the tensor space V ⊗n on which U⊗n
v

acts naturally. We define inductively an algebra homomorphism ∆(k) : Uv →
U⊗k

v , by starting from ∆(2) = ∆ and by putting ∆(k) = (∆(k−1) ⊗ id) ◦∆ for
each k ≥ 3. By using ∆(n), one can define an action of Uv on V ⊗n.

1.3. In [Ji], Jimbo constructed an action of Hn on V ⊗n, commuting with
the action of Uv(slm). Let us fix integers m1, . . . ,mr such that

∑
mi = m,

and consider a Levi subalgebra g = slm1 ⊕ · · · ⊕ slmr of slm. The action of Hn

was extended by [SS] to the action of Hn,r on V ⊗n so that it commutes with
the action of the subalgebra Uv(g) of Uv(slm). We consider the decomposition
V =

⊕
i Vi with dimVi = mi. We assume that a basis {e(k)

j } (1 ≤ j ≤ mk) of
Vk is chosen for k = 1, . . . , r, and that

e
(1)
1 , . . . , e(1)m1

, e
(2)
1 , . . . , e(2)m2

, . . . , e
(r)
1 , . . . , e(r)mr

gives the basis e1, . . . , em of V in this order. The construction of the action of
Hn,r on V ⊗n is given as follows. Let T be the element in End(V ⊗ V ) defined
by

T (ei ⊗ ej) =


vej ⊗ ei if i = j,

ej ⊗ ei if i > j,

ej ⊗ ei + (v − v−1)ei ⊗ ej if i < j.

(1.3.1)

Next we define a map b : {1, 2, . . . ,m} → N by b(j) = k whenever ej ∈ Vk.
Let wt : V → V be a linear operator defined by wt(ej) = ub(j)ej . Let us define
linear operators, σ, S on V ⊗2 as follows.

σ(ei ⊗ ej) = ej ⊗ ei,

S(ei ⊗ ej) =

{
T (ei ⊗ ej) if b(i) = b(j),
σ(ei ⊗ ej) if b(i) �= b(j).
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Using these operators, we define operators Ti, σi, Si, ωj ∈ EndV ⊗n, (2 ≤ i ≤
n), (1 ≤ j ≤ n), by the condition,

Ti = id⊗(i−2)
V ⊗T ⊗ id⊗(n−i)

V ,

σi = id⊗(i−2)
V ⊗σ ⊗ id⊗(n−i)

V ,(1.3.2)

Si = id⊗(i−2)
V ⊗S ⊗ id⊗(n−i)

V ,

ωj = id⊗(j−1)
V ⊗wt ⊗ id⊗(n−j)

V .

We now define an operator T1 on V ⊗n by

T1 = T−1
2 · · ·T−1

n Sn · · ·S2ω1.(1.3.3)

Then it is shown in [SS, Th.3.2] that τ : ai 
→ Ti (1 ≤ i ≤ n) gives rise to a
representation of Hn,r on V ⊗n.

Let − : K → K be the unique Q-algebra involution such that v̄ = v−1, ūi =
u−1

i for i = 1, . . . , r. We say that a map φ on a K vector space X is antilinear
if φ(λx) = λ̄φ(x) for λ ∈ K,x ∈ X. One can check by (1.1.1) that there
exists a unique antilinear Q-algebra automorphism a 
→ ā on Hn,r such that
āi = a−1

i (1 ≤ i ≤ n). We call this map the bar involution on Hn,r.

1.4. Recall that Hn,r has an alternative presentation given in [S, Th.3.7]
as follows. (However, we remark that this presentation only admits a special-
ization of the type ϕ : K → K ′ , where K ′ is a field such that ϕ(ξi) are all
distinct.) Hn,r is generated by {a2, . . . , an, ξ1, . . . , ξn}, subject to the following
relations.

(ai − v)(ai + v−1) = 0 (2 ≤ i ≤ n)
(ξi − u1) · · · (ξi − ur) = 0 (1 ≤ i ≤ n)

aiai+1ai = ai+1aiai+1 (2 ≤ i ≤ n)
aiaj = ajai (|i− j| ≥ 2)
ξiξj = ξjξi (1 ≤ i, j ≤ n),

(1.4.1)

ajξj = ξj−1aj +∆−2
∑

c1<c2

(uc2 − uc1)(v − v−1)Fc1(ξj−1)Fc2(ξj),(1.4.2)

ajξj−1 = ξjaj −∆−2
∑

c1<c2

(uc2 − uc1)(v − v−1)Fc1(ξj−1)Fc2(ξj),(1.4.3)

ajξk = ξkaj (k �= j − 1, j),(1.4.4)

where ∆ =
∏

i>j(ui−uj) is the Vandermonde determinant with respect to the
parameters u1, . . . , ur, and the sum in (1.4.2) or (1.4.3) is taken for all integers
1 ≤ c1, c2 ≤ r. For each integer 1 ≤ c ≤ r, Fc(X) is a certain polynomial in a
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variable X with coefficients in Z[u1, . . . , ur], defined in [S, 3.3.2]. Note that the
generators a2, . . . , an above may be identified with the generators appeared in
1.1.

Under the representation τ : Hn,r → EndV ⊗n, the generator ξi is mapped
to ωi for each i.

§2. Involutions associated to Hn,r and Uv(slm)

2.1 The operator T in (1.3.1) has its origin in the study of the universal R-
matrix Θ attached to Uv. Let E be the orthogonal complement of

∑
εi in the

Euclidean space Rm with the standard basis ε1, . . . , εm. The root system Φ of
slm is given by the set {εi − εj | 1 ≤ i �= j ≤ m} with Φ+ = {εi − εj | i < j}.
Thus the root lattice ZΦ is given by the Z-submodule of E consisting of integral
vectors. Let ( , ) be the inner product of Rm. The weight lattice Λ is given
by the set of λ ∈ E such that (λ, µ) ∈ Z for any µ ∈ Φ. For 1 ≤ i ≤ m,
put ε̄i = εi − 1

m

∑m
j=1 εj ∈ Λ. Then

∑
ε̄i = 0, and ε̄i is a weight with weight

vector ei. The weight lattice Λ is identified with the set Zm/Z(1, . . . , 1) by the
correspondence λ =

∑
ciε̄i ↔ (c1, . . . , cm). For a Uv-module M , we denote by

Mλ the weight subspace of M corresponding to λ ∈ Λ.
Let U+

v (resp. U−
v ) be the subalgebra of Uv generated by Ei,Ki (resp.

Fi,Ki), respectively. For each µ ∈ ZΦ, µ ≥ 0, we denote by U+
µ , U

−
−µ the

weight subspace of U±
v with respect to µ or −µ, respectively. Then there exists

an element Θµ ∈ U−
−µ ⊗ U+

µ with Θ0 = 1 ⊗ 1, for each µ, and Θ =
∑

µ≥0Θµ

(an element in a completion of Uv ⊗ Uv, see [L, 4.1]) can be defined.
Let M and M ′ be finite dimensional Uv-modules. We fix an m-th root

v1/m of v, and consider the extension field K(v1/m) of K. (Accordingly, we
regard Uv as the algebra over K(v1/m) if needed). Following [Ja, 7.3, 7.9],
we introduce a linear map C ′ ∈ EndM ⊗M ′ (f̃ in the notation of [Ja]). We
define a map f : Λ× Λ→ K(v1/m)∗ by

f(λ, µ) = (v1/m)−m(λ,µ)

for all λ, µ ∈ Λ. Note that (λ, µ) ∈ 1
mZ. In particular, we have

f(ε̄i, ε̄j) = v1/m−δij .(2.1.1)

Now C ′ is defined, for λ, µ ∈ Λ, by

C ′(x⊗ y) = f(λ, µ)x⊗ y

for all x ∈Mλ and y ∈Mµ.
The element Θ induces a well-defined map ΘM,M ′ ∈ EndM ⊗M ′. It is

known ([Ja, Th. 7.3]) that the map ΘM,M ′C ′σ : M ′ ⊗M → M ⊗M ′ gives
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rise to an isomorphism of Uv-modules, where σ : M ′ ⊗M → M ⊗M ′ is the
permutation of factors.

