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Abstract. In this paper, we prove the following result:
Let k be an integer with k ≥ 5. Let C be a cycle in a graph G, and let H be a
component of G −C. Suppose that C is locally longest with respect to H , and
H is locally k-connected to C, |V (H)| ≥ k − 1, δ(H) ≥ �(k − 1)/2�, and H is
3-connected. Let r = (

�
x∈V (H)degG(x))/|V (H)|. Then l(C) ≥ k(r + 2 − k),

with equality only if r is an integer and either H is a complete graph of order
r + 1 − k and every vertex of H has the same k neighbours on C, or H is a
complete graph of order k − 1 and every vertex of H has the same r + 2 − k
neighbours on C.
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§1. Introduction

In this paper, we consider only finite simple undirected graphs without loops
or multiple edges. For a graph G, we let V (G) and E(G) denote the set of
vertices and edges of G, respectively. For a vertex v of V (G), we let NG(v)
denote the set of vertices adjacent to v in G, and let degG(v) = |NG(v)|. The
minimum degree of G is the minimun of degG(v) as v ranges over V (G), and is
denoted by δ(G). For a subset W of V (G), the quantity (

∑
v∈W degG(v))/|W |

is called the average degree of W in G. For X ⊆ V (G), we let G−X denote the
subgraph of G obtained by deleting all vertices in X together with the edges
incident with them; for a subgraph H of G, we write G − H for G − V (H).

Let M = (v0, v1, . . . , vp) be a cycle or a path. Thus V (M) = {v0, v1, . . . , vp}
and E(M) = {v0v1, v1v2, . . . , vp−1vp} (if M is a cycle, then p ≥ 3, v0, v1, . . . ,
vp−1 are distinct, and vp = v0; if M is a path, then v0, v1, . . . , vp are all
distinct). The length l(M) of M is defined by l(M) = p, i.e., l(M) = |E(M)|.
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When M is a cycle, for i, j with i ≤ j < i + p, we define the segment M [vi, vj ]
of M by M [vi, vj ] = (vi, vi+1, . . . , vj) (indices are to be read modulo p); when
M is a path, for i, j with 1 ≤ i ≤ j ≤ p, we define the segment M [vi, vj ] of
M by M [vi, vj ] = (vi, vi+1, . . . , vj). When M is a path, v0 is called the initial
vertex of M and vp is called the terminal vertex of M . Now for x, y ∈ V (G),
a path in G having x as its initial vertex and y as its terminal vertex is called
an (x, y)-path. For x ∈ V (G) and Y ⊆ V (G) with x /∈ Y , an (x, y)-path with
y ∈ Y is called an (x, Y )-path. Two (x, Y )-paths are said to be disjoint if
they have only the vertex x in common. Let H and M be two subgraphs of G
with V (H) ∩ V (M) = ∅. We say that H is locally k-connected to M in G if G
contains k pairwise disjoint (x, V (M))-paths for every vertex x ∈ V (H). Let
now M be a cycle in G, and let H be a subgraph of G − V (M). We say that
M is locally longest with respect to H in G if we cannot obtain a cycle longer
than M by replacing a segment M [u, v] by a (u, v)-path of G through H.

In [2], Fan proved the following theorem(see also [3]) :

Theorem A [2, Theorem 2]. Let k be an integer with 2 ≤ k ≤ 4. Let C
be a cycle in a graph G, and let H be a component of G − C. Suppose that
C is locally longest with respect to H, and H is locally k-connected to C,
and |V (H)| ≥ k − 1. Let r denote the average degree of V (H) in G. Then
l(C) ≥ k(r + 2 − k), with equality only if r is an integer and either H is
a complete graph of order r + 1 − k and every vertex of H has the same k
neighbours on C, or H is a complete graph of order k − 1 and every vertex of
H has the same r + 2 − k neighbours on C.

He also conjectured that the same result holds for k ≥ 5 as well.

Conjecture 1 [2, Conjecture 1]. Let k be an integer with k ≥ 5. Let C
be a cycle in a graph G, and let H be a component of G − C. Suppose that
C is locally longest with respect to H, and H is locally k-connected to C,
and |V (H)| ≥ k − 1. Let r denote the average degree of V (H) in G. Then
l(C) ≥ k(r + 2 − k), with equality only if r is an integer and either H is
a complete graph of order r + 1 − k and every vertex of H has the same k
neighbours on C, or H is a complete graph of order k − 1 and every vertex of
H has the same r + 2 − k neighbours on C.

However, Conjecture 1 does not hold. We here construct counter-examples.
Let k, h be integers with k ≥ 5 and h ≥ k − 1. Let a be an integer with
a < �(k − 1)/2�, and let H be a graph isomorphic to the complete bipartite
graph Ka,h−a with partite sets of cardinalities a and h−a. Let C be a cycle of
length 2(a+1)t with V (C)∩V (H) = ∅, and write C = (c1, c2, . . . , c2(a+1)t, c1),
where t ≥ k. Define a graph G by V (G) = V (H)∪V (C) and E(G) = E(H)∪
E(C)∪ {xy|x ∈ V (H), y ∈ {c2(a+1)i|i ∈ {1, · · · , t}}. Then we can easily verify
that C is locally longest with respect to H, and that H is locally k-connected
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to C. Let now r = (
∑

x∈V (H) degG(x))/h. Then r = (2a(h − a) + ht)/h,
and hence k(r + 2 − k) − l(C) = (k − 2(a + 1))t + 2a(h − a)k/h − (k − 2)k.
We also have k − 2(a + 1) > 0 by the assumption that a < �(k − 1)/2�.
Therefore if t is large enough, then k(r + 2 − k) > l(C), which means that
the conclusion of Conjecture 1 does not hold. Note that δ(H) = a. Note
also that this construction works for any integer a with 1 ≤ a < �(k − 1)/2�.
Having these observations in mind, we make the following new conjecture,
which says that the conclusion of Conjecture 1 holds if we add the assumption
that δ(H) ≥ �(k − 1)/2�.

Conjecture 2. Let k be an integer with k ≥ 5. Let C be a cycle in a graph
G, and let H be a component of G − C. Suppose that C is locally longest
with respect to H, and H is locally k-connected to C, |V (H)| ≥ k − 1 and
δ(H) ≥ �(k − 1)/2�. Let r denote the average degree of V (H) in G; i.e., r =
(
∑

x∈V (H)degG(x))/|V (H)| (note that δ(H) denotes min{degH(x)|x ∈ V (H)}
but not min{degG(x)|x ∈ V (H)}). Then l(C) ≥ k(r + 2 − k), with equality
only if r is an integer and either H is a complete graph of order r + 1− k and
every vertex of H has the same k neighbours on C, or H is a complete graph
of order k− 1 and every vertex of H has the same r +2− k neighbours on C.

The purpose of this paper is to show that Conjecture 2 holds in the case
where H is 3-connected.

Main Theorem. Let k be an integer with k ≥ 5. Let C be a cycle in a graph
G, and let H be a component of G − C. Suppose that C is locally longest
with respect to H, and H is locally k-connected to C, |V (H)| ≥ k − 1 and
δ(H) ≥ �(k − 1)/2�. Suppose further that H is 3-connected. Let r denote
the average degree of V (H) in G; i.e., r = (

∑
x∈V (H)degG(x))/|V (H)|. Then

l(C) ≥ k(r + 2 − k), with equality only if r is an integer and either H is
a complete graph of order r + 1 − k and every vertex of H has the same k
neighbours on C, or H is a complete graph of order k − 1 and every vertex of
H has the same r + 2 − k neighbours on C.

We here make some more definitions. Let G be a graph. For X ⊆ V (G), we
define NG(X) =

⋃
x∈V (G) NG(x). The subgraph of G induced by X ⊆ V (G)

is denoted by 〈X〉G. A subgraph H of G is often identified with its vertex set
V (H); for example, NG(H) means NG(V (H)) and, as is mentioned in the first
paragraph, G−H means G−V (H). Also a vertex x ∈ V (G) is identified with
the set {x}; for example, G − x means G − {x}.

