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Abstract. Let f(z) = 2* 4+ 3z + o® (¢ € Z) be a cubic polynomial and 6
be the real root of f(x). We consider the unit group of Q(#). We show that
n=1—a®— af is a fundamental unit of Q(#) under certain conditions. And
we consider the 3-class group of Q(6).
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§1. Introduction

Let 23 4+ az? + bx — 1 (a,b € Z) be an irreducible cubic polynomial over the
rational number field Q and let K be a cubic field which is generated by a
root of above polynomial. Assume that K is not totally real and let ¢ € K
be a root of 3 + ax? 4+ bz — 1. Then a problem whether ¢ is a fundamental
unit of K or not arises. In particular, Ishida [2], Morikawa [6] and Takaku -
Yoshimoto [8] considered the case when K = Q(e) is defined by e*+ae—1 =0
with a € Z, a > —1, a # 0. They showed that a fundamental unit ¢y of K is
g9 =€ or g = ¢ with t = 2,4, for a # 67. In case a = 67, &}! = . Kaneko [3]
treated K = Q(6) defined by 63 — 30 + a3 = 0 with a € Z, a > 1. He showed
that a fundamental unit of K is a® 4+ 1 + af when the order Z[f] is the ring of
integers of K.

We shall consider the cubic polynomial of the following type;

23+ 3z +d?, (1)

where a is a positive integer. Then the discriminant of the polynomial (1) is
negative and the polynomial (1) has a unique real root. Let 6 be the real root
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126 E. YOSHIDA

of (1) and let Q(#) be the cubic field formed by adjoining 6 to Q.
The minimal polynomial of 1 — a? — af is

23 +3(a® — Da? +3(a* —a® + 1)z — 1. (2)

Let E be the group of units of Q(#) and let (1 —a? — af, —1) be the group
generated by 1—a?—af and +1. Throughout this paper, we put 1 —a?—af = n
and (1—a®—af, —1) = E,. In this paper we shall consider whether the index
|E : Ep| is equal to 1. And as its application, we shall consider the 3-class
group of Q(#). Denote a® + 4 = r2d where r, d are rational integers and d is
square-free. Then the following holds.

Theorem 1. Let —27(a%+4) = —27r%d ( d : square-free ) be the discriminant
of ©3 + 3x + a3. We assume that

a> rifa==+1 (mod. 3),
{a >3r ifa= 0 (mod. 3), (%)

then n =1 —a® — af is a fundamental unit of Q(6).

Remark 1. There are only nine numbers a (1 < a < 23000), which do not
satisfy (x). They are 4, 10, 104, 108, 278 1088, 1808, 2468, 5170. If a = 4,
then 1 = £2 where ¢ is the real root of 2% — 322 + 27z — 1. And for other cases,
7 is a fundamental unit of Q(6). The auther has not found any examples that
7 is not a fundamental unit of Q(#) except for a = 4 yet.

§2. Proof of Theorem 1
Lemma 1. The discriminant of Q(0) is

—27(a% + 4

M if o = +1 (mod. 3),
.
6

- 4

BT = 0 (mod. 3).
.

Proof. Let O be the ring of integers of Q(#) and D be the discriminant of
Q(6). First we have

27 |D if a = +£1 (mod. 3),
3D if a = 0 (mod. 3).

Indeed the minimal polynomial of  + a is #® — 3az? + 3(a? + 1)z — 3a and if
a = =£1 (mod. 3), then this polynomial is an Eisenstein type. Therefore 3 is
totally ramified at O and 27 ||D holds.
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2

The minimal polynomial of % is 23 4+ 202 + 2 —a®/27. If a = 0 (mod. 3),
2

then this polynomial has integer coefficients. Hence % € O and 3 ||D for

a = 0 (mod. 3).
4 — a®0 + 26? 62— 0
Next we have Lo aft e € O and we have € O when a is even.
T
4 — a®0 + 26° 6> — 0
Because the minimal polynomials of vt and 5 are 23 —3(ab +

,
4)/r?x—(ab+4)?/r3 and 23+32%+3(1—a3/4)x—a3(a®+4) /8 respectively. The

first polynomial has integer coefficients and the second has integer coefficients
6

if a = 0 (mod. 2). Hence we see | D and Lemma 1 follows. 0

2
We shall consider the existence of the unit ¢ of Q(#) which satisfies 2 = 7.

Lemma 2. Ezcept for a = 4, there are no unit ¢ € Q(0) which satisfies
2
et =n.