2.2 The bar involution on K can be extended obviously to an involution
on K(v1/n). The bar involution − on Uv is an antilinear Q-algebra automor-
phism on Uv defined on the generators by

Ei = Ei, F i = Fi, Ki = K−1
i .

The bar involution is extended to Uv ⊗Uv by x⊗ y = x̄⊗ ȳ. Let Θ = − ◦Θ ◦−

be the bar conjugate of Θ. Then it is known by [L, 4.1] that ΘΘ = 1 ⊗ 1.
We consider the special case where M = M ′ = V , and write ΘV,V ∈

End(V ⊗ V ) simply as Θ. Then as is well-known (cf. [FKK, Prop. 2.1]), we
have

(ΘC ′σ)−1 = v−1/mT.(2.2.1)

More precisely, the action of C ′ and Θ =
∑
Θµ on V ⊗ V are described as

follows. Since ei ∈ V is a weight vector with weight ε̄i ∈ Λ, by the property
of Θµ (cf. [Ja, Chap. 7]), we have

Θµ(ei ⊗ ej) =


(v−1 − v)ej ⊗ ei if µ = εi − εj with i < j,

ei ⊗ ej if µ = 0,
0 otherwise.

(2.2.2)

It follows that

Θ(ei ⊗ ej) =

{
ei ⊗ ej if i ≥ j,

ei ⊗ ej − (v − v−1)ej ⊗ ei if i < j.
(2.2.3)

Put C = v−1/mC ′. Then by (2.1.1), we have

C(ei ⊗ ej) =

{
ei ⊗ ej i �= j,

v−1ei ⊗ ej i = j.
(2.2.4)

We define an antilinear involution ψ on V ⊗n inductively as follows: First
define ψ on V by

ψ(
∑

ciei) =
∑

c̄iei.

Next let W1,W2 be tensor powers of V , and assume that the involutions ψ on
W1,W2 are already defined. We define ψ on W1 ⊗W2 by

ψ(w1 ⊗ w2) = Θ(ψ(w1) ⊗ ψ(w2)).
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Then it is shown in [L, 4.2.4, 27.3.6] that ψ on V ⊗n does not depend on the
decomposition V ⊗n = W1 ⊗ W2, and it is compatible with the Uv-module
structure of V ⊗n in the following sense: ψ(ux) = ūψ(x) for u ∈ Uv, x ∈ V ⊗n.

In [FKK], Frenkel, Khovanov and Kirillov studied the relationship between
Kazhdan-Lusztig basis of Hn and canonical basis of Uv by making use of the
Hn ⊗ Uv-module V ⊗n. In particular, they showed

Proposition 2.3 ([FKK, Prop. 2.4]). The bar involution of Hn is compat-
ible with the involution ψ on V ⊗n, i.e., for any a ∈ Hn, we have

ψ ◦ a = a ◦ ψ.

The main objective in this section is to extend this result to the case of
Hn,r. We shall show that

Theorem 2.4. The bar involution on Hn,r is compatible with the involution
ψ on V ⊗n, i.e., for any a ∈ Hn,r, we have

ψ ◦ a = a ◦ ψ.(2.4.1)

2.5. The remainder of this section is devoted to the proof of Theorem
2.4. We denote by eI with I = (i1, . . . , in) the vector ei1 ⊗ · · · ⊗ ein of V ⊗n.
Hence {eI | I ∈ [1,m]n} gives a basis of V ⊗n. (Here [1,m] means the set
{1, 2, . . . ,m}). The symmetric group Sn acts on [1,m]n by permuting the
factors, compatible with the action on V ⊗n, i.e. σ(eI) = eσI for σ ∈ Sn. If
we denote by mI(i) the multiplicity of i occurring in I = (i1, . . . , in), then eI
is a weight vector of Uv-module V ⊗n with weight

∑
imI(i)ε̄i.

We define an antilinear involution − on V ⊗n by x̄ =
∑

I c̄IeI for x =∑
I cieI . Let Ψi be a linear map on V ⊗n defined by

Ψi = (∆(i−1) ⊗ 1)Θ) ⊗ 1⊗(n−i).

Then it follows from the definition that the involution ψ can be expressed as

ψ = ΨnΨn−1 · · ·Ψ2 ◦ −.(2.5.1)

In order to describe the involution ψ, first we shall concentrate on the
map Ψn = (∆(n−1) ⊗ 1)Θ. We prepare some notation. By z 
→ zij , we denote
the embedding U⊗2

v → U⊗n
v subject to the i-th and j-th factors, i.e., for

z = a⊗ b ∈ Uv ⊗ Uv, we put

zij = x1 ⊗ x2 ⊗ · · · ⊗ xn

with xi = a, xj = b and xk = 1 for k �= i, j.
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For α, β ∈ ZΦ with α ≥ β ≥ 0, we define Xi
α,β ∈ U⊗n

v by

Xi
α,β = (1⊗(n−i) ⊗K−1

α ⊗ 1⊗(i−1))(Θα−β)n−i,n (2 ≤ i ≤ n− 1),(2.5.2)

where Kα =
∏
Kmi

i if α =
∑

imi(εi − εi+1). The following lemma is a
generalization of [J, Lemma 7.4]. The proof is reduced to the case n = 3 by
making use of the relation ∆(n) ⊗ 1 = (∆ ⊗ 1⊗(n−1))(∆(n−1) ⊗ 1) (note that
this relation is different from the defining relation for ∆(n) in 1.2). The case
n = 3 follows from Lemma 7.4 in [J].

Lemma 2.6. For all µ ∈ ZΦ with µ ≥ 0, we have

(∆(n−1) ⊗ 1)Θµ =
∑

(Θµ−ν1)n−1,nX
2
ν1,ν2

· · ·Xn−1
νn−2,νn−1

,

where the sum is taken over all the sequences µ ≥ ν1 ≥ · · · ≥ νn−1 = 0 such
that νi ∈ ZΦ.

2.7. We shall describe Ψn = (∆(n−1) ⊗ 1)Θ. For I = (i1, . . . , in), let
(η1, . . . , ηn) be the sequence defined by ηk = εik . Let us define a linear map
Θ�

k,n on V ⊗n, for k = 1, . . . , n− 1, by

Θ�
k,n(eI) =

{
eI if ik ≥ in,

eI + v−(ηk−ηn,ηk+1+···+ηn−1)(v−1 − v)eI′ if ik < in,

where I ′ = (k, n)I. (In the case where k = n − 1, we understand that the
inner product in the second formula is equal to 0).

We have the following lemma.

Lemma 2.8. As operators on V ⊗n, we have

(∆(n−1) ⊗ 1)Θ = Θ�
n−1,nΘ

�
n−2,n · · ·Θ�

1,n.(2.8.1)

Proof. First we compute Xn−k
α,β (eI) for I = (i1, . . . , in). By (2.2.2) and (2.5.2),

we see that

Xn−k
α,β (eI) =


v−(α,ηk+1)(v−1 − v)eI′ if α− β = ηk − ηn > 0 and ik < in,

v−(α,ηk+1)eI if α = β,

0 otherwise,

(2.8.2)

with I ′ = (k, n)I.
Next we compute (∆(n−1) ⊗ 1)Θ(eI ). For a fixed I = (i1, . . . , in), let

PI be the set of subsets p = {p1 < · · · < pk} of {1, . . . , n − 1} such that
ipk

< · · · < ip2 < ip1 < in. We put k = |p|. For p ∈ PI , let

I(p) = (pk, n) · · · (p2, n)(p1, n)I = (n, p1, p2, . . . , pk)I.
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Then it follows from Lemma 2.6 and (2.8.2) that

(∆(n−1) ⊗ 1)Θ(eI) =
∑
p∈PI

v−cp(v−1 − v)|p|eI(p),

where

cp = (ηp1 − ηn, ηp1+1 + · · · + ηp2)
+ (ηp2 − ηn, ηp2+1 + · · · + ηp3)
+ · · · · · ·
+ (ηpk

− ηn, ηpk+1 + · · · + ηn−1).