Let x, y be distinct vertices of G. We define the codistance d∗G(x, y) between
x and y to be the maximum length of an (x, y)-path in G. The codiameter
d∗(G) of G is defined by

d∗(G) = min{d∗G(x, y)|x, y ∈ V (G), x �= y}.
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We now list known results which we use in the proof of the Main Theorem.

Theorem B [1, Corollary 1]. Let m be an integer with m ≥ 6. Let u, v
be two distinct vertices of a 3-connected graph G in which the degree sum
of any pair of nonadjacent vertices of G is at least m. Then d∗G(u, v) ≥
min{|V (G)| − 1,m − 2}. When |V (G)| ≥ m, we have d∗G(u, v) = m − 2 if
and only if m is even and one of the following holds:

(i) there exists S ⊆ V (G) with {u, v} ⊆ S and |S| = m/2 such that E(G −
S) = ∅; or

(ii) m/2 ≥ 4, and there exists a ∈ V (G) − {u, v} such that for each compo-
nent H of G − {u, v, a}, H is a complete graph of order m/2 − 2 and
NG(x) − V (H) = {u, v, a} for every x ∈ V (H).

Theorem C [2, Theorem 1]. Let x, y be two distinct vertices of a 2-connected
graph G, and let r denote the average degree of V (G) − {x, y} in G. Then
d∗G(x, y) ≥ r. Futher, equality holds if and only if r is an integer, and for
each component H of G − {x, y}, H is a complete graph of order r − 1 and
NG(x) − V (H) = {u, v} for every x ∈ V (H).

The following proposition is essentially proved in [2] in the course of the
proof of Theorem 2 (see the second and the third paragraphs of the proof of
[2,Theorem2]).

Proposition D [2, Theorem 2]. Let k be an integer with k ≥ 2. Let C be
a cycle in a graph G, and let H be a component of G − C. Suppose that C
is locally longest with respect to H, and H is locally k-connected to C, and
|V (H)| ≥ k − 1. Suppose further that H is nonseparable. Let r denote the
average degree of V (H) in G.

Let p = |NG(H) ∩ V (C)|, and write NG(H) ∩ V (C) = {u1, . . . , up} so that
u1, . . . , up occur along C in this order and, for each i, let Hi = 〈V (H) ∪
{ui, ui+1}〉G (indices are to be read modulo p). Finally let T = {ui|1 ≤ i ≤
p, |NG({ui, ui+1}) ∩ V (H)| ≥ 2}, and suppose that either

|T | ≤ k − 1 or∣∣ {ui ∈ T | d∗Hi
(ui, ui+1) < k } ∣∣ ≤ k.

Then l(C) ≥ k(r + 2− k), with equality only if r is an integer and either H is
a complete graph with order r + 1 − k and every vertex of H has the same k
neighbours on C, or H is a complete graph of order k − 1 and every vertex of
H has the same r + 2 − k neighbours on C.

We prove a proposition, Proposition 2.1, in Section 2, and derive corollaries
of Proposition 2.1 in Section 3 and, using the corollaries in Section 3, we prove
the Main Theorem in Section 4.
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§2. Long paths in 3-connected graphs

For an integer s ≥ 1, let Ks denote the complete graph of order s. In this
section, we prove the following modification of Theorem B:

Proposition 2.1. Let d ≥ 3 be an integer, and let G be a 3-connected graph
of order at least 2d + 1 with δ(G) ≥ d. Let u, v ∈ V (G) with u �= v, and
suppose that d∗G(u, v) = 2d−1. Then one of the following six statements holds
(it is possible that some two of these six statements hold simultaneously) :

(i) there exists S ⊆ V (G) with |{u, v} ∩ S| = 1 and |S| = d such that
E(G − S) = ∅;

(ii) there exists S ⊆ V (G) with {u, v} ⊂ S and |S| = d such that |E(G −
S)| = 1;

(iii) d ≥ 4, and there exists a ∈ V (G) − {u, v} and there exists a component
H0 of G−{u, v, a} such that |V (H0)| = d−1 and NG(V (H0))−V (H0) =
{u, v, a}, and such that for each component H of G − {u, v, a} with
H �= H0, we have H ∼= Kd−2 and NG(x) − V (H) = {u, v, a} for every
x ∈ V (H);

(iv) there exist a, b ∈ V (G) − {u, v} with a �= b and ab ∈ E(G) such that for
each component H of G − {u, v, a, b}, we have H ∼= Kd−2, and either
NG(x) − V (H) = {u, v, a} for every x ∈ V (H) or NG(x) − V (H) =
{u, v, b} for every x ∈ V (H);

(v) d = 5, and there exists S ⊆ V (G) with {u, v} ⊂ S and |S| = 4 such that
for each component H of G−S, we have H ∼= K2 and NG(x)−V (H) = S
for every x ∈ V (H); or

(vi) d = 4, and there exist a, b ∈ V (G) − {u, v} with a �= b such that for
each component H of G − {u, v, a, b}, either we have H ∼= K1 and
NG(V (H)) = {u, v, a, b}, or we have H ∼= K2 and NG(x) − V (H) =
{u, v, a} for every x ∈ V (H).

Proof. Let P be a (u, v)-path of length 2d − 1, and write

P = (v0, . . . , v2d−1),

where v0 = u and v2d−1 = v. Since |V (G)| ≥ 2d + 1, we have |V (G− P )| ≥ 1.
We present the rest of the proof by dividing it into two subsections.
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2.1. Component of G − P

Throughout this subsection, we let H denote a component of G − P . We
are mainly concerned with the structure of 〈V (H) ∪ V (P )〉G. The following
lemma immediately follows from the maximality of the length of P :

Lemma 2.1. Suppose that |V (H)| = 1. Then one of the following holds:

(i) NG(H) ∩ V (P ) = {v2i|0 ≤ i ≤ d − 1};
(ii) NG(H) ∩ V (P ) = {v2i+1|0 ≤ i ≤ d − 1}; or
(iii) there exists m with 0 ≤ m ≤ d − 2 such that

NG(H) ∩ V (P ) = {v2i|0 ≤ i ≤ m} ∪ {v2i+1|m + 1 ≤ i ≤ d − 1}.

Lemma 2.2. Suppose that |V (H)| = 1. Then EG(V (P ) − NG(H), V (P ) −
NG(H)) − E(P ) = ∅.

Proof. Write V (H) = {a}. By way of contradiction, suppose that there exists
vivi′ ∈ E(G) with 0 ≤ i < i

′ ≤ 2d − 1 such that vi, vi′ ∈ V (P ) − NG(a) and
vivi′ /∈ E(P ). Note that if (i) of Lemma 2.1 holds, then

vi−1, vi′−1 ∈ NG(a) ∩ V (P )(2.1)

and, if (ii) of Lemma 2.1 holds, then

vi+1, vi′+1 ∈ NG(a) ∩ V (P ).(2.2)

Further if (iii) of Lemma 2.1 holds, then from the fact that v0, v2d−1 ∈ NG(a)∩
V (P ) and {v2m+1, v2m+2} is the only pair of consecutive vertices of P which
does not intersect with NG(a)∩V (P ), we see that (2.1) or (2.2) holds. Thus in
any case, (2.1) or (2.2) holds. By symmetry, we may assume that (2.1) holds.
Then (v0, . . . , vi−1, a, vi′−1, vi′−2, . . . , vi, vi′ , . . . , v2d−1) is a (v0, v2d−1)-path of
length 2d, which contradicts the assumption that d∗G(v0, v2d−1) = 2d − 1. �

In the rest of this subsection, we consider the case where |V (H)| ≥ 2.