To prove Lemma 2, we need two lemmas.
Lemma 3. ([7]) The diophantine equation
pz* =a' -y,
where p is a prime number and p = 3 (mod. 8) has no positive integer solution
(z,y,2) with ged(x,y,z) = 1 except for z =0, x = y.
Lemma 4. ([4], [5]) The diophantine equation
azt — byt = ¢,
where a, b are positive integers has at most one solution in positive integers

z,yifc=1,2,4,8.

Proof of Lemma 2. We assume that there is a unit ¢ € Q(#) with €2 = 7.
Here we can take ¢ with norm 1. We denote the minimal polynomial of ¢
by x3 — Az?> + Bz — 1 (A, B € Z). Since the minimal polynomial of £? is
23 — (A% - 2B)2® + (B? — 2A)xz — 1 and by (2), we have

{3@4:(B+1)2—(A+1)2
362 =2(B+1+A+1)— (A+1)>2

Therefore in order to prove Lemma 2, we shall show that

{3@4—02—b2
3a2 =2(b+c) — b?
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has the only integer solution (a,b,c) = (4,4,28) with a > 0 .
First we see that a? is divisible by b. Indeed, by (3),

bt — 4b® + 6a%b? — 124%b — 3a* = 0, (4)
and b # 0. By dividing (4) by 3b?, we have

a* 2 4p—bp

a
— + (4 —2b)— .
b2+( b)b+ 3 0

4b — b2 . . 2
,4 — 2b are rational integers, we see b | a®.

Since

2

Put % = f. Then we have

b’ 4+ 6bf —3f% —4b—12f = 0. (5)

Now we show that b, f are divisible by 4. Suppose that f is an odd integer.
Then b is also odd. Since 4 | b+ 3f and by (5),

12f2 = (b+3f —2)? —4= 0 (mod. 8).

This contradicts 12f? = 12 (mod. 8).If f = 2 (mod. 4), thenb = 2 (mod. 4)
and (b+3f —2)2 —4= 0 (mod. 2°). Therefore we see that 4 | b, f.
Put b = 4g, f = 4h. By dividing 12f2? = (b+ 3f — 2)? — 4 by 4,

48h* = (2g + 6h — 2)(2g + 6h). (6)

By (6), the common divisors of 2¢g + 6k and 2g + 6h — 2 divide 2. Hence we
have the following four cases. Namely

29 + 6h = £2i%, 2g + 6h — 2 = £2¥13. 352, (7)
29 + 6h = £6i%, 29 + 6h — 2 = £27 1342, (8)
29 + 6h = £2%"13 . 3i% 29+ 6h — 2 = +25% (9)
29+ 6h = £27132 294 6h — 2 = +£6;2, (10)
where h = £2"ij and 4, j are positive odd integers with gcd(i,j) = 1.
According to (7) ~ (10), we see that
2 — 2212352 = 41, (7.1)
3i% — 22252 = 41, (8.1)
22r+2 . 342 — 2 = 41, (9.1)
22T+2,L~2 o 3]2 — +1. (101)
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(7.1), (8.1), (9.1) and (10.1) are corresponding to (7), (8), (9), (10) respectively.
— signs of (7.1), (10.1) and + signs of (8.1), (9.1) can be rejected.

Here we show that (10) has the only solution ¢ = j = 1 and (7), (8) and (9)
have no solution with ¢ # 0 or j # 0.

