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Abstract. Let f(x) = x3 + 3x + a3 (a ∈ Z) be a cubic polynomial and θ
be the real root of f(x). We consider the unit group of Q(θ). We show that
η = 1 − a2 − aθ is a fundamental unit of Q(θ) under certain conditions. And
we consider the 3-class group of Q(θ).
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§1. Introduction

Let x3 + ax2 + bx − 1 (a, b ∈ Z) be an irreducible cubic polynomial over the
rational number field Q and let K be a cubic field which is generated by a
root of above polynomial. Assume that K is not totally real and let ε ∈ K
be a root of x3 + ax2 + bx − 1. Then a problem whether ε is a fundamental
unit of K or not arises. In particular, Ishida [2], Morikawa [6] and Takaku -
Yoshimoto [8] considered the case when K = Q(ε) is defined by ε3+aε−1 = 0
with a ∈ Z, a ≥ −1, a �= 0. They showed that a fundamental unit ε0 of K is
ε0 = ε or εt

0 = ε with t = 2, 4, for a �= 67. In case a = 67, ε11
0 = ε. Kaneko [3]

treated K = Q(θ) defined by θ3 − 3θ + a3 = 0 with a ∈ Z, a > 1. He showed
that a fundamental unit of K is a2 + 1 + aθ when the order Z[θ] is the ring of
integers of K.
We shall consider the cubic polynomial of the following type;

x3 + 3x + a3, (1)

where a is a positive integer. Then the discriminant of the polynomial (1) is
negative and the polynomial (1) has a unique real root. Let θ be the real root
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of (1) and let Q(θ) be the cubic field formed by adjoining θ to Q.
The minimal polynomial of 1 − a2 − aθ is

x3 + 3(a2 − 1)x2 + 3(a4 − a2 + 1)x − 1. (2)

Let E be the group of units of Q(θ) and let 〈1 − a2 − aθ, −1〉 be the group
generated by 1−a2−aθ and ±1. Throughout this paper, we put 1−a2−aθ = η
and 〈1−a2−aθ, −1〉 = Eη. In this paper we shall consider whether the index
|E : Eη| is equal to 1. And as its application, we shall consider the 3-class
group of Q(θ). Denote a6 + 4 = r2d where r, d are rational integers and d is
square-free. Then the following holds.

Theorem 1. Let −27(a6+4) = −27r2d ( d : square-free ) be the discriminant
of x3 + 3x + a3. We assume that

{
a ≥ r if a ≡ ±1 (mod. 3),
a ≥ 3r if a ≡ 0 (mod. 3),

(∗)

then η = 1 − a2 − aθ is a fundamental unit of Q(θ).

Remark 1. There are only nine numbers a (1 ≤ a ≤ 23000), which do not
satisfy (∗). They are 4, 10, 104, 108, 278 1088, 1808, 2468, 5170. If a = 4,
then η = ε2 where ε is the real root of x3−3x2 +27x−1. And for other cases,
η is a fundamental unit of Q(θ). The auther has not found any examples that
η is not a fundamental unit of Q(θ) except for a = 4 yet.

§2. Proof of Theorem 1

Lemma 1. The discriminant of Q(θ) is



−27(a6 + 4)
r2

if a ≡ ±1 (mod. 3),

−3(a6 + 4)
r2

if a ≡ 0 (mod. 3).

Proof. Let O be the ring of integers of Q(θ) and D be the discriminant of
Q(θ). First we have

{
27 ‖D if a ≡ ±1 (mod. 3),
3 ‖D if a ≡ 0 (mod. 3).

Indeed the minimal polynomial of θ + a is x3 − 3ax2 + 3(a2 + 1)x − 3a and if
a ≡ ±1 (mod. 3), then this polynomial is an Eisenstein type. Therefore 3 is
totally ramified at O and 27 ‖D holds.
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The minimal polynomial of
θ2

3
is x3 + 2x2 + x − a6/27. If a ≡ 0 (mod. 3),

then this polynomial has integer coefficients. Hence
θ2

3
∈ O and 3 ‖D for

a ≡ 0 (mod. 3).

Next we have
4 − a3θ + 2θ2

r
∈ O and we have

θ2 − θ

2
∈ O when a is even.