Lemma 2.3. Suppose that |V (H)| ≥ 2. Then H is nonseparable.

Proof. By way of contradiction, suppose that H is separable. Let B1,B2 be
two distinct endblocks of H and, for each 1 ≤ i ≤ 2, let bi be the cut vertex of
H such that bi ∈ V (Bi). Set n

′
= |NG(V (B1 − b1)∪V (B2 − b2))∩ V (P )|, and

write NG(V (B1 − b1)∪ V (B2 − b2))∩ V (P ) = {x′
1, . . . , x

′
n′}, where x

′
1, . . . , x

′
n′

occur in this order along P . Define

N
′
= {(x′

ν , x
′
ν+1) | 1 ≤ ν ≤ n

′ − 1,NG({x′
ν , x

′
ν+1}) ∩ V (Bi − bi) �= ∅

for each i = 1, 2}.
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Clearly |N ′ | ≤ n
′ − 1. Since G is 3-connected, |NG(Bi − bi) ∩ V (P )| ≥ 2 for

each i, and hence n
′ ≥ 2 and |N ′ | ≥ 1. Our first aim is to prove n

′
= 2 and

|N ′ | = 1. It follows from the maximality of the length of P that for each
1 ≤ ν ≤ n

′ − 1, we have l(P [x
′
ν , x

′
ν+1]) ≥ 2 and, if (x

′
ν , x

′
ν+1) ∈ N

′
, then we

further have l(P [x
′
ν , x

′
ν+1]) ≥ 4 by the definition of N

′
. Hence 2d−1 = l(P ) ≥∑n

′−1
ν=1 l(P [x

′
ν , x

′
ν+1]) ≥ 4 + 2(n

′ − 2) = 2n
′
, which implies n

′ ≤ d − 1.

Claim 2.1. Let (x
′
ν , x

′
ν+1) ∈ N

′
. Then the following hold.

(i) l(P [x
′
ν , x

′
ν+1]) ≥ 2(d − (n

′ − 1)).

(ii) If |N ′ | < n
′ − 1, then l(P [x

′
ν , x

′
ν+1]) ≥ 2(d − (n

′ − 1)) + 2.

Proof. We may assume NG(x
′
ν) ∩ V (B1 − b1) �= ∅ and NG(x

′
ν+1) ∩ V (B2 −

b2) �= ∅. Let B1,ν denote the graph obtained from 〈V (B1)∪ {x′
ν}〉G by joining

x
′
ν and b1 (in the case where x

′
νb1 ∈ E(G), this means that we simply let

B1,ν = 〈V (B1)∪{x′
ν}〉G). Similarly let B2,ν+1 denote the graph obtained from

〈V (B2)∪{x′
ν+1}〉G by joining x

′
ν+1 and b2. Then B1,ν , B2,ν+1 are 2-connected.

Note that degB1,ν
(α) ≥ δ(G)−|(NG(V (B1−b1)∪V (B2−b2))∩V (P ))−{x′

ν}| ≥
d − (n

′ − 1) for all α ∈ V (B1 − b1) and, similarly degB2,ν+1
(α) ≥ d − (n

′ − 1)
for all α ∈ V (B2 − b2). This, in particular, implies that the average degrees
of V (B1 − b1) in B1,ν and V (B2 − b2) in B2,ν+1 are at least d − (n

′ − 1),
and hence d∗B1,ν

(x
′
ν , b1) ≥ d − (n

′ − 1) and d∗B2,ν+1
(b2, x

′
ν+1) ≥ d − (n

′ − 1) by
Theorem C. Since l(P [x

′
ν , x

′
ν+1]) ≥ d∗B1,ν

(x
′
ν , b1)+d∗H−(B1−b1)−(B2−b2)(b1, b2)+

d∗B2,ν+1
(b2, x

′
ν+1) ≥ d∗B1,ν

(x
′
ν , b1) + d∗B2,ν+1

(b2, x
′
ν+1) by the maximality of l(P ),

this implies l(P [x
′
ν , x

′
ν+1]) ≥ 2(d − (n

′ − 1)). Thus (i) is proved.
To prove (ii), assume that |N ′ | < n

′−1, and choose λ ∈ {1, . . . , n
′−1}−{ν}

such that (x
′
λ, x

′
λ+1) /∈ N

′
. Then we have NG({x′

λ, x
′
λ+1})∩V (B1 − b1) = ∅ or

NG({x′
λ, x

′
λ+1})∩ V (B2 − b2) = ∅. We may assume NG({x′

λ, x
′
λ+1})∩ V (B1 −

b1) = ∅. Then all vertices of B1 − b1 have degree at least d − (n
′ − 1) + 2 in

B1,ν , and hence d∗B1,ν
(xν , b1) ≥ d− (n

′ −1)+2 by Theorem C. Consequently it

again follows from the maximality of l(P ) that l(P [x
′
ν , x

′
ν+1]) ≥ d∗B1,ν

(x
′
ν , b1)+

d∗B2,ν+1
(b2, x

′
ν+1) ≥ 2(d − (n

′ − 1)) + 2. �

We return to the proof of the lemma. Suppose that |N ′ | ≥ 2, and take
(x

′
µ, x

′
µ+1), (x

′
µ′ , x

′
µ′+1

) ∈ N
′
with µ �= µ

′
. Then since n

′ ≤ d−1, l(P [x
′
µ, x

′
µ+1])

+ l(P [x
′
µ′ , x

′
µ′+1

]) ≥ 4(d − (n
′ − 1)) ≥ 2(d − (n

′ − 1)) + 4 by Claim 2.1 (i).



232 T. NAGAYAMA

Hence

l(P ) ≥ l(P [x
′
µ, x

′
µ+1]) + l(P [x

′
µ′ , x

′
µ′+1

]) +
∑

1≤ν≤n
′−1,

ν �=µ,µ
′

l(P [x
′
ν , x

′
ν+1])

≥ 2(d − (n
′ − 1)) + 4 + 2(n

′ − 3) = 2d,

which contradicts the assumption that l(P ) = 2d−1. Thus |N ′ | = 1. Further,
if |N ′ | < n

′ − 1, then it follows from Claim 2.1 (ii) that

l(P ) ≥
n
′−1∑

ν=1

l(P [x
′
ν , x

′
ν+1])

≥ 2(d − (n
′ − 1)) + 2 + 2(n

′ − 2) = 2d,

a contradiction. Consequently 1 = |N ′ | = n
′ − 1. Thus n

′
= 2.

Since G is 3-connected, this implies that there exist y ∈ V (P ) − {x′
1, x

′
2}

and a ∈ V (H) − (V (B1 − b1) ∪ V (B2 − b2)) such that ya ∈ E(G). Assume
first that y /∈ V (P [x

′
1, x

′
2]). We may assume y ∈ V (P [x

′
2, v]). Then since

l(P [x
′
2, y]) ≥ 2 by the maximality of l(P ), it follows from Claim 2.1 (i) that

l(P ) ≥ l(P [x
′
1, x

′
2]) + l(P [x

′
2, y])

≥ 2(d − 1) + 2 = 2d,

a contradiction. Assume now that y ∈ V (P [x
′
1, x

′
2]). As in the proof of Claim

2.1, we may assume NG(x
′
1) ∩ V (B1 − b1) �= ∅ and NG(x

′
2) ∩ V (B2 − b2) �= ∅.

Define B1,1 and B2,2 as in Claim 2.1. Then arguing as in Claim 2.1, we obtain

l(P [x
′
1, y]) ≥ d∗B1,1

(x
′
1, b1) + d∗H−(B1−b1)−(B2−b2)(b1, a) + 1

≥ d∗B1,1
(x

′
1, b1) + 1 ≥ (d − 1) + 1,

l(P [x
′
2, y]) ≥ d∗B2,2

(x
′
2, b2) + 1 ≥ (d − 1) + 1.