The case (7): Since

gh = h(i® — 3h) = 27ij(i* — 3 - 2"ij) = 27i%j(i — 3 - 2"5)

and gh = (a/4)%, we have r = 2s, j = k2, i —3-2"j = [? where s, k, [ are
rational integers. Hence by (7.1),

2222352 =2 —12(2°k) = 1. (7.2)
Moreover i = [2 (mod. 12) and (7.2) give
i—1=3-2%tmt i4+1=2n
where k = mn, mn is odd and ged(m,n) = 1. Therefore we obtain
nt—3.(2°m)* = 1. (7.3)

However by Lemma 3, (7.3) has no integer solution except for m = 0, n = 1.
Since m = 0 implies a = 0, this contradicts a # 0.

The case (8): Since gh = 27i?j(3i—3-27j), we have j = k% and by (8.1), 7 =0
and i = 27§ + 31% = k? + 31 where k, [ are rational integers.

Further by (8.1),

3(k% +31%)? — 4kt = — (K2 — 91%)2 + 4. 271* = —1. (8.2)

(8.2) gives
K2 =912 —1=+2-2Tm*, k2 — 912 +1 = +2n*,

where [ = mn, m is even, n is odd and ged(m,n) = 1.
Therefore
nt —2tm* =1 or n' —2Tm* = —1.

The first case has no solution except for m = 0, and the second gives 27m?* =
1+n* = 2 (mod. 3). Therefore both of them imply a contradiction.
The case (9): The same as (7), we can take j = k% and hence 3 - (2"71i)? =
k* — 1. This implies a = 0.
The case (10): We have j = k2, 7 = 0 and 4i — 3j = [ where k, [ are rational
integers. By (10.1),

2 —1=m* 2i+1=3n"

where k = mn with ged(m,n) = 1. Hence

2 =3n* —m*. (10.2)
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By Lemma 4, (10.2) has at most one solution in positive integers m, n and
(m,n) = (1,1) is a solution of (10.2). Therefore (10.2) has the only positive
integer solution (m,n) = (1,1). If m = n = 1, then ¢ = h = 1 and hence
a =b=4, c=28. Consequently (3) has the only solution (a,b,c) = (4,4, 28)
and the proof of Lemma 2 is completed. O

Next, we shall consider the existence of the unit ¢ of Q(6) with &3 = 1.

Lemma 5. If a satisfies either a = +1 (mod. 3) or v/2a® > 3r, then there is
no unit ¢ € Q(6) with 3 = 7.

Proof. We assume that there is ¢ € Q(6) with €3 = 1. We denote the minimal
polynomial of € by 2 — Az? + Bx — 1. Since the minimal polynomial of 3 is
23 — (A(A? - 3B) + 3)2? + (B(B% — 34) + 3)x — 1, we see

3a* = B® — A3, (11)

3a* = 3AB — A3, (12)

Obviously, we see 3 | A, B,a and A # 0. Put A =3C, B=3D and a = 3b.
By dividing (11) and (12) by 27, we have

9t = D3 — O3, (13)
v =CD — C3. (14)
b2 3
By D = +c and (13),
vs b 5 b 3
o5 b 307+ —1=0,

and hence C | b and put b = Ce. Then D = Ce? + C? = C(e? + C). Hence
23— Az’ + Br — 1 = 2® — 3C2% 4+ 3C(e? + C)z — 1. Since €8 — 6Ce* +3C2%e% +
C3 — 1 = 0, the minimal polynomial of ¢ — C' is

(x+C)*=3C(x+C)*+3C(*+C)(z+C)—1

=23 4 3Ce%x + 6Cet — 8. (15)

e—C

Dividing (15) by €3, we see that is an algebraic integer. By 5 —6Ce* 4

e
3C2%e2 + C3 — 1 = 0, the discriminant of 22 + 3Cz + 6Ce — €3 is
—27(4C3 + (6Ce — €%)?)

= —27(—3¢5 + 120%€* + 24C2%e* + 4).
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Since Q(%) = Q(0), —3e® +12Ce* +24C2%e? +4 > 0 and —3e% +12Ce* +

a®+4  (3Ce)®+4

24C%e? + 4 is divisible by 5

assumption v/2a? > 3r,

. On the other hand, by the

72 r

a4+ 4

r2
(3Ce)% +4
18C4et
31C2¢?