Because the minimal polynomials of
4 − a3θ + 2θ2

r
and

θ2 − θ

2
are x3−3(a6 +

4)/r2x−(a6+4)2/r3 and x3+3x2+3(1−a3/4)x−a3(a3+4)/8 respectively. The
first polynomial has integer coefficients and the second has integer coefficients

if a ≡ 0 (mod. 2). Hence we see
a6 + 4

r2
| D and Lemma 1 follows. �

We shall consider the existence of the unit ε of Q(θ) which satisfies ε2 = η.

Lemma 2. Except for a = 4, there are no unit ε ∈ Q(θ) which satisfies
ε2 = η.

To prove Lemma 2, we need two lemmas.

Lemma 3. ([7]) The diophantine equation

pz2 = x4 − y4,

where p is a prime number and p ≡ 3 (mod. 8) has no positive integer solution
(x, y, z) with gcd(x, y, z) = 1 except for z = 0, x = y.

Lemma 4. ([4], [5]) The diophantine equation

ax4 − by4 = c,

where a, b are positive integers has at most one solution in positive integers
x, y if c = 1, 2, 4, 8.

Proof of Lemma 2. We assume that there is a unit ε ∈ Q(θ) with ε2 = η.
Here we can take ε with norm 1. We denote the minimal polynomial of ε
by x3 − Ax2 + Bx − 1 (A, B ∈ Z). Since the minimal polynomial of ε2 is
x3 − (A2 − 2B)x2 + (B2 − 2A)x − 1 and by (2), we have

{
3a4 = (B + 1)2 − (A + 1)2

3a2 = 2(B + 1 + A + 1) − (A + 1)2.

Therefore in order to prove Lemma 2, we shall show that
{

3a4 = c2 − b2

3a2 = 2(b + c) − b2 (3)
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has the only integer solution (a, b, c) = (4, 4, 28) with a > 0 .
First we see that a2 is divisible by b. Indeed, by (3),

b4 − 4b3 + 6a2b2 − 12a2b − 3a4 = 0, (4)

and b �= 0. By dividing (4) by 3b2, we have

a4

b2
+ (4 − 2b)

a2

b
+

4b − b2

3
= 0.

Since
4b − b2

3
, 4 − 2b are rational integers, we see b | a2.

Put
a2

b
= f . Then we have

b2 + 6bf − 3f2 − 4b − 12f = 0. (5)

Now we show that b, f are divisible by 4. Suppose that f is an odd integer.
Then b is also odd. Since 4 | b + 3f and by (5),

12f2 = (b + 3f − 2)2 − 4 ≡ 0 (mod. 8).

This contradicts 12f2 ≡ 12 (mod. 8). If f ≡ 2 (mod. 4), then b ≡ 2 (mod. 4)
and (b + 3f − 2)2 − 4 ≡ 0 (mod. 25). Therefore we see that 4 | b, f .
Put b = 4g, f = 4h. By dividing 12f2 = (b + 3f − 2)2 − 4 by 4,

48h2 = (2g + 6h − 2)(2g + 6h). (6)

By (6), the common divisors of 2g + 6h and 2g + 6h − 2 divide 2. Hence we
have the following four cases. Namely

2g + 6h = ±2i2, 2g + 6h − 2 = ±22r+3 · 3j2, (7)

2g + 6h = ±6i2, 2g + 6h − 2 = ±22r+3j2, (8)

2g + 6h = ±22r+3 · 3i2, 2g + 6h − 2 = ±2j2, (9)

2g + 6h = ±22r+3i2, 2g + 6h − 2 = ±6j2, (10)

where h = ±2rij and i, j are positive odd integers with gcd(i, j) = 1.
According to (7) ∼ (10), we see that

i2 − 22r+2 · 3j2 = ±1, (7.1)

3i2 − 22r+2j2 = ±1, (8.1)

22r+2 · 3i2 − j2 = ±1, (9.1)

22r+2i2 − 3j2 = ±1. (10.1)
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(7.1), (8.1), (9.1) and (10.1) are corresponding to (7), (8), (9), (10) respectively.
− signs of (7.1), (10.1) and + signs of (8.1), (9.1) can be rejected.
Here we show that (10) has the only solution i = j = 1 and (7), (8) and (9)
have no solution with i �= 0 or j �= 0.
The case (7): Since

gh = h(i2 − 3h) = 2rij(i2 − 3 · 2rij) = 2ri2j(i − 3 · 2rj)

and gh = (a/4)2, we have r = 2s, j = k2, i − 3 · 2rj = l2 where s, k, l are
rational integers. Hence by (7.1),

i2 − 22r+2 · 3j2 = i2 − 12(2sk)4 = 1. (7.2)