Consequently

l(P ) ≥ l(P [x
′
1, y]) + l(P [y, x

′
2]) ≥ 2((d − 1) + 1) = 2d,

which again contradicts the assumption that l(P ) = 2d − 1. This completes
the proof of the lemma. �

Now let n = |NG(H) ∩ V (P )|, and write NG(H) ∩ V (P ) = {x1, . . . , xn},
where x1, . . . , xn occur in this order along P . Define

N = {(xν , xν+1) | 1 ≤ ν ≤ n − 1, |NG({xν , xν+1}) ∩ V (H)| ≥ 2}.
Clearly |N | ≤ n − 1.
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Lemma 2.4. Suppose that |V (H)| ≥ 3. Then d ≥ 5, H ∼= Kd−2, NG(x) ∩
V (P ) = NG(H) ∩ V (P ) for all x ∈ V (H), and one of the following holds:

(i) NG(H) ∩ V (P ) = {v0, vd−1, v2d−1};
(ii) NG(H) ∩ V (P ) = {v0, vd, v2d−1};
(iii) NG(H) ∩ V (P ) = {v0, vd−1, v2d−2}; or
(iv) NG(H) ∩ V (P ) = {v1, vd, v2d−1}.

Proof. By Lemma 2.3, H is nonseparable. Since |V (H)| ≥ 3, this implies

d∗H(a, a
′
) ≥ 2 for all a, a

′ ∈ V (H) with a �= a
′
.(2.3)

It follows from the maximality of the length of P that for each 1 ≤ ν ≤ n− 1,
we have l(P [xν , xν+1]) ≥ 2 and, if (xν , xν+1) ∈ N , then we further have
l(P [xν , xν+1]) ≥ 4 by (2.3). Since G is 3-connected, there exist three indepen-
dent edges joining H and P , and hence n ≥ 3 and |N | ≥ 2. Consequently
2d− 1 = l(P ) ≥ ∑n−1

ν=1 l(P [xν , xν+1]) ≥ 4 · 2+2(n− 3) = 2n+2, which implies
n ≤ d − 2.

Claim 2.2. Let (xν , xν+1) ∈ N . Then the following hold.

(i) l(P [xν , xν+1]) ≥ d − (n − 2).

(ii) If equality holds in (i), then H ∼= Kd−(n−2)−1, and NG(x) ∩ V (P ) =
NG(H) ∩ V (P ) for all x ∈ V (H).

Proof. Let Hν denote the graph obtained from 〈V (H) ∪ {xν , xν+1}〉G by
joining xν and xν+1 (in the case where xνxν+1 ∈ E(G), this means that
we simply let Hν = 〈V (H) ∪ {xν , xν+1}〉G). Then Hν is 2-connected. Note
that degHν

(α) ≥ δ(G) − |(NG(H) ∩ V (P )) − {xν , xν+1})| ≥ d − (n − 2) for
all α ∈ V (H). This, in particular, implies that the average degree of V (H)
in Hν is at least d − (n − 2). Therefore d∗Hν

(xν , xν+1) ≥ d − (n − 2) by
Theorem C, and hence it follows from the maximality of the length of P that
l(P [xν , xν+1]) ≥ d∗Hν

(xν , xν+1) ≥ d − (n − 2). Thus (i) is proved.
To prove (ii), suppose that l(P [xν , xν+1]) = d−(n−2). Then d∗Hν

(xν , xν+1) =
d − (n − 2). Hence H ∼= Kd−(n−2)−1 by Theorem C and, since δ(G) ≥ d, this
forces NG(x) ∩ V (P ) = NG(H) ∩ V (P ) for each x ∈ V (H). �

For convenience, define an integer ε by letting ε = 0 if H ∼= Kd−(n−2)−1 and
NG(x)∩V (P ) = NG(H)∩V (P ) for all x ∈ V (H), and letting ε = 1 otherwise.
Then by Claim 2.2, l(P [xν , xν+1]) ≥ d − (n − 2) + ε for all (xν , xν+1) ∈ N .
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Hence we obtain

l(P ) ≥
n−1∑
ν=1

l(P [xν , xν+1])

=
∑

1≤ν≤n−1

(xν ,xν+1)∈N

l(P [xν , xν+1]) +
∑

1≤ν≤n−1

(xν ,xν+1)/∈N

l(P [xν , xν+1])

≥ (d − (n − 2) + ε)|N | + 2(n − 1 − |N |)
= (d − n)|N | + 2(n − 1) + ε|N |;

that is to say

l(P ) ≥ 2d + (d − n)(|N | − 2) − 2 + ε|N |.(2.4)

Recall that n ≤ d − 2 and |N | ≥ 2. Hence if |N | ≥ 3 or ε = 1, then it follows
from (2.4) that l(P ) ≥ 2d, a contradiction. Thus |N | = 2 and ε = 0. Hence
by the definition of ε, H ∼= Kd−(n−2)−1 and NG(x) ∩ V (P ) = NG(H) ∩ V (P )
for all x ∈ V (H). By the definition of N , this implies |N | = n − 1. Thus
2 = |N | = n− 1, which implies n = 3. Consequently H ∼= Kd−(n−2)−1 = Kd−2

and, by Claim 2.2 (i), l(P [xν , xν+1]) ≥ d− (n− 2) = d− 1 for each ν ∈ {1, 2}.
Since l(P ) = 2d − 1, this implies that one of (i) through (iv) holds. �

Lemma 2.5. Suppose that |V (H)| = 2. Then H ∼= K2, NG(x) ∩ V (P ) =
NG(H) ∩ V (P ) for each x ∈ V (H) and, further, one of the following holds.

(I) d = 4 and

(i) NG(H) ∩ V (P ) = {v0, v3, v7};
(ii) NG(H) ∩ V (P ) = {v0, v4, v7};
(iii) NG(H) ∩ V (P ) = {v0, v3, v6}; or
(iv) NG(H) ∩ V (P ) = {v1, v4, v7}.

(II) d = 5 and NG(H) ∩ V (P ) = {v0, v3, v6, v9}.
Proof. Since |V (H)| = 2, |NG(x) ∩ V (P )| ≥ d − 1 for each x ∈ V (H), and
hence n ≥ d − 1. It follows from the maximality of the length of P that for
each 1 ≤ ν ≤ n − 1, we have l(P [xν , xν+1]) ≥ 2 and, if (xν , xν+1) ∈ N , then
we further have l(P [xν , xν+1]) ≥ 3. Thus 2d − 1 = l(P ) ≥ 2(n − 1), which
implies n ≤ d. By the definition of N , this implies |N | = n− 1. Consequently

l(P [xν , xν+1]) ≥ 3 for each 1 ≤ ν ≤ n − 1,(2.5)

and hence

2d − 1 = l(P ) ≥ 3(n − 1)(2.6)



ON A CONJECTURE OF FAN 235

Since d ≥ 3 and n ≥ d−1, (2.6) implies n = d−1. Therefore NG(x)∩V (P ) =
NG(H) ∩ V (P ) for each x ∈ V (H). Since n = |NG(H) ∩ V (P )| ≥ 3 by
the assumption that G is 3-connected, we also have d ≥ 4. Further since
2d − 1 ≥ 3(d − 2) by (2.6), d = 4 or 5. Since l(P ) = 2d − 1, it now follows
from (2.5) that (I) or (II) holds according as d = 4 or 5. �

Next we show that (iii), (iv) of Lemma 2.4 and (iii), (iv) of Lemma 2.5
(I) do not actually occur (Lemma 2.7). For this purpose, we first prove the
following lemma.

Lemma 2.6. Suppose that |V (H)| ≥ 2, and (iii) of Lemma 2.4 or (I) (iii) of
Lemma 2.5 holds. Then NG({v1, . . . , vd−2}) − {v1, . . . , vd−2} = NG({vd, . . . ,
v2d−3}) − {vd, . . . , v2d−3} = {v0, vd−1, v2d−2}.