On the other hand, the right hand side of (2.8.1) is easily computed. We have

Θ�
n−1,nΘ

�
n−2,n · · ·Θ�

1,n(eI) =
∑
p∈PI

v−dp(v−1 − v)|p|eI(p)

with

dp = (ηp1 − ηn, ηp1+1 + · · · + ηn−1)
+ (ηp2 − ηp1, ηp2+1 + · · · + ηn−1)
+ · · · · · ·
+ (ηpk

− ηpk−1
, ηpk+1 + · · · + ηn−1).

But then we have

dp =
k∑

j=1

(ηpj , ηpj+1 + · · · + ηpj+1) − (ηn, ηp1+1 + · · · + ηn−1),

where we use the convention that pk+1 = n− 1. This implies that cp = dp for
any p ∈ PI , and the lemma follows.

2.9. For a fixed 1 ≤ i, j ≤ n with i �= j, we define an embedding
EndV ⊗2 → EndV ⊗n, x 
→ xij, in a similar way as in 2.5; xij denotes the
transformation on V ⊗n which acts on i-th and j-th factors of V ⊗n via the
map x, and acts trivially on other factors. Then it is easy to see for any
σ ∈ Sn that

σxijσ
−1 = xσ(i)σ(j).(2.9.1)

In later discussions, we consider the operators Θij , Cij , Tij , Sij for Θ,C, T, S ∈
EndV ⊗2, respectively. In particular, we note that Ti−1,i = Ti (resp. Si−1,i =
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Si) for i = 2, . . . , n in the notation of (1.3.2). We also note that Θi−1,i = Θ�
i−1,i

by (2.2.3) and 2.7. However, Θ�
ij does not mean the embedding in general.

Let Θ�
ij be the linear transformation on V ⊗n defined by Θ�

ij = − ◦Θ�
ij ◦−.

Then Θ
�
ij coincides with the map defined in 2.7, but by replacing v by v−1.

The bar operation on V ⊗2 is compatible with the bar operation on Θ. It
follows that Θij = − ◦Θij ◦ −. The following relations are easily verified.

− ◦ ωi ◦ − = ω−1
i ,

− ◦ Cij ◦ − = C−1
ij ,(2.9.2)

− ◦ Tij ◦ − = T−1
ji ,

− ◦ Sij ◦ − = S−1
ji .

For a pair k, n such that 1 ≤ k ≤ n− 1, we put

Dk,n = σk,nCk,nCk+1,n · · ·Cn−1,n,

where σk,n denotes the cyclic permutation (k, k + 1, . . . , n). We have the
following lemma.

Lemma 2.10. For 1 ≤ k ≤ n− 1, we have

Θ
�
k,nΘ

�
k,n−1 · · ·Θ�

k,k+1 = Dk,nTnTn−1 · · ·Tk+1.(2.10.1)

Proof. First consider the case where k = n−1. It follows from (2.2.1) that we
have

Tn = (n− 1, n)C−1
n−1,nΘ

�
n−1,n(2.10.2)

since ΘΘ = 1 and Θn−1,n = Θ�
n−1,n. Since Dn−1,n = (n − 1, n)Cn−1,n =

Cn−1,n(n− 1, n), we have Θ�
n−1,n = Dn−1,nTn as asserted.

Next we show that

Θ
�
k,nDk,n−1 = Dk,nTn for 1 ≤ k ≤ n− 2.(2.10.3)

By (2.9.1) we have

(n− 1, n)Ck,nCk+1,n · · ·Cn−1,nTn

= Ck,n−1Ck+1,n−1 · · ·Cn−2,n−1Cn−1,n(n− 1, n)Tn

= Ck,n−1Ck+1,n−1 · · ·Cn−2,n−1Θ
�
n−1,n.

The last formula follows from (2.10.2). In order to show (2.10.3), we have only
to check that

Θ
�
k,nσk,n−1Ck,n−1 · · ·Cn−2,n−1 = σk,n−1Ck,n−1 · · ·Cn−2,n−1Θ

�
n−1,n.
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It is easy to evaluate the maps on both sides at eI . For eI with I = (i1, . . . , in),
they have the common values

v−(ηk+ηk+1+···+ηn−2,ηn−1)eI′

if in−1 ≥ in, and

v−(ηk+ηk+1+···+ηn−2,ηn−1)eI′ + v−(ηk+ηk+1+···+ηn−2,ηn)(v − v−1)eI′′

if in−1 < in, with I ′ = σk,n−1I and I ′′ = σk,nI
′. This proves (2.10.3).

Now the lemma is immediate by substituting Θ
�
k,i = Dk,iTiD

−1
k,i−1 for

i ≥ k + 2 by (2.10.3), and Θ
�
k,k+1 = Dk,k+1Tk+1 into the left hand side of

(2.10.1).

By using Lemma 2.10, we can describe the involution ψ as follows.

Proposition 2.11. Let σ0 = (1, n)(2, n− 1) · · · be the longest length element
in Sn, and put

Ĉ =
∏

1≤i<j≤n

Cij.

(Note that the operators Cij commute with each other). Then we have

ψ = − ◦ σ0ĈT2(T3T2) · · · (TnTn−1 · · ·T2).

Proof. By (2.5.1) and Lemma 2.8, we have (cf. 2.9)

− ◦ ψ = − ◦ (Θ�
n−1,nΘ

�
n−2,n · · ·Θ�

1,n)(Θ�
n−2,n−1Θ

�
n−3,n−1 · · ·Θ�

1,n−1) · · · (Θ�
12) ◦ −

= (Θ�
n−1,nΘ

�
n−2,n · · ·Θ�

1,n)(Θ�
n−2,n−1Θ

�
n−3,n−1 · · ·Θ�

1,n−1) · · · (Θ�
12).

It is clear that Θ�
ij and Θ�

i′j′ commute with each other when {i, j}∩{i′, j′} = ∅.
Hence we have

− ◦ ψ = (Θ�
n−1,n)(Θ�

n−2,nΘ
�
n−2,n−1) · · · (Θ�

1,nΘ
�
1,n−1 · · ·Θ�

12)

= (Dn−1,nTn)(Dn−2,nTnTn−1) · · · (D1,nTnTn−1 · · ·T2),

where the second equality follows from Lemma 2.10. By definition of Dij , and
by using (2.9.1), the last formula is modified to

− ◦ ψ = σ0(C12T2)(C13C23T3T2) · · · (C1,nC2,n · · ·Cn−1,nTnTn−1 · · ·T2).
(2.11.1)

Here we note that
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(2.11.2) The product C1,kC2,k · · ·Ck−1,k commutes with T2, T3, . . . , Tk−1.

In fact, (2.11.2) is reduced to showing that Ca−1,kCa,k commutes with Ta,
and this follows from the fact that Ca−1,kCa,k acts on the subspace of V ⊗n

generated by eI and e(a−1,a)I by a scalar multiplication v−(ηa−1+ηa,ηk).
Now, by using (2.11.2), (2.11.1) is further modified to

− ◦ ψ = σ0 ·
∏
i<j

Cij · T2(T3T2) · · · (Tn · · · T2).

This proves the proposition.

2.12. We now proceed to the proof of Theorem 2.4. For the proof, it is
enough to show (2.4.1) for the generators a1, . . . , an. By Proposition 2.3, we
know already that (2.4.1) holds for a2, . . . , an. So, we have only to show it for
a1, i.e., to show that

ψT1 = T−1
1 ψ.(2.12.1)

We shall show (2.12.1). Let Ĉ =
∏
Cij be as in Proposition 2.11. First we

note that

(2.12.2) Ĉ commutes with Tij , Sij, σ for any i �= j and any σ ∈ Sn.

In fact, let V ⊗n
I be the subspace of V ⊗n generated by {eσI | σ ∈ Sn} for

a fixed I = (i1, . . . , in). Then Ĉ acts on V ⊗n
I as a scalar multiplication by v−c

with c =
∑

i<j(ηi, ηj). (2.12.2) follows from this.
By definition (1.3.3) and Proposition 2.11, we can write

ψT1 = Zω1 with Z = − ◦ σ0ĈT2(T3T2) · · · (Tn−1 · · ·T2)SnSn−1 · · ·S2.