Moreover i ≡ l2 (mod. 12) and (7.2) give

i − 1 = 3 · 24s+1m4, i + 1 = 2n4,

where k = mn, mn is odd and gcd(m,n) = 1. Therefore we obtain

n4 − 3 · (2sm)4 = 1. (7.3)

However by Lemma 3, (7.3) has no integer solution except for m = 0, n = 1.
Since m = 0 implies a = 0, this contradicts a �= 0.
The case (8): Since gh = 2ri2j(3i−3 ·2rj), we have j = k2 and by (8.1), r = 0
and i = 2rj + 3l2 = k2 + 3l2 where k, l are rational integers.
Further by (8.1),

3(k2 + 3l2)2 − 4k4 = −(k2 − 9l2)2 + 4 · 27l4 = −1. (8.2)

(8.2) gives
k2 − 9l2 − 1 = ±2 · 27m4, k2 − 9l2 + 1 = ±2n4,

where l = mn, m is even, n is odd and gcd(m,n) = 1.
Therefore

n4 − 27m4 = 1 or n4 − 27m4 = −1.

The first case has no solution except for m = 0, and the second gives 27m4 ≡
1 + n4 ≡ 2 (mod. 3). Therefore both of them imply a contradiction.
The case (9): The same as (7), we can take j = k2 and hence 3 · (2r+1i)2 =
k4 − 1. This implies a = 0.
The case (10): We have j = k2, r = 0 and 4i− 3j = l2 where k, l are rational
integers. By (10.1),

2i − 1 = m4, 2i + 1 = 3n4,

where k = mn with gcd(m,n) = 1. Hence

2 = 3n4 − m4. (10.2)
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By Lemma 4, (10.2) has at most one solution in positive integers m, n and
(m,n) = (1, 1) is a solution of (10.2). Therefore (10.2) has the only positive
integer solution (m,n) = (1, 1). If m = n = 1, then g = h = 1 and hence
a = b = 4, c = 28. Consequently (3) has the only solution (a, b, c) = (4, 4, 28)
and the proof of Lemma 2 is completed. �

Next, we shall consider the existence of the unit ε of Q(θ) with ε3 = η.

Lemma 5. If a satisfies either a ≡ ±1 (mod. 3) or
√

2a2 ≥ 3r, then there is
no unit ε ∈ Q(θ) with ε3 = η.

Proof. We assume that there is ε ∈ Q(θ) with ε3 = η. We denote the minimal
polynomial of ε by x3 −Ax2 + Bx− 1. Since the minimal polynomial of ε3 is
x3 − (A(A2 − 3B) + 3)x2 + (B(B2 − 3A) + 3)x − 1, we see

3a4 = B3 − A3, (11)

3a2 = 3AB − A3. (12)

Obviously, we see 3 | A, B, a and A �= 0. Put A = 3C, B = 3D and a = 3b.
By dividing (11) and (12) by 27, we have

9b4 = D3 − C3, (13)

b2 = CD − C3. (14)

By D =
b2 + C3

C
and (13),

b6

C6
− 6b

b3

C3
+ 3C2 b2

C2
+ C3 − 1 = 0,

and hence C | b and put b = Ce. Then D = Ce2 + C2 = C(e2 + C). Hence
x3 −Ax2 +Bx− 1 = x3 − 3Cx2 +3C(e2 +C)x− 1. Since e6 − 6Ce4 +3C2e2 +
C3 − 1 = 0, the minimal polynomial of ε − C is

(x + C)3 − 3C(x + C)2 + 3C(e2 + C)(x + C) − 1

= x3 + 3Ce2x + 6Ce4 − e6. (15)

Dividing (15) by e3, we see that
ε − C

e
is an algebraic integer. By e6−6Ce4 +

3C2e2 + C3 − 1 = 0, the discriminant of x3 + 3Cx + 6Ce − e3 is

−27(4C3 + (6Ce − e3)2)

= −27(−3e6 + 12Ce4 + 24C2e2 + 4).
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Since Q(
ε − C

e
) = Q(θ), −3e6 + 12Ce4 + 24C2e2 + 4 > 0 and −3e6 + 12Ce4 +

24C2e2 + 4 is divisible by
a6 + 4

r2
=

(3Ce)6 + 4
r2

. On the other hand, by the

assumption
√

2a2 ≥ 3r,

a6 + 4
r2

− (−3e6 + 12Ce4 + 24C2e2 + 4)

>
(3Ce)6 + 4

18C4e4
− (−3e6 + 12Ce4 + 24C2e2 + 4)

>
34C2e2

2
− (−3(e3 − 2Ce)2 + 36C2e2 + 4)

=
9C2e2

2
− 4 + 3(e3 − 2Ce)2 > 0.