Proof. By Lemmas 2.4 and 2.5, d ≥ 4. Since H ∼= Kd−2, H contains a path Q
of length d−3. Let P

′
denote the (v0, v2d−1)-path of length 2d−1 obtained from

P by replacing P [v1, vd−2] by Q. Set X = {v1, . . . , vd−2}, and let H
′

denote
the component of G−P

′
such that X ⊂ V (H

′
). Since |V (H

′
)| ≥ |X| = d− 2,

we obtain H
′ ∼= Kd−2 by applying Lemmas 2.4 and 2.5 to P

′
and H

′
. In

particular, X = V (H
′
). Since H

′
is a component of G − P

′
, this implies

NG(X)∩V (P
′
) = NG(X)−X. Since v0, vd−1 ∈ NG(X), it again follows from

Lemmas 2.4 and 2.5 that

NG(x) − X = NG(X) − X for all x ∈ X,(2.7)

and NG(X)−X = {v0, vd−1, v2d−2} or {v0, vd−1, v2d−1}. But if NG(X)−X =
{v0, vd−1, v2d−1}, then v1v2d−1 ∈ E(G) by (2.7), and hence (v0, Q, v2d−2, v2d−3,
. . . , v1, v2d−1) is a (v0, v2d−1)-path with length 3d − 3 > 2d, which contra-
dicts the assumption that d∗G(v0, v2d−1) = 2d − 1. Thus NG(X) − X =
{v0, vd−1, v2d−2}.

Let now Y = {vd, . . . , v2d−3}. Then vd−1, v2d−2 ∈ NG(Y ). Hence applying
Lemmas 2.4 and 2.5 to the path obtained from P by replacing P [vd, v2d−3] by
Q, we obtain (〈Y 〉G ∼= Kd−2 and) NG(Y ) − Y = {v0, vd−1, v2d−2}. �

Lemma 2.7. Suppose that |V (H)| ≥ 2. Then one of the following holds.

(I) d ≥ 4, H ∼= Kd−2, NG(x) ∩ V (P ) = NG(H) ∩ V (P ) for all x ∈ V (H),
and

(i) NG(H) ∩ V (P ) = {v0, vd−1, v2d−1} or
(ii) NG(H) ∩ V (P ) = {v0, vd, v2d−1}; or

(II) d = 5, H ∼= K2, NG(x) ∩ V (P ) = NG(H) ∩ V (P ) for all x ∈ V (H),
and NG(H) ∩ V (P ) = {v0, v3, v6, v9}.
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Proof. In view of Lemmas 2.4 and 2.5, it suffices to show that NG(H) ∩
V (P ) �= {v0, vd−1, v2d−2}, {v1, vd, v2d−1}. Suppose that NG(H) ∩ V (P ) =
{v0, vd−1, v2d−2} or {v1, vd, v2d−1}. By symmetry, we may assume that NG(H)∩
V (P ) = {v0, vd−1, v2d−2}. Then by Lemmas 2.4 and 2.5, d ≥ 4, H ∼= Kd−2

and

NG(x) ∩ V (P ) = {v0, vd−1, v2d−2} for all x ∈ V (H).(2.8)

By Lemma 2.6, NG(v2d−1) ∩ V (P ) ⊆ {v0, vd−1, v2d−2}. Since δ(G) ≥ d ≥ 4,
this together with (2.8) implies that there exists z ∈ V (G−P −H) such that
v2d−1z ∈ E(G). Let H

′
denote the component of G−P with z ∈ V (H

′
). Then

by Lemma 2.6,

NG(H
′
) ∩ V (P ) ⊆ {v0, vd−1, v2d−2, v2d−1}.(2.9)

In view of Lemma 2.1, (2.9) implies |V (H
′
)| ≥ 2. Since v2d−1 ∈ NG(H

′
) ∩

V (P ), it now follows from (2.9) and Lemmas 2.4 and 2.5 that H
′ ∼= Kd−2, and

NG(x) ∩ V (P ) = {v0, vd−1, v2d−1} for all x ∈ V (H
′
).(2.10)

Since H ∼= Kd−2 and H
′ ∼= Kd−2, H and H

′
contain paths Q and Q

′
of length

d − 3, respectively. But then by (2.8) and (2.10), (v0, Q, v2d−2, v2d−3, . . . , vd,
vd−1, Q

′
, v2d−1) is a (v0, v2d−1)-path with length 3d− 3, which contradicts the

assumption that d∗G(v0, v2d−1) = 2d − 1. This completes the proof of the
lemma. �

Lemma 2.8. (i) Suppose that (I) (i) of Lemma 2.7 holds, and let X =
{v1, . . . , vd−2}. Then 〈X〉G ∼= Kd−2 and NG(x) − X = {v0, vd−1, v2d−1}
for all x ∈ X.

(ii) Suppose that (I) (ii) of Lemma 2.7 holds, and let X
′
= {vd+1, . . . , v2d−2}.

Then 〈X〉G ∼= Kd−2 and NG(x) − X = {v0, vd, v2d−1} for all x ∈ X.

Proof. Let X be as in (i). We argue as in Lemma 2.6. Let P
′

denote the
path obtained from P by replacing P [v1, vd−2] by a path of length d − 3 in
H. Applying Lemma 2.7 to P

′
, we see that 〈X〉G is a component of G − P

′
,

〈X〉G ∼= Kd−2, and NG(x) − X = NG(X) − X for all x ∈ X. Since v0, vd−1 ∈
NG(X), we also have NG(X)−X = {v0, vd−1, v2d−1} by Lemma 2.7. Thus (i)
is proved, and (ii) can be verified in a similar way. �

Lemma 2.9. Suppose that (II) of Lemma 2.7 holds. For j with 0 ≤ j ≤ 2,
let Xj = {v3j+1, v3j+2}. Then for each 0 ≤ j ≤ 2, we have 〈Xj〉G ∼= K2 and
NG(x) − Xj = {v0, v3, v6, v9} for every x ∈ Xj .
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Proof. Let 0 ≤ j ≤ 2. Let P
′
denote the path obtained from P by replacing

P [v3j+1, v3j+2] by H, and let H
′
denote the component of G − P containing

Xj . Since v3j, v3j+3 ∈ NG(H
′
), (I) of Lemma 2.7 cannot hold for P

′
and H

′
,

and hence (II) of Lemma 2.7 holds. In particular, Xj = V (H
′
), and hence

NG(Xj) ∩ V (P
′
) = NG(Xj) − Xj . Consequently it follows from Lemma 2.7

(II) that NG(x) − Xj = {v0, v3, v6, v9} for every x ∈ Xj . �

2.2. Proof of the proposition

We now prove three lemmas concerning the structure of 〈V (H1) ∪ V (H2) ∪
V (P )〉G, where H1 and H2 are components of G − P .

Lemma 2.10. Let H1, H2 be components of G−P with |V (H1)| = |V (H2)| =
1. Then one of the following holds:

(i) NG(H1) ∩ V (P ) = NG(H2) ∩ V (P ); or
(ii) d = 3, and NG(H1) ∩ V (P ) = {v0, vp, v5}

and NG(H2) ∩ V (P ) = {v0, vq, v5}, where {p, q} = {2, 3}.

Proof. Write V (H1) = {a1} and V (H2) = {a2}. We may assume

NG(a1) ∩ V (P ) �= NG(a2) ∩ V (P ).(2.11)

Claim 2.3. Both H1 and H2 satisfy (iii) of Lemma 2.1.