(2.12.3)

We show that

Z = Z−1.(2.12.4)

In fact, by (2.9.2), (2.9.1) and (2.12.2), we have

Z−1 = − ◦ (S21S32 · · ·Sn,n−1)(T21T32 · · ·Tn−1,n−2) · · · (T21T32)T21Ĉσ0

= − ◦ σ0Ĉ(SnSn−1 · · ·S2)(TnTn−1 · · ·T3) · · · (TnTn−1)Tn.

It is known by [SS, Lemma 3.8] that

(SnSn−1 · · ·S2)Tj = Tj−1(SnSn−1 · · ·S2)(2.12.5)
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for j = 3, . . . , n. Therefore we have

Z−1 = − ◦ σ0Ĉ(Tn−1 · · ·T2) · · · (Tn−1Tn−2)Tn−1(Sn · · ·S2).

Now by using the relations

(Tn−1Tn−2 · · ·Tn−a)Ti = Ti−1(Tn−1Tn−2 · · ·Tn−a)

for i ≥ n − a + 1, which follows from the braid relations of Hn, it is easy to
see that

(Tn−1 · · ·T2) · · · (Tn−1Tn−2)Tn−1 = T2(T3T2) · · · (Tn−1 · · ·T2).

Hence (2.12.4) holds.
Since ψ is an involution, by using (2.12.4), we have

T−1
1 ψ = (ψT1)−1 = ω−1

1 Z−1 = ω−1
1 Z.

Hence to prove (2.12.1), it is enough to show that ω−1
1 Z = Zω1. Note that

σ0ω1σ
−1
0 = ωn and that ωn commutes with Ĉ and T2, . . . , Tn−1. Thus, by

(2.9.2), we have

ω−1
1 Z = − ◦ σ0ĈT2(T3T2) · · · (Tn−1 · · · T2)ωn(Sn · · ·S2).(2.12.6)

Here we note the following formula.

ωiSi = Siωi−1 for i = 2, . . . , n.(2.12.7)

In fact, it is enough to see the formula for the case where n = i = 2, and
Si = S. Now ω2 and ω1 act as a (common) scalar multiplication on ej ⊗ ek
and ek ⊗ ej if b(j) = b(k). S permutes ej ⊗ ek and ek ⊗ ej if b(j) �= b(k).
(2.12.7) follows easily from these facts.

Now by applying (2.12.7), we have ωn(Sn · · ·S2) = (Sn · · ·S2)ω1. Hence
(2.12.6) implies that ω−1

1 Z = Zω1, and (2.12.1) holds. The theorem is proved.

2.13. By making use of Theorem 2.4, combined with Proposition 2.11,
one can describe the bar involution for generators {a2, . . . , an, ξ1, . . . , ξn} of
Hn,r given in 1.4.

Proposition 2.14. Let {a2, . . . , an, ξ1, . . . , ξn} be the generators of Hn,r given
in 1.4, and put x = a2(a3a2) · · · (anan−1 · · · a2). Then we have

āi = a−1
i (2 ≤ i ≤ n),

ξ̄j = x−1ξ−1
n−j+1x (1 ≤ j ≤ n).
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Proof. It is enough to show the formula for ξj. By Theorem 2.4, we have

ωj = ψ−1 ◦ ωj ◦ ψ.

Note that − ◦ ωj ◦ − = ω−1
j , σ0ωjσ0 = ωn−j+1, and that ωj commutes with Ĉ.

Then by Proposition 2.11, we see that

ψ−1 ◦ ωj ◦ ψ = X−1ω−1
n−j+1X

with X = T2(T3T2) · · · (TnTn−1 · · ·T2). Since the representation τ is faithful if
we choose mk ≥ n for k = 1, . . . , r, and since τ(ξj) = ωj, τ(x) = X, this gives
the required formula for ξj.

§3. Kazhdan-Lusztig basis and Canonical basis

3.1. Let W be a Weyl group with a set of generators S. We denote by H the
Hecke algebra associated to W . It is an associative algebra over Q(v) defined
by generators as (s ∈ S) and relations

(as − v)(as + v−1) = 0(3.1.1)

together with usual braid relations. H has a basis {aw | w ∈ W}, where
aw = as1 · · · asq for a reduced expression w = s1 · · · sq.

For any subset J of S, we denote by WJ the parabolic subgroup in W
generated by s ∈ J . Let W J be the set of distinguished representatives in
W/WJ . Hence W J is the set of minimal elements w in wWJ with respect to
the length l(w) of W . Let HJ be the the subalgebra of H generated by as

with s ∈ J . Then HJ is isomorphic to the Hecke algebra of WJ . Let ϕ be a
homomorphism from H to Q(v) defined by as 
→ v for any s ∈ S. We denote
by ϕJ the restriction of ϕ on HJ . Let MJ be the induced H-module IndH

HJ
ϕJ .

Then by Deodhar [D], it is known that MJ has a basis {mw | w ∈ W J} with
the following properties,

asmw =


msw + (v − v−1)mw if l(sw) < l(w),
msw if l(sw) > l(w), sw ∈W J ,

vmw if l(sw) > l(w), sw /∈W J ,

(3.1.2)

and awm1 = mw for an identity element 1 ∈ W and w ∈ W J . Note that
w ∈W J and l(sw) < l(w) imply that sw ∈W J .

Let us define a bar involution on H by v = v−1 and as = a−1
s as in 1.3.

We also define a bar involution on MJ by the condition that me = me and
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that hm = hm for h ∈ H, m ∈MJ . Let ≤ be the partial order on W J induced
from the Bruhat order on W . The Kazhdan-Lusztig basis {CJ

w | w ∈ W J} of
MJ was introduced by Kazhdan-Lusztig [KL] for M∅ � H, and then extended
by Deodhar [D] to the case MJ . They are characterized by the following two
properties.

CJ
w ∈ mw +

∑
x∈W J

x<w

v−1Z[v−1]mx(3.1.3)

C
J
w = CJ

w.(3.1.4)

The parabolic Kazhdan-Lusztig polynomial P J
x,w ∈ Z[q] is defined, follow-

ing Deodhar, in terms of the coefficient px,w of mx in the expression of CJ
w as

follows.

px,w = ql(w)−l(x))/2P J
x,w(q) with v = q−1/2.

Note that in [KL], [D], H is defined by the quadratic relation (Ts−q)(Ts+1)
for an indeterminate q instead of (3.1.1). Then the relationship with our
situation is given as follows; v = q−1/2, and our as corresponds to −vTs

in their setup. In particular, our CJ
σ corresponds to (−1)l(σ)CJ

σ under the
notation of [KL], [D], and our mw corresponds to (−v)l(w)mw of [D].

3.2. For x,w ∈W J such that x < w, we denote by µ(x,w) the coefficient
of q(l(w)−l(x)−1)/2 in P J

x,w(q). Note that degP J
x,w ≤ 1

2 (l(w)−l(x)−1). Let s ∈ S

be such that l(sw) < l(w) for w ∈ W J . Then CJ
w is determined inductively,

with respect to the Bruhat order, by

CJ
w = (as + v−1)CJ

sw −
∑

y∈W J ,y≤sw
sy<y or sy �∈W J

(−1)l(w)−l(y)µ(y, sw)CJ
y(3.2.1)

Now the action of as on CJ
w is given as follows; for s ∈ S and w ∈W J ,

asC
J
w =


−v−1CJ

w + CJ
sw −

∑
y<w

sy≤y or sy /∈W J

(−1)l(w)−l(x)µ(y, w)CJ
y ,

vCJ
w,

(3.2.2)

where the first equality occurs when sw > w and sw ∈ W J , and the second
occurs when sw < w or sw /∈W J . In fact, (3.2.2) can be shown as in a similar
way in [KL, 2.3] once we know that

asC
J
w = vCJ

w if sw > w and sw �∈W J .(3.2.3)
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We show (3.2.3). By comparing the coefficients of mw on both sides, we
see that (3.2.3) is equivalent to the identities,

P J
sx,w = P J

x,w if sx ∈W J .(3.2.4)

(Note that sx ∈W J if sx < x and x ∈W J). Since we are in a setting u = −1
in the notation of [D], we have by [D, Prop. 3.4],

P J
x,w = PxwJ ,wwJ

(3.2.5)

for x,w ∈W J , where wJ is the longest element in W J , and Px,y is the original
Kazhdan-Lusztig polynomial for W . By our assumption, sw > w and sw �∈
W J . Then there exists s′ ∈ WJ such that sw = ws′ (e.g., [H, Lemma 7.2]),
and we have swwJ < wwJ . It follows that asCwwJ

= vCwwJ
by [KL, 2.3] (Cw

is a Kazhdan-Lusztig basis for H). This induces similar identities for PxwJ ,wwJ

and PsxwJ ,wwJ
as in (3.2.4). Now (3.2.4) follows from these identities in view

of (3.2.5).