This is a contradiction. Therefore Lemma 5 is proved. �

By an immediate calculation, the following lemma holds.

Lemma 6. For all a ≥ 2,

1
3a4

< η <
1

3a4
+

1
3a6

.

We use the following lemma which concerns the lower bound of the regulator
of a non-totally real cubic field.

Lemma 7. ([1]) Let K be a non-totally real cubic field, and let D, R be the
discriminant and the regulator of K respectively. Then

R ≥ 1
3
log(

|D|
27

).

Proof of Theorem 1. Let R be the regulator of Q(θ).
Note that

d =




a6 + 4
r2

, if a ≡ ±1 (mod. 3),

a6 + 4
9r2

, otherwise.

Thus by Lemma 7 and Lemma 1, R ≥ 1
3
log d.

Let E and Eη be as defined in §1. We have

|E : Eη| =
1
R

· (−log(1 − a2 − aθ)) ≤ −3 · log(1 − a2 − aθ)
logd

.
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By Lemma 6 and the assumption of Theorem 1 for a ≥ 2,

−3 · log(1 − a2 − aθ)
logd

<
3 · log3a4

log(
a6 + 4

a2
)

<
3 · log3a4

loga4
= 3 +

3 · log3
4 · loga

< 5.

For a = 1, we have |E : Eη| <
3 · log4
log5

< 3. Therefore |E : Eη| is equal to 1,

2, 3, 4. By Lemma 2 and Lemma 5, we see that |E : Eη| = 1. Thus we obtain
Theorem 1. �

§3. The 3-class group of Q(θ)

From now on, we shall consider whether the class number of Q(θ) is divisible
by 3. The decomposition of 3 at Q(θ) is

{
3 = p3 if a ≡ ±1 (mod. 3)
3 = p1p

2
2 if a ≡ 0 (mod. 3),

where p, p1, p2 are prime ideals lying above 3 and p1, p2 are distinct prime
ideals. For the case a ≡ ±1 (mod. 3), we have the following.

Theorem 2. Assume that a ≡ ±1 (mod. 3) and a >
√

7r. Then above p is
a non-principal prime ideal. Namely the class number of Q(θ) is divisible by
3.

Proof. Suppose that p is a principal ideal. Since 3 is totally ramified in Q(θ)
and by Lemma 5, we see that

3(1 − a2 − aθ) = γ3 or 3(1 − a2 − aθ)2 = γ3

for some γ ∈ Q(θ). Let x3 − Ax2 + Bx − 3 be the minimal polynomial of γ.
For the first case, we see

A(A2 − 3B) + 9 = −9(a2 − 1)

B(B2 − 9A) + 27 = 27(a4 − a2 + 1).

Further we see 3 |A, B and 27 |A(A2 − 3B) = −9a2. This is impossible. For
the second case, we see

A(A2 − 3B) + 9 = 9(1 − 4a2 + a4)

B(B2 − 9A) + 27 = 27(3a8 − 6a6 + 9a4 − 4a2 + 1)
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and 3 |A, B. Hence we put A = 3C, B = 3D. Now we have
{

3C3 − 3CD = a4 − 4a2,
D3 − 3CD = 3a8 − 6a6 + 9a4 − 4a2.

(16)

By equations (16), we have

C9 − (a4 − 4a2 + 3)C6 + a4(
−8a4 + 10a2 − 8

3
)C3 − a6(a2 − 4)3

27
= 0. (17)

Some computations give the following inequalities for a ≥ 4:

2a4 ≤ C3 <
20
9

a4, −5
4
a4 < C3 < −19

16
a4,− 1

71
a4 < C3 < − 1

160
a4. (18)

The minimal polynomial of γ − C is x3 − 3(C2 − D)x − 2C3 + 3CD − 3 and
the discriminant of this polynomial is

27(3C6 − (2a2(a2 − 4) + 6)C3 + a2(−35
3

a6 +
64
3

a4 − 98
3

a2 + 24) − 9). (19)

Since Q(γ − C) = Q(θ), we have

a6 + 4
r2

| 3C6 − (2a2(a2 − 4) + 6)C3 + a2(−35
3

a6 +
64
3

a4 − 98
3

a2 + 24) − 9.