Proof. Suppose that H1 satisfies (i) or (ii) of Lemma 2.1. By symmetry,
we may assume H1 satisfies Lemma 2.1 (ii). Then by (2.11) and Lemma
2.1, v0 ∈ NG(a2), and either v2 ∈ NG(a2) or v3 ∈ NG(a2). If v2 ∈ NG(a2),
(v0, a2, v2, v1, a1, v3, v4, . . . , v2d−1) is a (v0, v2d−1)-path with length 2d + 1; if
v3 ∈ NG(a2), (v0, a2, v3, v2, v1, a1, v5, . . . , v2d−1) is a (v0, v2d−1)-path with length
2d. In either case, we get a contradiction to the assumption that d∗G(v0, v2d−1) =
2d − 1. �

By (2.11) and Claim 2.3, there exist m,m
′
with m �= m

′
and 0 ≤ m,m

′ ≤
d− 2 such that NG(a1)∩ V (P ) = {v2i|0 ≤ i ≤ m} ∪ {v2i+1|m + 1 ≤ i ≤ d− 1}
and NG(a2) ∩ V (P ) = {v2i|0 ≤ i ≤ m

′} ∪ {v2i+1|m′
+ 1 ≤ i ≤ d − 1}. We

may assume 0 ≤ m < m
′ ≤ d − 2. If m + 1 < m

′
, (v0, . . . , v2m, a1, v2(m+1)+1,

v2(m+1), a2, v2(m+1)+2, . . . , v2d−1) is a (v0, v2d−1)-path with length 2d, a con-
tradiction. Thus m + 1 = m

′
. Suppose that d ≥ 4. Then we have m ≥

1 or m
′ ≤ d − 3. By symmetry, we may assumme m ≥ 1. But then

(v0, . . . , v2(m−1), a2, v2(m+1), v2m+1, v2m, a1, v2(m+1)+1, . . . , v2d−1) is a (v0, v2d−1)
-path with length 2d, a contradiction. Thus d = 3, and hence (ii) holds. �
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Lemma 2.11. Let H1, H2 be components of G − P with |V (H1)| = 1 and
|V (H2)| ≥ 2. Then d = 4, and one of the following holds:

(i) NG(H1) ∩ V (P ) = {v0, v3, v5, v7}, NG(H2) ∩ V (P ) = {v0, v3, v7}; or
(ii) NG(H1) ∩ V (P ) = {v0, v2, v4, v7}, NG(H2) ∩ V (P ) = {v0, v4, v7}.

Proof. By Lemma 2.7, we have d ≥ 4. By symmetry, we may assume that H2

satisfies (I) (i) or (II) of Lemma 2.7. Then it follows from (i) of Lemma 2.8 and
Lemma 2.9 that NG({v1, v2}) ⊆ V (P ), which implies {v1, v2} ∩ NG(H1) = ∅.
By Lemma 2.1, this implies NG(H1) ∩ V (P ) = {v0} ∪ {v2i+1|1 ≤ i ≤ d − 1}.
In particular,

v3 ∈ NG(H1)(2.12)

and

v5 ∈ NG(H1).(2.13)

In view of Lemma 2.9, (2.13) implies that H2 cannot satisfy (II) of Lemma 2.7.
Thus H2 satisfies (I) (i) of Lemma 2.7. Consequently it follows from (2.12)
and Lemma 2.8 (i) that d = 4, and hence (i) holds. �

Lemma 2.12. Let H1, H2 be components of G − P with |V (H1)| ≥ 2 and
|V (H2)| ≥ 2. Then one of the following holds:

(i) NG(H1) ∩ V (P ) = NG(H2) ∩ V (P ); or
(ii) NG(H1) ∩ V (P ) = {v0, vd−1, v2d−1}, NG(H2) ∩ V (P ) = {v0, vd, v2d−1}.

Proof. We may assume

NG(H1) ∩ V (P ) �= NG(H2) ∩ V (P ).(2.14)

If d �= 5, the desired conclusion immediately follows from Lemma 2.7. Thus we
may assume d = 5. It suffices to show that neither H1 nor H2 satisfies (II) of
Lemma 2.7. Suppose that H1 satisfies (II) of Lemma 2.7. Then v3 ∈ NG(H1).
By (2.14), H2 satisfies (I) of Lemma 2.7. We may assume H2 satisfies (I) (i) of
Lemma 2.7. But then it follows from (i) of Lemma 2.8 that NG(v3) ⊂ V (P ),
which contradicts the earlier assertion that v3 ∈ NG(H1). �

We are now in a position to complete the proof of Proposition 2.1.

Case 1 |V (H)| = 1 for every component H of G − P .
We first consider the case where NG(H1) ∩ V (P ) = NG(H2) ∩ V (P ) for

any two components H1, H2 of G − P . If (i) of Lemma 2.1 holds for every
component H of G − P , or if (ii) of Lemma 2.1 holds for every component
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H of G − P , then by Lemma 2.2, (i) of Proposition 2.1 holds with S =
NG(G − P ) ∩ V (P ). If (iii) of Lemma 2.1 holds for every component H of
G−P , then by Lemma 2.2, (ii) of Proposition 2.1 holds. We now consider the
case where there exist components H1, H2 of G−P such that NG(H1)∩V (P ) �=
NG(H2) ∩ V (P ). In this case, it follows from Lemma 2.10 that d = 3, and
NG(H) ∩ V (P ) = {v0, v2, v5} or {v0, v3, v5} for each component H of G − P .
Since v1v4, v1v3, v2v4 /∈ E(G) by Lemma 2.2, this implies that (iv) holds with
{a, b} = {v2, v3}.
Case 2 Suppose that there exist components H1 and H2 of G − P such that
|V (H1)| = 1 and |V (H2)| ≥ 2.

By Lemma 2.11, d = 4. By symmetry, we may assume that (i) of Lemma
2.11 holds. Then by Lemma 2.11, (iii) of Lemma 2.1 holds with m = 0 for each
component H of G − P with |V (H)| = 1, and (I) (i) of Lemma 2.7 holds for
each component H of G−P with |V (H)| ≥ 2. This in particular implies that
NG(v4),NG(v6) ⊆ V (P ). Hence NG(v4),NG(v6) ⊆ {v0, v3, v5, v7} by Lemma
2.2. Since δ(G) ≥ d = 4, this forces NG(v4) = NG(v6) = {v0, v3, v5, v7}.
Also NG(v1) − {v1, v2} = NG(v2) − {v1, v2} = {v0, v3, v7} by Lemma 2.8 (i).
Consequently (vi) holds with a = v3 and b = v5.

Case 3 |V (H)| ≥ 2 for every component H of G − P .
We first consider the case where NG(H1) ∩ V (P ) = NG(H2) ∩ V (P ) for

any two components H1, H2 of G−P . Assume for the moment that (I) (i) of
Lemma 2.7 holds for every component H of G−P . Set Y = {vd, vd+1, . . . , v2d−2}.
Then NG(Y ) ⊆ V (P ). Since NG({v1, v2, . . . , vd−2}) ∩ Y = ∅ by Lemma 2.8
(i), this implies NG(Y ) − Y ⊆ {v0, vd−1, v2d−1}, and hence NG(Y ) − Y =
{v0, vd−1, v2d−1} by the assumption that G is 3-connected. Therefore it follows
from Lemma 2.8 (i) that (iii) holds with a = vd−1 and H0 = 〈Y 〉G. Similarly if
(I) (ii) of Lemma 2.7 holds for every component H of G−P , then by Lemma
2.8 (ii), (iii) holds with a = vd and H0 = 〈{v1, v2, . . . , vd−1}〉G. Also if (II) of
Lemma 2.7 holds for every component H of G − P , then by Lemma 2.9, (v)
holds with S = {v0, v3, v6, v9}. We now consider the case where there exist
components H1,H2 of G−P such that NG(H1)∩V (P ) �= NG(H2)∩V (P ). In
this case, it follows from Lemma 2.12 that (I) (i) or (I) (ii) of Lemma 2.7 holds
for each component H of G−P . Therefore it follows from Lemma 2.8 that (iv)
holds with {a, b} = {vd−1, vd}. This completes the proof of the proposition.