2

B 9C?e?

2
This is a contradiction. Therefore Lemma 5 is proved. a

— (=3e% 4 12Ce* + 2402 + 4)

— (—3e® 4 12Ce* + 24C%€? + 4)

— (=3(e® — 2C¢€)* + 36C%e* 4 4)

— 44 3(e3 —2Ce)? > 0.

By an immediate calculation, the following lemma holds.

Lemma 6. For all a > 2,

1
_4_|_

<n<
773@

3at 3ab”

We use the following lemma which concerns the lower bound of the regulator
of a non-totally real cubic field.

Lemma 7. ([1]) Let K be a non-totally real cubic field, and let D, R be the
discriminant and the requlator of K respectively. Then

Proof of Theorem 1. Let R be the regulator of Q(#).

Note that 6
4
12 ifa = 41 (mod. 3),
a’+4 .
oz otherwise.

1
Thus by Lemma 7 and Lemma 1, R > glog d.
Let £/ and E;, be as defined in §1. We have

1 —3-log(1 — a® — ab)
E:E)| == (-log(l—a%—ah)) < .
| 7)| R ( Og( a a )) — logd
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By Lemma 6 and the assumption of Theorem 1 for a > 2,

—3-log(1 — a® — ab) 3 - log3a* 3 - log3a* 3 -log3
< 6 1=
logd a’+4 loga 4 -loga
log(—5—)
a
3 -log4 .
For a = 1, we have |E : E,| < oo < 3. Therefore |E : E,| is equal to 1,
0og
2, 3, 4. By Lemma 2 and Lemma 5, we see that |E : E,| = 1. Thus we obtain
Theorem 1. O

§3. The 3-class group of Q()

From now on, we shall consider whether the class number of Q(#) is divisible
by 3. The decomposition of 3 at Q(6) is

{3—p31f a = £1 (mod. 3)
3=pp2if a = 0 (mod. 3),

where p, p1, po are prime ideals lying above 3 and p;1, pe are distinct prime
ideals. For the case a = +1 (mod. 3), we have the following.

Theorem 2. Assume thata = =+1 (mod. 3) and a > /Tr. Then above p is
a non-principal prime ideal. Namely the class number of Q(0) is divisible by
3.

Proof. Suppose that p is a principal ideal. Since 3 is totally ramified in Q(0)
and by Lemma 5, we see that

3(1—a?—ab) =~ or 3(1 —a® —ab)* =+

for some v € Q(f). Let 23 — Az? + Bx — 3 be the minimal polynomial of .
For the first case, we see

A(A?2 —3B)+9=-9(a* - 1)

B(B? — 9A) +27 =27(a* — a®> +1).

Further we see 3 |4, B and 27 |A(A%? — 3B) = —9a?. This is impossible. For
the second case, we see

A(A? —3B)+9=9(1 — 4a® + a)

B(B? — 9A) + 27 = 27(3a® — 6a° + 9a" — 4a® + 1)
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and 3 |A, B. Hence we put A =3C, B =3D. Now we have

{303 —3CD = a4—4a2, (16)

D? —3CD = 3a® — 6a° + 9a* — 4a®.

By equations (16), we have

—8a* + 10a? — 8 a®(a® — 4)3
3 27

Some computations give the following inequalities for a > 4:

C? — (a* — 4a® 4 3)C% + a’( )3 —

20 5} 19 1 1
2@4 S 03 < 50/4, —Za4 < 03 < —1—6a4, _ﬁa4 < 03 < _RGZL. (18)

The minimal polynomial of v — C'is 23 — 3(C? — D)z — 2C3 + 3CD — 3 and
the discriminant of this polynomial is

4
27(3C% — (2a%(a® — 4) + 6)C® + a2(—3—;a6 + %a4 - 9—;a2 +24) —9). (19)
Since Q(y — C) = Q(0), we have
ab +4
,,n2

By dividing (17) by (19), we see that

4
130 — (2a2(a® — 4) + 6)C* + a2(—%a6 + %C# - 9_5a2 YIS

(3a® — 6a° + 10a* — 8a® + 3)(3C3) — 124*?