By dividing (17) by (19), we see that

(3a8 − 6a6 + 10a4 − 8a2 + 3)(3C3) − 12a12

+72a10 − 169a8 + 240a6 − 203a4 + 108a2 − 27

≡ (10a4 − 20a2 + 27)(3C3) − 491a4 + 784a2 − 1179 ≡ 0 (mod.
a6 + 4

r2
).

And we have

(130a4 + 140a2 − 71)(10a4 − 20a2 + 27)(3C3)
+(130a4 + 140a2 − 71)(−491a4 + 784a2 − 1179))

≡ 3(31)2(3C3 − 3a4 + 12a2 − 17) ≡ 0 (mod.
a6 + 4

r2
).

Since gcd(31,
a6 + 4

r2
) = 1, we see

3C3 − 3a4 + 12a2 − 17 ≡ 0 (mod.
a6 + 4

r2
).

By inequalities (18), we have

|3C3 − 3a4 + 12a2 − 17| <
27
4

a4 − 12a2 + 17.
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If a >
√

7r, we see
a6 + 4

r2
>

7(a6 + 4)
a2

> 7a4. Hence

7(a6 + 4)
a2

− (
27
4

a4 − 12a2 + 17) >
a4

4
+ 12(a2 − 2) + 5 > 0.

This is a contradiction. �

Remark 2. When a ≡ ±1 (mod. 3), there exist only thirteen numbers a
(1 ≤ a ≤ 23000) which do not satisfy the condition a >

√
7r. They are 1,

2, 4, 10, 104, 278, 1088, 1808, 2146, 2468, 3859, 5170, 11671. If a = 1, 2, 4, 10,
then the class number of Q(θ) is not divisible by 3. In this case, equations
(16) of Theorem 2 have integer solutions C, D and these solutions are given by
(a,C,D) = (1, 1, 2), (2, 0, 8), (4, 8, 56), (10,−5, 665). Note that, in case a = 4,
η is not a fundamental unit of Q(θ). For any other cases, the class number
of Q(θ) is divisible by 3. The fundamental unit and the class number of Q(θ)
in the range (1 ≤ a ≤ 23000) is calculated by KASH 2.1. And the number
a6 + 4 in the range (1 ≤ a ≤ 23000) is calculated by Maple V .

§4. Further remark

Let k be a quadratic field such that the discriminant of k is divisible by 3.
Assume that the class number of k is divisible by 3. Then there exists an
unramified cyclic cubic extension L/k. Moreover it is known that L/Q is a
normal extension and the Galois group Gal(L/Q) is isomorphic to a dihedral
group of order 6. Therefore there exist three intermediate cubic fields K, K ′,
K ′′ of L such that K, K ′, K ′′ are conjugate over Q. Since the discriminant of
k is divisible by 3, the decomposition of 3 at K is 3 = p1p

2
2 where p1, p2 are

distinct prime ideals lying above 3.
In Yoshida [9], the following lemma is shown.

Lemma 8. Let k, K be as above. If there exists a unit ε in K such that

1. ε is not a cube of any unit of K and

2. ε2 ≡ 1 (mod. p2
1p

3
2),

then the length of the 3-class field tower of k(
√−3) is greater than 1.

Let x3 + Ax2 + Bx − 1 be the minimal polynomial of a unit ε in K with
norm 1. Then it is shown in [9] that

ε ≡ 1 (mod. p2
1p

3
2) ⇐⇒ 27 | A + 3, 35 | A + B.
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The case when k = Q(
√−3(a6 + 4)), we see that the discriminant of k is

divisible by 3. Assume that a is divisible by 3. Then since the discriminant of

Q(θ) is
−3(a6 + 4)

r2
by Lemma 1, we have k(θ)/k is an unramified cyclic cubic

extension.
Further by Yoshida [9] and Lemma 5, if a satisfies a �≡ 0 (mod. 7) or

√
2a2 >

3r, then there exist no unit ε with ε3 = η. Here we see that

27 | 3a2 = 3(a2 − 1) + 3 and

35 | 3a4 = 3(a2 − 1) + 3(a4 − a2 + 1).

Thus by (2), we see that η can be taken as the ε which is described in Lemma
8.

Theorem 3. Assume that a ≡ 0 (mod. 3). If a �≡ 0 (mod. 7) or
√

2a2 > 3r,
then the length of the 3-class field tower of Q(

√
a6 + 4,

√−3) is greater than
1.
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