§3. Codistance in 3-connected graphs

As corollaries of Proposition 2.1, we now derive results concerning the dis-
tribution of pairs of vertices with small codistance.
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Corollary 3.1. Let d ≥ 3 be an integer, and let G be a 3-connected graph with
|V (G)| ≥ 2d and δ(G) ≥ d. Suppose that d∗(G) ≤ 2d−1. Suppose further that

if |V (G)| = 2d, then d∗(G) ≤ 2d − 2.(3.1)

Let A1, A2 be subsets of V (G) with A1 �= ∅, A2 �= ∅ and |A1∪A2| ≥ 2. Suppose
that d∗G(a1, a2) ≤ 2d − 1 for all a1 ∈ A1 and a2 ∈ A2 with a1 �= a2. Then one
of the following holds:

(i) |A1| + |A2| ≤ |V (G)|; or

(ii) there exists S ⊆ V (G) with |S| = d such that E(G − S) = ∅.

Proof. By Theorem B, d∗(G) ≥ 2d − 2, and hence d∗(G) = 2d − 2 or 2d − 1.
Take u, v ∈ V (G) with u �= v such that d∗G(u, v) = d∗(G). If d∗G(u, v) = 2d−2,
then (i) or (ii) of Theorem B holds with m = 2d. If d∗G(u, v) = 2d − 1, then
|V (G)| ≥ 2d + 1 by (3.1), and hence one of (i) through (vi) of Proposition 2.1
holds. If (i) of Theorem B or (i) of Proposition 2.1 holds, then (ii) holds. Thus
we may assume (ii) of Theorem B or one of (ii) through (vi) of Proposition
2.1 holds.

Case 1. (ii) of Theorem B holds.
Since |V (G)| ≥ 2d and |V (H)| = d−2 for each component H of G−{u, v, a},

G − {u, v, a} contains at least three components.(3.2)

Since d ≥ 4,

3d − 4 ≥ 2d.(3.3)

Claim 3.1. Let x ∈ V (G) − {u, v, a} and y ∈ {u, v, a}. Then d∗G(x, y) ≥ 2d.

Proof. Let H1 be the component of G − {u, v, a} with x ∈ V (H1). We
may assume y = v (note that the roles of u, v, a are symmetric in (ii) of
Theorem B). By (3.2), there exist two components H2, H3 of G − {u, v, a}
with x /∈ V (H2) ∪ V (H3). For each 1 ≤ i ≤ 3, Hi

∼= Kd−2, and hence Hi

contains a path Qi of length d − 3; in particular, we can choose Q1 so that x
is the initial vertex of Q1. Then (Q1, u,Q2, a,Q3, v) is an (x, y)-path of length
3d − 4, and hence d∗G(x, y) ≥ 2d by (3.3). �

Claim 3.2. Let x, y ∈ V (G) − {u, v, a} with x �= y. Then d∗G(x, y) ≥ 2d.
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Proof. Let H1, H2 be the components of G − {u, v, a} such that x ∈ V (H1)
and y ∈ V (H2). We divide the proof into two cases according as H1 = H2 or
H1 �= H2.

Case a. H1 = H2.
By (3.2), there exist two components H3, H4 of G−{u, v, a} with {x, y} ∩

(V (H3) ∪ V (H4)) = ∅. For each 3 ≤ i ≤ 4, let Qi be a path of length d − 3 in
Hi. Then (x, u,Q3, a,Q4, v, y) is an (x, y)-path of length 2d.

Case b. H1 �= H2.
Again by (3.2), there exists a component H5 of G − {u, v, a} with {x, y} ∩

V (H5) = ∅. Let Q5 be a path of length d − 3 in H5, and let Q2 be a path of
length d − 3 in H2 with terminal vertex y. Take z ∈ V (H1) with z �= x (note
that d − 2 ≥ 2). Then (x, u, z, a,Q5, v,Q2) is an (x, y)-path of length 2d. �

It follows from Claims 3.1 and 3.2 that A1, A2 ⊆ {u, v, a}, and hence |A1|+
|A2| ≤ 6 ≤ 2d ≤ |V (G)|.
Case 2. (ii) of Proposition 2.1 holds.

Since |V (G)| ≥ 2d+1, we have |V (G)−S| ≥ d+1. Write E(G−S) = {z1z2}.

Claim 3.3. Let x ∈ V (G) − S and y ∈ S. Then d∗G(x, y) ≥ 2d.

Proof. Since G is 3-connected, G − y is 2-connected, and hence there exist
y1, y2 ∈ S − {y} with y1 �= y2 such that z1y1, z2y2 ∈ E(G). Assume first that
x /∈ {z1, z2}. Since each vertex in V (G)−S−{z1, z2} is agjacent to all vertices
in S, G−{x, z1, z2, y1} contains a (y2, y)-path P of length 2d−4, and we have
xy1 ∈ E(G). Thus (x, y1, z1, z2, P ) is an (x, y)-path of length 2d. Assume
now that x ∈ {z1, z2}. We may assume x = z1. Then G − {x, z2} contains a
(y2, y)-path Q of length 2d − 2. Thus (x, z2, Q) is an (x, y)-path of length 2d.
�

Claim 3.4. Let x, y ∈ V (G) − S with x �= y. Then d∗G(x, y) ≥ 2d.

Proof. Since δ(G) ≥ d ≥ 3, there exists y0 ∈ S such that z1y0, z2y0 ∈
E(G). Since G is 3-connected, there exist y1, y2 ∈ S − {y0} with y1 �= y2

such that z1y1, z2y2 ∈ E(G). First assume {x, y} ∩ {z1, z2} = ∅. Then G −
{x, z1, z2, y0, y1} contains a (y2, y)-path P of length 2d− 5. Thus (x, y1, z1, y0,
z2, P ) is an (x, y)-path of length 2d. Next assume |{x, y} ∩ {z1, z2}| = 1.
We may assume x = z1. Then G − {x, z2, y0} contains a (y2, y)-path Q of
length 2d− 3. Thus (x, y0, z2, Q)is an (x, y)-path of length 2d. Finally assume
{x, y} = {z1, z2}. We may assume x = z1 and y = z2. Then G − {x, y}
contains a (y1, y2)-path R of length 2d − 2. Thus (x,R, y) is an (x, y)-path of
length 2d. �
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It follows from Claims 3.3 and 3.4 that A1, A2 ⊆ S, and hence |A1|+ |A2| ≤
2d < |V (G)|.
Case 3. (iii) of Proposition 2.1 holds.

Since δ(G) ≥ d,

degH0
(w) ≥ d − 3 for all w ∈ V (H0),(3.4)

and

|NG(w) ∩ {u, v, a}| ≥ 2 for all w ∈ V (H0).(3.5)

Claim 3.5. Let w1, w2 ∈ V (H0) with w1 �= w2. Then H0 contains a (w1, w2)-
path with length at least d − 3.

Proof. In view of (3.4), it is easy to verify the claim for d = 4. Thus suppose
that d ≥ 5. Then by (3.4), H0 is 2-connected. Hence again by (3.4), the
desired conclusion follows from Theorem C. �

Now in view of Claim 3.5 and (3.5), we can argue as in Case 1 to obtain
A1, A2 ⊆ {u, v, a}, and hence |A1| + |A2| ≤ 6 ≤ 2d ≤ |V (G)|.
Case 4. (iv) of Proposition 2.1 holds.