3.3. We assume that W � Sn, and consider the Uv ⊗ Hn-module
V ⊗n. The weights of Uv on V ⊗n are given by λ = (λ1, · · · , λm) ∈ Zm

≥0 with∑
λi = n. The weight subspace V ⊗n

λ has a basis {eI}, with I = (i1, . . . , in)
such that �{a | ia = k} = λk. The involution ψ on V ⊗n stabilizes the subspace
V ⊗n

λ . Moreover V ⊗n
λ is an Hn-submodule of V ⊗n generated by a single element

eIλ
, where

Iλ = (m, . . . ,m︸ ︷︷ ︸
λm−times

, . . . , 1, . . . , 1︸ ︷︷ ︸
λ1−times

).(3.3.1)

Let Sλ � Sλm × · · · × Sλ1 be the stabilizer of Iλ in Sn. Then Sλ is a
parabolic subgroup WJ of Sn, and we denote by Hλ the parabolic subalgebra
HJ corresponding to Sλ. It is easy to see that Hn-module V ⊗n

λ is isomorphic
to MJ = IndHn

Hλ
ϕ.

Recall that {eI | I ∈ [1,m]n} is the basis of V ⊗n, which we call the
standard basis of V ⊗n. The canonical basis {bI | I ∈ [1,m]n} of Uv-module
V ⊗n is characterized by the following two properties ([L, Chap. 27]).

bI ∈ eI +
∑
I′
v−1Z[v−1]eI′ ,(3.3.2)

ψ(bI) = bI ,

where the sum in the first formula is taken over all I ′ having the same weight
as I.

It is shown in [FKK] that the map f : mσ 
→ eσ(Iλ) gives an isomorphism
MJ � V ⊗n

λ , which transfers the bar involution on MJ to the involution ψ on
V ⊗n

λ . We identify MJ with V ⊗n
λ .
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We define a partial order I < I ′ on [1,m]n as the transitive closure of the
relation

(. . . , a, . . . , b, . . . ) < (. . . , b, . . . , a, . . . ) if a > b.

Then we have the following.

Lemma 3.4. Let σ, τ ∈ SJ
n, and assume that σ < τ . Then we have σ(Iλ) <

τ(Iλ).

Proof. The proof is reduced to the case where τ = σs with a (not necessarily
simple) reflection s ∈ Sn. So we assume that s is a transposition (p, q) with
1 ≤ p < q ≤ n. Then it is easy to check that σ−1(p) < σ−1(q) if l(σ−1) <
l(sσ−1). If we write Iλ = (i1, . . . , in), we have

σ(Iλ) = (. . . , iσ−1(p), . . . , iσ−1(q), . . . ), σs(Iλ) = (. . . , iσ−1(q), . . . , iσ−1(p), . . . ).

Now by (3.3.1) and by our assumption, we have iσ−1(q) ≤ iσ−1(p). The lemma
follows from this.

The following special case is worth mentioning.

Lemma 3.5 ([FKK, Lemma 2.1]). Let σ ∈ W J and s ∈ S be a transposi-
tion (i, i+ 1). Let a and b be i-th and (i+ 1)-th entries of σ(Iλ), respectively.
Then we have

if a > b, then sσ > σ and sσ ∈W J ,

if a = b, then sσ > σ and sσ �∈W J ,

if a < b, then sσ < σ.

The following result shows that the Kazhdan-Lusztig basis is obtained as
a special case of the canonical basis of V ⊗n.

Theorem 3.6 ([FKK, Th. 2.5]). Assume that W � Sn. Then, under the
identification MJ � V ⊗n

λ , we have for each σ ∈W J ,

CJ
σ = bσ(Iλ).

Combining Theorem 3.6 with Lemma 3.4, we have the following refinement
of (3.3.2).

Corollary 3.7. Under the above notation, we have

bI ∈ eI +
∑
I′<I

v−1Z[v−1]eI′ .
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The following corollary is also immediate from (3.2.2), Lemma 3.5 and
Theorem 3.6.

Corollary 3.8. Let s = (a, a+1) be a transposition. Then for I = (i1, . . . , in),
we have

TsbI = vbI if ia ≤ ia+1.

§4. Hn,r-submodules of V ⊗n

4.1. We now return to the setup in section 1, and assume that W = Wn,r.
We consider the Hn,r-module V ⊗n with the graded vector space V =

⊕r
i=1 Vi

as before. We prepare some notation in addition to 3.1. Let S = {s1, . . . , sn}
be the set of generators of Wn,r, where t1 = s1 has order r, and s2, . . . , sn

are generators of Sn corresponding to transposition (1, 2), . . . , (n− 1, n). We
define ti ∈Wn,r by ti = si · · · s2t1s2 · · · si for i = 2, . . . , n. Then t1, . . . , tn gives
rise to a set of generators of the group (Z/rZ)n.

The basis vector of V ⊗n is given by eI with I = (i1, . . . , in) as before.
By 1.3, eI can also be written as e(ε1)

j1
⊗ · · · ⊗ e

(εn)
jn

. In this case, we write

I as I = (j(ε1)
1 , . . . , j

(εn)
n ). The weight λ of Uv on V ⊗n is expressed as λ =

(λ1, . . . , λm) as in 3.3. In our situation, I determines a multi-composition λ =
(λ(1), . . . , λ(r)), with λ(k) = (λ(k)

1 , . . . , λ
(k)
mk) ∈ Z

mk
≥0 , such that

∑
j,k λ

(k)
j = n;

the correspondence is given by λ(k)
j = �{a | ja = j, εa = k}. If one ignores the

superscripts of λ(k)
j , λ reduces to λ. We call λ the weight of eI . We denote

by V ⊗n
� the subspace of V ⊗n generated by eI whose weight is λ. It is easy

to check that the action of Hn,r on V ⊗n stabilizes the subspace V ⊗n
� . For the

weight λ, put

eλ(k) = e(k)
mk

⊗ · · · ⊗ e(k)
mk︸ ︷︷ ︸

λ
(k)
mk

−times

⊗ · · · ⊗ e
(k)
1 ⊗ · · · ⊗ e

(k)
1︸ ︷︷ ︸

λ
(k)
1 −times

(4.1.1)

and define a vector e� ∈ V ⊗n
�

by

e� = eλ(r) ⊗ eλ(r−1) ⊗ · · · ⊗ eλ(1) .(4.1.2)

The stabilizer of e� in Sn is isomorphic to

S� = Sλ(r) × Sλ(r−1) × · · · × Sλ(1)
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with Sλ(k) = S
λ
(k)
mk

× · · · × S
λ
(k)
1

. We define a subgroup W� of Wn,r by

W� = S� � (Z/rZ)n, i.e.,

W� �Wλ(r) ×Wλ(r−1) × · · · ×Wλ(1)

with Wλ(k) = W
λ
(k)
mk

,r
× · · · × W

λ
(k)
1 ,r

. Let H� be the Ariki-Koike algebra

associated to W�, i.e.,

H� = Hλ(r) ⊗Hλ(r−1) ⊗ · · · ⊗ Hλ(1)(4.1.3)

with Hλ(k) = H
λ
(k)
mk

,r
⊗ · · · ⊗ H

λ
(k)
1 ,r

. One can regard H� as a subalgebra of

Hn,r in a natural way, by making use of generators {ξ1, . . . , ξn} as discussed
in [S, 4.2]. (For example, if a + b = n, then Ha,r ⊗ Hb,r ↪→ Hn,r, where Ha,r

(resp. Hb,r) is the subalgebra of Hn,r generated by s2, . . . , sa, ξ1, . . . , ξa, (resp.
sa+2, . . . , sn, ξa+1, . . . , ξn), respectively.)