+72a'% — 169a® + 240a° — 203a* + 10842 — 27

ab+4
7“2

= (10a* — 20a® + 27)(3C3) — 491a* + 784a* — 1179 = 0 (mod.

).
And we have

(130a* + 140a* — 71)(10a* — 20a* 4 27)(3C3)
+(130a" + 140a* — 71)(—491a 4 7844 — 1179))

a® + 4
= 3(31)%(3C% — 3a* + 124> — 17) = 0 (mod. <)
6
4
Since ged(31, %) =1, we see
r
ab+4

3C% —3a* +124*> — 17 = 0 (mod.
By inequalities (18), we have

27
13C3 — 3a* + 124 — 17| < ==a? — 124% + 17.
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644  7(a®+14
If a > \/7r, we see a4 —; > (a ;_ ) > 7a*. Hence
r a
7(a®+4) 27, ) a* )
T_(ZG —12a” +17) > Z+12(a —2)+5>0.
This is a contradiction. O
Remark 2. When @ = =1 (mod. 3), there exist only thirteen numbers a

(1 < a < 23000) which do not satisfy the condition a > V. They are 1,
2, 4, 10, 104, 278, 1088, 1808, 2146, 2468, 3859, 5170, 11671. If a = 1,2, 4, 10,
then the class number of Q(#) is not divisible by 3. In this case, equations
(16) of Theorem 2 have integer solutions C, D and these solutions are given by
(a,C,D) = (1,1,2),(2,0,8), (4,8,56), (10, —5,665). Note that, in case a = 4,
7 is not a fundamental unit of Q(#). For any other cases, the class number
of Q(0) is divisible by 3. The fundamental unit and the class number of Q(#)
in the range (1 < a < 23000) is calculated by KASH 2.1. And the number
a® + 4 in the range (1 < a < 23000) is calculated by Maple V .

84. Further remark

Let k be a quadratic field such that the discriminant of k is divisible by 3.
Assume that the class number of k is divisible by 3. Then there exists an
unramified cyclic cubic extension L/k. Moreover it is known that L/Q is a
normal extension and the Galois group Gal(L/Q) is isomorphic to a dihedral
group of order 6. Therefore there exist three intermediate cubic fields K, K’,
K" of L such that K, K/, K" are conjugate over Q. Since the discriminant of
k is divisible by 3, the decomposition of 3 at K is 3 = pip3 where py, po are
distinct prime ideals lying above 3.

In Yoshida [9], the following lemma is shown.

Lemma 8. Let k, K be as above. If there exists a unit € in K such that
1. € is not a cube of any unit of K and
2. €2 = 1 (mod. p2p3),

then the length of the 3-class field tower of k(v/—3) is greater than 1.
Let o3 + Ax? + Bx — 1 be the minimal polynomial of a unit e in K with
norm 1. Then it is shown in [9] that

e = 1 (mod. p3p3) <= 27| A+3, 3° | A+ B.
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The case when k = Q(1/—3(a® +4)), we see that the discriminant of k is

divisible by 3. Assume that a is divisible by 3. Then since the discriminant of
—3(a® +4
Q(0) is # by Lemma 1, we have k() /k is an unramified cyclic cubic
r

extension.
Further by Yoshida [9] and Lemma 5, if a satisfies a # 0 (mod. 7) or v/2a? >
3r, then there exist no unit ¢ with €3 = 1. Here we see that

27 | 3a® = 3(a®> — 1) 4+ 3 and

3° | 3a* = 3(a® — 1) + 3(a* — a® + 1).

Thus by (2), we see that 7 can be taken as the ¢ which is described in Lemma
8.

Theorem 3. Assume thata = 0 (mod. 3). Ifa # 0 (mod. 7) or/2a® > 3r,
then the length of the 3-class field tower of Q(vVa® + 4,v/—3) is greater than
1.
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