We can define a linear character ϕ(k)
n : Hn,r → K by

ϕ(k)
n (ai) = v (2 ≤ i ≤ n),

ϕ(k)
n (ξj) = uk (1 ≤ j ≤ n)

(cf. [S, (3.3.3), 5.2]), and define ϕλ(k) : Hλ(k) → K by ϕλ(k) = ϕ
(k)

λ
(k)
mk

⊗· · ·⊗ϕ(k)

λ
(k)
1

.

Then we define a linear character ϕ� : H� → K by

ϕ� = ϕλ(r) ⊗ ϕλ(r−1) ⊗ · · · ⊗ ϕλ(1)(4.1.4)

according to the embedding into Hn,r given in (4.1.3). Put V ⊗n
� = M�. Then

we have the following result.

Proposition 4.2. Let the notations be as above.

(i) M� is generated by e� as Hn,r-module, and we have

M� = Hn,re� � IndHn,r

H�
ϕ�

as Hn,r-modules.

(ii) M� has a basis {eσ} indexed by the set SJ
n (here we regard S� as a

parabolic subgroup (Sn)J of Sn). The action of Hn,r on this basis is
given as follows:

aseσ =


esσ + (v − v−1)eσ if l(sσ) < l(σ),
esσ if l(sσ) > l(σ), sσ ∈ SJ

n,

veσ if l(sσ) > l(σ), sσ /∈ SJ
n,

ξjeσ = uε(j,σ)eσ,

where ε(j, σ) ∈ {1, . . . , r} is given as follows; write e� = eI as in 4.1,
and put ε(j, σ) = εj for σ(I) = (j(ε1)

1 , . . . , j
(εn)
n ).
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(iii) There exists an involution − : M� → M� satisfying the property that
hm = h̄m for h ∈ Hn,r,m ∈M�, and that ēσ = eσ for σ = 1.

Proof. Let λ be the weight of e� as Uv-module. Then M� coincides with V ⊗n
λ

and e� is nothing but eIλ
given in (3.3.1). Then by [FKK, Prop. 2.1], V ⊗n

λ

is generated by eIλ
as Hn-module, and is isomorphic to MJ as in 3.3, for a

parabolic subgroup Sλ = SJ
n. In particular, we see that M� = Hn,re�, and

that

dimV ⊗n
� = |SJ

n| = dim IndHn,r

H�
ϕ�.

Since it is easy to see that Ke� is a one-dimensional H�-module affording ϕ�,
the first assertion follows.

Now we define a basis {eσ | σ ∈ SJ
n} in M� by using the basis {mσ} in

MJ . Then we have eσ = mσ = eσ(Iλ) by [FKK]. The first three formula in (ii)
now follows from (3.1.2). The last formula in (ii) follows by considering the
action of ωj on eσ(Iλ) ∈ V ⊗n.

The involution ψ on V ⊗n stabilizes the subspace V ⊗n
� . We define the bar

involution − onM� = V ⊗n
� in terms of ψ. Then we have hm = h̄m by Theorem

2.4. Since ψ(e�) = e�, we have ē1 = e1. The proposition is proved.

The following result is an analogue to the case of Hn,r of the result of
Frenkel, Khovanov and Kirillov (cf. Theorem 3.6) concerning the Kazhdan-
Lusztig basis of Hn and canonical basis of Uq, and also of the parabolic
Kazhdan-Lusztig basis of Deodhar (cf. 3.1). But note that H� is no longer a
parabolic subalgebra of Hn,r.

Theorem 4.3. Let M� � IndHn,r

H�
ϕ� be the induced Hn,r-module. Then there

exists a unique basis {bσ | σ ∈ SJ
n} in M� satisfying the following properties.

bσ ∈ eσ +
∑

τ∈�J
n

τ<σ

v−1Z[v−1]eτ ,

bσ = bσ.

The coefficient pτ,σ of eτ in the expression of bσ is given by the parabolic
Kazhdan-Lusztig polynomial for the case of SJ

n ⊂ Sn just as in 3.1.

Proof. By Theorem 3.6, canonical basis {bσ(Iλ) | σ ∈ SJ
n} gives rise to a basis

of V ⊗n
λ , which corresponds to the parabolic Kazhdan-Lusztig basis {CJ

σ } in
MJ . Hence, if we define the basis {bσ} in M� = V ⊗n

λ in terms of {bσ(Iλ)}, the
assertions in the theorem follow from 3.1 and Proposition 4.2.
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4.4. We now pass to a more general situation. Take an integer t ≥ 0
such that t ≤ mk for k = 1, . . . , r. Let λ = (λ(1), . . . , λ(r)) be an r-tuple
of compositions as in 4.1, but here we assume that λ(k) = ∅ for k �= r,
and that λ(r) = (λ(r)

t+1, . . . , λ
(r)
mr) ∈ Zmr−t

≥0 . We consider a pair (λ; c), with

c = (c1, . . . , ct) ∈ Zt
>0 a composition such that

∑
j,k λ

(k)
j +

∑
i ci = n. We

put c =
∑
ci. We denote by M�,c the subspace of V ⊗n generated by eI

with I = (j(ε1)
1 , . . . , j

(εn)
n ) such that λ(r)

j = �{a | ja = j, εa = r} and that
ci = �{a | ja = i}. Then M�,c is a direct sum of various weight spaces
V ⊗n
� , and so has a structure of Hn,r-module. The decomposition of M�,c into
V ⊗n
� is described more precisely as follows. Let ν be a pair (λ;µ), where

λ is as above, and µ = (µ(1), . . . , µ(r)) is an r-tuples of compositions µ(k) =
(µ(k)

1 , . . . , µ
(k)
t ) ∈ Zt

≥0 such that
∑r

k=1 µ
(k)
i = ci for 1 ≤ i ≤ t. We denote by

P�,c the set of such ν = (λ;µ). Note that ν can be written, by rearrang-
ing the entries, as (ν(1), . . . , ν(r)) with ν(r) = (µ(r)

1 , . . . , µ
(r)
t , λ

(r)
t+1, . . . , λ

(r)
mr ),

and ν(k) = (µ(k)
1 , . . . , µ

(k)
t , 0, . . . , 0) for k �= r. Hence it determines an Hn,r-

subspace V ⊗n
� . It is easy to check that

M�,c =
⊕

�∈P�,c

V ⊗n
� .

We shall investigate the Hn,r-module structure ofM�,c. For each ν ∈ P�,c,
we define e� ∈ V ⊗n

� by e� = e� ⊗ e�, where e� = eλ(r) is defined just as in
(4.1.1), by restricting the factors in between e(r)mr and e(r)t+1. e

� ∈ V ⊗c is defined
by e� = E1 ⊗ E2 ⊗ · · · ⊗ Et, with

Ei = (e(1)t−i+1)
µ

(1)
i ⊗ · · · ⊗ (e(r)t−i+1)

µ
(r)
i ∈ V ⊗ci .(4.4.1)

Now e� can be written as e� = eI for some I, and we denote by b� the
canonical basis bI ∈ V ⊗n

� corresponding to eI . We define m�,c ∈M�,c by

m�,c =
∑

�∈P�,c

b� .(4.4.2)

We define a subalgebra H�,c of Hn,r by H�,c = H�⊗Hc, where H� = Hλ(r)

is defined as in (4.1.3), by modifying the definition of Hλ(r) appropriately, and
Hc is defined by

Hc = Hc1 ⊗ · · · ⊗ Hct.(4.4.3)

(Remember that Hi is the Iwahori-Hecke algebra of type Ai−1). We define a
linear character ϕ�,c of H�,c by ϕ�,c = ϕ� ⊗ ϕc, where ϕ� = ϕλ(r) is given as
in (4.1.4). ϕc is given by ϕc = ϕc1 ⊗· · ·⊗ϕct , where ϕn is the linear character
of Hn defined by ϕn(aj) = v for all generators aj.

Under these notations, we have the following result.
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Proposition 4.5. M�,c is generated by m�,c as Hn,r-module, and we have

M�,c = Hn,rm�,c � IndHn,r

H�,c
ϕ�,c, ψ(m�,c) = m�,c.

Proof. It is clear that m�,c is fixed by ψ. We show the first two equalities.
First we note that

hm�,c = ϕ�,c(h)m�,c for h ∈ H�,c.(4.5.1)

In fact to show (4.5.1), it is enough to see, for each ν ∈ P�,c, that

hb� =

{
ϕ�(h)b� if h ∈ H�,

ϕc(h)b� if h ∈ Hc.
(4.5.2)

We show (4.5.2). In view of (4.4.1) and Corollary 3.8, we see that ajb
� =

vb� for all generators aj ∈ Hci . This implies the second equality in (4.5.2).
Next we consider the first equality. By (modified form of) (4.1.1), (4.1.2), to-
gether with (4.4.1), we see that e� = eI , where I is of the form I = (i1, . . . , in)
with i1 ≥ i2 ≥ · · · ≥ in−c, and with in−c > ik for all c+ 1 ≤ k ≤ n. Then by
Corollary 3.7, b� is written as a linear combination of eI′ , where eI′ is of the
form e�⊗ e�′

, for some e�
′ ∈ V ⊗c. Then as in the case of Proposition 4.2, one

can check that heI′ = ϕ�(h)eI′ for h ∈ H�. The first equality follows from
this, and so (4.5.2) holds.

Next we show that

M�,c = Hn,rm�,c.(4.5.3)

Let ζ be a primitive r-th root of unity. By the specialization v 
→ 1, ui 
→ ζi,
Hn,r turns out to be the group algebra CWn,r. (Note that in order to apply the
specialization argument, one has to replace Hn,r by its “integral form” defined
over a subring R1 = Z[v, v−1, u1, . . . , ur,∆

−1] of K as in [S, 3.6]. Accordingly
one needs to replace V by its R1-lattice with basis ei. All the ingredients up
to now make sense for this setup, and we use them freely without referring R1

in the discussion below.)
Let V =

⊕
V i be the C-vector space with dimV i = mi. We denote

by {e(i)j } the basis of Vi. Then the Hn,r-module V ⊗n is specialized to the

CWn,r-module V ⊗n. Let ti be as in 4.1. Then the action of ti on V ⊗n is given
by tieI = ζεieI for I = (j(ε1)

1 , . . . , j
(εn)
n ), which is the specialization of ξi on

V ⊗n. The previous construction for M�,c =
⊕

� V
⊗n
� makes sense, and by the

specialization we have a Wn,r-module M�,c =
⊕

� V
⊗n
� . Let e� , b� ,m�,c be

the elements in M�,c obtained from e� , b� ,m�,c by the specialization.
To show (4.5.3), it is enough to see that

M�,c = CWn,rm�,c.(4.5.4)
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We show (4.5.4). We prepare some notation. For I = (j(ε1)
1 , . . . , j

(εn)
n ), we

call ε = (ε1, . . . , εn) the signature of eI , and j = (j1, . . . , jn) the foot of eI . Put
U = CWn,rm�,c. Now m�,c can be written as m�,c =

∑
�∈[1,r]n m(ε), where

m(ε) is a linear combination of vectors ēI whose signature is ε. Note that
t1, . . . , tn are generators of the subgroup (Z/rZ)n of Wn,r, and e(ε1)

j1
⊗· · ·⊗e(εn)

jn

generates a one dimensional representation ϕ� of (Z/rZ)n given by ti 
→ ζεi .
It follows that each m(ε) belongs to U .

Let us consider the partial order < on [1,m]n defined in 3.3. Let F (ε) be
the set of vectors in M�,c consisting of ēI with signature ε, together with the
vectors eI′ obtained from those eI by permuting the factors. Clearly

⋃
� F (ε)

gives rise to a basis of M�,c. We show, by backward induction on the partial
order of the set of signatures, that F (ε) ⊂ U . Take ε = (ε1, . . . , εn) and
assume that F (ε′) ⊂ U holds for any ε′ > ε. Now m(ε) can be written as

m(ε) ∈ eI +
∑
I′

CeI′ ,(4.5.5)

where the foot j of I is given by

j = (mr, . . . ,mr︸ ︷︷ ︸
λ
(r)
mr−times

, · · · , t+ 1, . . . , t+ 1︸ ︷︷ ︸
λ
(r)
t+1−times

, t, . . . , t︸ ︷︷ ︸
c1−times

, . . . , 1, . . . , 1︸ ︷︷ ︸
ct−times

),(4.5.6)

and eI′ is a summand of some b� = bI′′ , not equal to e� . Thus eI′ is obtained
from eI′′ by permuting the factors. Note that eI′′ has the same foot as (4.5.6),
and we have I ′ < I ′′ by Corollary 3.7. Let ε′′ be the signature of I ′′. As
in the proof of (4.5.2), one can write eI′′ = e� ⊗ e� and eI′ = e� ⊗ e�

′
.

Since (t, . . . , t, . . . , 1, . . . , 1) is ordered decreasingly, the condition that I ′ < I ′′

implies that ε < ε′′. It follows, by induction, that eI′′ ∈ U . By operating
Sn, we see that eI′ ∈ U also. This implies that eI and all its permutations of
factors belong to U . Hence we have F (ε) ⊂ U . Thus (4.5.4), and so (4.5.3)
holds.

It is easy to see that dimM�,c = dimM�,c = |Wn,r|/|W�,c|, where W�,c

is the subgroup of Wn,r corresponding to the subalgebra H�,c of Hn,r. Then
(4.5.1) and (4.5.3) implies that M�,c � IndHn,r

H�,c
ϕ�,c. The proposition is

proved.

4.6. The space M�,c can be decomposed into a direct sum of weight
spaces V ⊗n

� . Hence in view of Proposition 4.2 and Theorem 4.3, M�,c have
bases inherited from the basis {eI} and {bI} of various V ⊗n

� . In particular, a
bar involution on M�,c can be defined, and one obtains a basis invariant under
the bar involution.

Here we consider the special case where M�,c is isomorphic to the regular
representation of Hn,r. Hence we assume that λ = ∅, and c = (1n). So
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H�,c � K and ϕ�,c = 1K . P�,c is in bijection with the set [1, r]n, and the
vector e� ∈ V ⊗n

� corresponding to ν ∈ P�,c in 4.4 is given by

e� = e(ε1)
n ⊗ e

(ε2)
n−1 ⊗ · · · ⊗ e

(εn)
1(4.6.1)

under the correspondence ν ↔ ε = (ε1, . . . , εn) ∈ [1, r]n. The basis of V ⊗n
� is

obtained by permuting the factors of e� . If we write e� = eI and eσ(I) = eσ,ε,
then {eσ,ε | σ ∈ Sn} forms a basis of V ⊗n

� , and

{eσ,ε | σ ∈ Sn, ε ∈ [1, r]n}

gives rise to a basis of M�,c. We define a partial order on the set {(σ, ε) | σ ∈
Sn} (for a fixed ε) as follows. Let τ0 ∈ Sn be an element such that e� = eτ0(I),
where I = (i1, . . . , in) with i1 ≥ · · · ≥ in. Then we put (τ, ε) < (σ, ε) if
ττ0 < στ0.

We write m0 = m�,c =
∑
b� as in (4.4.2). Then the map h 
→ hm0

gives an isomorphism Hn,r ∼−→M�,c. We denote by the same symbol the basis
of Hn,r obtained from the basis {eσ,ε} of M�,c. Since m0 is ψ-invariant, it
follows from Theorem 2.4 that the bar involution on Hn,r can be identified,
under the above isomorphism, with the involution ψ on M�,c. Let {bσ,ε} be
the basis of Hn,r obtained by transferring the canonical basis of M�,c attached
to {eσ,ε} ⊂M�,c. Then the following result is immediate from Theorem 4.3.

Theorem 4.7. There exists a unique basis {bσ,ε | σ ∈ Sn, ε ∈ [1, r]n} of Hn,r

satisfying the following properties.

bσ,ε ∈ eσ,ε +
∑

τ∈�n
(τ,ε)<(σ,ε)

v−1Z[v−1]eτ,ε,

bσ,ε = bσ,ε.

The coefficient p(τ,ε),(σ,ε) of eτ,ε in the expression of bσ,ε is described by the
parabolic Kazhdan-Lusztig polynomials of type A for the weight space V ⊗n

�

under the correspondence ν ↔ ε in (4.6.1).

§5. The case of Iwahori-Hecke algebras of type Bn

5.1. We consider the case where W = Wn,2 is the Weyl group of type Bn.
We specify the parameters of Hn,2 by putting u1 = −v−1, u2 = v, so that
Hn,2 is the Hecke algebra H of W as given in 3.1. We discuss the relationship
between Kazhdan-Lusztig basis of H and the previous basis.
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Let us consider the subalgebra H�,c of H as in 4,4, and assume that H�,c

is the subalgebra HJ associated to a parabolic subgroup WJ of W . We also
assume that the linear character ϕ�,c : HJ → K in 4.4 is of the form ϕJ in
3.1 (hence λ = (λ(1);λ(2)) = (−; k) for some k ≥ 0). Then the H-submodule
M�,c =

⊕
V ⊗n
� of V ⊗n can be identified with MJ in 3.1, where m�,c ∈ M�,c

corresponds to me ∈ MJ . By Theorem 2.4 and Proposition 4.5, the bar
involution on MJ given in 3.1 coincides with the involution ψ on M�,c. We
shall compare various bases on MJ . Put mσ = Tσme for σ ∈ W J . Then
M = {mσ | σ ∈ W J} gives a basis of MJ . Let C = {CJ

σ | σ ∈ W J} be the
Kazhdan-Lusztig basis of MJ given in 3.1. We also put E = {eI | I ∈ IJ} and
B = {bI | I ∈ IJ} the bases of MJ arising from the standard basis and the
canonical basis of

⊕
� V

⊗n
� . For a two bases X = (xi) and Y = (yj) of MJ

indexed by the set IJ � W J , we denote by M(X,Y ) = (aij) the transition
matrix from X to Y given by

yi =
∑
j∈I

ajixj .

Put

PB = M(M,C), PA = M(E ,B), X = M(B, C), Y = M(E ,M).

We define a total order on W J which is compatible with the converse of the
Bruhat order on W J , and consider the matrix PB = (pτ,σ)τ,σ∈W J with respect
to this order. Then PB is a lower unitriangular matrix. Moreover, pτ,σ ∈
v−1Z[v−1], and pτ,σ represents the parabolic Kazhdan-Lusztig polynomials of
type Bn associated to WJ up to a power of v. If we fix a total order on the
set IJ compatible with the weight decomposition MJ =

⊕
� V

⊗n
� , the matrix

PA is a block-wise diagonal matrix, and diagonal blocks correspond to the
weights on MJ . The diagonal block P �

A corresponding to the weight ν is the
matrix of the parabolic Kazhdan-Lusztig polynomials of type A associated to
the parabolic subgroup S� (up to powers of v), where S� is the stabilizer of
e� in Sn.

We have the following.

Proposition 5.2. The matrices PA, PB ,X, Y satisfy the following relation.

PB = Y −1PAX.(5.2.1)

Moreover, the matrices PB and X are determined uniquely by PA and Y .
In other words, the parabolic Kazhdan-Lusztig polynomials of type Bn can be
determined by various parabolic Kazhdan-Lusztig polynomials of type A and
by the matrix Y .
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Proof. It is clear that PA, PB ,X, Y satisfy (5.2.1). We show that PA and Y
determine PB and X uniquely. Write the equation (5.2.1) as

PBX
−1 = Y −1PA(5.2.2)

and consider (5.2.2) as the matrix equation with unknown matrices PB and X.
We fix a bijection W J � IJ , and write the matrices as PB = (pij),X−1 = (xij)
with i, j ∈ IJ along the order inherited from the order on W J . Here pij ∈
v−1Z[v−1] and xij ∈ Q(v) such that x̄ij = xij. We determine the matrices PB

and X−1 row wisely. Suppose that the first (i − 1)-rows of PB and X−1 are
determined. Since PB is lower unitriangular, one can write

i−1∑
j=1

pijxj + xi = αi,(5.2.3)

where xj (resp. αj) denotes the j-th row of X−1 (resp. Y −1PA), respectively.
By applying the bar involution on (5.2.3), and by subtracting each other, one
has

i−1∑
j=1

(pij − p̄ij)xj = αi − αi.(5.2.4)

Here x1, . . . ,xi−1,αi − αi are known vectors. Since x1, . . . ,xi−1 are linearly
independent, (5.2.4) determines dij = pij − p̄ij uniquely. But since pij ∈
v−1Z[v−1], dij determines pij uniquely. Thus the i-th row of PB is determined.
By substituting pij into (5.2.3), the i-th row xi is also determined. Thus the
matrices PB and X−1 are determined.

5.3. The bases {eσ,ε} and {bσ,ε} appeared in Theorem 4.7 are nothing
but the bases E and B, respectively. In order to relate these bases to the
Kazhdan-Lusztig basis, it is essential to know about the matrix X since the
matrix Y is more or less simpler than X. It would be an interesting problem
to study the matrix X. One might expect that X has a relatively simple form
compared to the matrix PB . We give below a simple example of the matrix X,
i.e., the relation between parabolic Kazhdan-Lusztig basis and the canonical
basis.

Assume that W is the Weyl group of type Bn, and let WJ be the parabolic
subgroup of type Bn−1. We put J = {t1, s2, . . . , sn−1}. Then the distinguished
representatives W J are given as

W J = {si · · · sn | 2 ≤ i ≤ n+ 1} ∪ {si · · · s2t1s2 · · · sn | 1 ≤ i ≤ n}
under the convention that s1 = sn+1 = 1. Assume that V = V1 ⊕ V2 with
dimV1 = 1,dimV2 = 2. We fix bases e(1)1 of V1 and e(2)1 , e

(2)
2 of V2, respectively.
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We also write e3 = e
(2)
2 , e2 = e

(2)
1 , e1 = e

(1)
1 . Let us consider M�,c as in

4.4, where λ = (λ(1), λ(2)) = (−;n − 1) and c = (1) (i.e., t = 1). Then
M�,c is isomorphic to the induced representation IndH

HJ
ϕJ , where HJ is the

parabolic subalgebra of H = Hn,2 of type Bn−1 and ϕJ is as in 3.1. It can be
decomposed into the direct sum of weight spaces M�,c = V ⊗n

�

⊕
V ⊗n
� ′ , where

ν = (0, 1, n− 1),ν ′ = (1, 0, n− 1) as weights for Uv. We define, for 1 ≤ i ≤ n,
Ii, I

′
i by

Ii = (2(2), . . . , 2(2)︸ ︷︷ ︸
i−1-times

, 2(1), 2(2), . . . , 2(2)),

I ′i = (2(2), . . . , 2(2)︸ ︷︷ ︸
i−1-times

, 1(1), 2(2), . . . , 2(2)).

Then b� = bIn = eIn and b�
′
= bI′n = eI′n , and we have m�,c = bIn + bI′n . The

Kazhdan-Lusztig basis CJ
σ for σ ∈W J can be expressed in terms of canonical

basis, as

CJ
σ =

{
bIi−1 + bI′i−1

if σ = si · · · sn,

(vi + v−i)bI1 − bIi+1 + bI′i+1
if σ = si · · · s2ts2 · · · sn.

This determines the matrix X completely.
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