If no component H of G − {u, v, a, b} satisfies NG(H) − V (H) = {u, v, b},
then d∗G(u, v) = 2d− 2, which contradicts the assumption that we are in Case
(iv) of Proposition 2.1. Further if there exists precisely one component, say
H

′
0, of G−{u, v, a, b} such that NG(H

′
0)− V (H

′
0) = {u, v, b}, then in the case

where d ≥ 4, (iii) of Proposition 2.1 holds with H0 = 〈V (H
′
0) ∪ {b}〉G and, in

the case where d = 3, (ii) of Proposition 2.1 holds with S = {u, v, a}. Thus
we may assume

there exist at least two components H of G − {u, v, a, b}(3.6)
such that NG(H) − V (H) = {u, v, b}.

Similarly we may assume

there exist at least two components H of G − {u, v, a, b}(3.7)
such that NG(H) − V (H) = {u, v, a}.

Note that (3.6) and (3.7) imply that |V (G)| ≥ 4d − 4. We divide the proof
into two cases according as d = 3 or d ≥ 4.

Case a. d ≥ 4.
Since ab ∈ E(G), we can adapt to this case the construction of desired

paths in Case 1 by replacing the segment (a) of length 0 by the path (a, b) or
(b, a) of length 1 or the path (b) of length 0. Consequently, arguing as in Case
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1, we obtain A1, A2 ⊆ {u, v, a, b} and hence |A1|+ |A2| ≤ 8 < |V (G)| (thus we
do not need (3.6), (3.7) in this case).

Case b. d = 3.
Note that for each component H of G − {u, v, a, b}, |V (H)| = 1. Write

NG(a) − {u, v, a, b} = {α1, . . . , αλ},
NG(b) − {u, v, a, b} = {β1, . . . , βµ}.

We have λ ≥ 2 and µ ≥ 2 by (3.6) and (3.7), respectively. Note also that for
each 1 ≤ i ≤ λ and 1 ≤ j ≤ µ, NG(αi) = {u, v, a} and NG(βj) = {u, v, b} by
(iv) of Proposition 2.1.

Claim 3.6. Let x ∈ V (G)−{u, v, a, b} and y ∈ {u, v, a, b}. Then d∗G(x, y) ≥ 6.

Proof. By symmetry, we may assume x = α1. Then

(α1, a, α2, v, β1, b, β2, u), (α1, a, α2, u, β1, b, β2, v),
(α1, u, β1, b, β2, v, α2, a) or (α1, a, α2, u, β1, v, β2, b)

is an (x, y)-path of length 7 according as y = u, v, a or b. �

Claim 3.7. Let x, y ∈ V (G) − {u, v, a, b} with x �= y. Then d∗G(x, y) ≥ 6.

Proof. By symmetry, we may assume that either x = α1 and y = β1, or
x = α1 and y = α2. If x = α1 and y = β1, (α1, a, α2, u, β2, v, β1) is an (x, y)-
path of length 6. If x = α1 and y = α2, (α1, u, β1, b, β2, v, α2) is an (x, y)-path
of length 6 �

It follows from Claims 3.6 and 3.7 that A1, A2 ⊆ {u, v, a, b}, and hence
|A1| + |A2| ≤ 8 = 4d − 4 ≤ |V (G)|.
Case 5. (v) of Proposition 2.1 holds.

Aguing as in the proof of Case 1, we see that A1, A2 ⊆ S, and hence
|A1| + |A2| ≤ 8 < 2d < |V (G)|.
Case 6. (vi) of Proposition 2.1 holds.

Let F1, . . . , Fλ be the components of G − {u, v, a, b} having cardinality 1,
and let H1, . . . ,Hµ be the components of G − {u, v, a, b} having cardinality
2. For each 1 ≤ i ≤ λ, write V (Fi) = {zi}. If λ ≤ 1 or µ = 0, then
d∗G(u, v) = 6 = 2d − 2, a contradiction. Thus we have λ ≥ 2 and µ ≥ 1.
Further if λ = 2, then (iii) of Proposition 2.1 holds with H0 = 〈{z1, z2, b}〉G.
Thus we may assume λ ≥ 3.

Claim 3.8. Let x ∈ V (G) − {u, v, a, b} and y ∈ V (G) with x �= y. Then
d∗G(x, y) ≥ 8.
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Proof. By symmetry, we may assume that either x ∈ V (H1) and y ∈
V (H2), or x, y ∈ V (H1) ∪ {z1, z2, u, v, a, b}. If x ∈ V (H1) and y ∈ V (H2),
then (x, u, z1, a, z2, b, z3, v, y) is an (x, y)-path of length 8. If x, y ∈ V (H1) ∪
{z1, z2, u, v, a, b}, then since 〈V (H1) ∪ {z1, z2, z3, u, v, a, b}〉G satisfies (ii) of
Proposition 2.1, the desired conclusion follows from Claims 3.3 and 3.4. �

It follows from Claim 3.8 that A1, A2 ⊆ {u, v, a, b}, and hence |A1|+ |A2| ≤
8 < |V (G)|. This completes the proof of Corollary 3.1. �

Corollary 3.2. Let d, G, A1,A2 be as in Corollary 3.1. Then one of the
following holds:

(i) |A1| + |A2| ≤ |V (G)| + d; or

(ii) |V (G)| = 2d, and there exists S ⊆ V (G) with |S| = d such that E(G −
S) = ∅.

Proof. By Corollary 3.1, (i) or (ii) of Corollary 3.1 holds. If (i) of Corollary
3.1 holds, then clearly (i) holds. Thus we may assume that (ii) of Corollary
3.1 holds. Note that

if |V (G)| ≥ 2d + 1,(3.8)
then d∗G(x, y) ≥ 2d for all x, y ∈ V (G) − S with x �= y.

Now if |V (G)| = 2d, then (ii) holds. Thus we may assume |V (G)| ≥ 2d + 1.
Then it follows from (3.8) that we have A1 ⊆ S or A2 ⊆ S, and hence |A1| +
|A2| ≤ |V (G)| + d, as desired. �

Corollary 3.3. Let d, G, A1,A2 be as in Corollary 3.1, and suppose that
d∗G(a1, a2) ≤ 2d − 2 for all a1 ∈ A1 and a2 ∈ A2 with a1 �= a2. Then |A1| +
|A2| ≤ |V (G)|.

Proof. As in the proof of Corollary 3.2, we may assume that (ii) of Corollary
3.1 holds. Then

d∗G(x, y) ≥ 2d − 1 for all x ∈ S and all y ∈ V (G) − S.(3.9)

If |V (G)| ≥ 2d + 1, then it follows from (3.8) and (3.9) that A1, A2 ⊆ S, and
hence |A1| + |A2| ≤ 2d < |V (G)|. Thus we may assume |V (G)| = 2d. Then
|V (G) − S| = |S| = d. Further it follows from (3.9) that we have A1, A2 ⊆ S
or A1, A2 ⊆ V (G) − S. Consequently |A1| + |A2| ≤ 2d = |V (G)|, as desired.
�
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§4. Proof of Main Theorem

Let G, C, H, k, r be as in the Main Theorem. Set p = |NG(H) ∩ V (C)|,
and write NG(H) ∩ V (C) = {u1, u2, · · · , up}, where u1, . . . , up are in this
order along C (indices are to be read modulo p). For each 1 ≤ i ≤ p, let
Hi denote the graph obtained from 〈V (H) ∪ {ui, ui+1}〉G by joining ui and
ui+1 (in the case where uiui+1 ∈ E(G), this means that we simply let Hi =
〈V (H) ∪ {ui, ui+1}〉G). Define

T = {ui | 1 ≤ i ≤ p, |NG({ui, ui+1}) ∩ V (H)| ≥ 2},
T = (NG(H) ∩ V (C)) − T,

T1 = {ui ∈ T | d∗Hi
(ui, ui+1) < k},

T2 = {ui ∈ T | d∗Hi
(ui, ui+1) ≥ k}.

Set h = |V (H)|, s = |T |, t1 = |T1|, t2 = |T2|. The following claims immediately
follow from the definition of Hi and T .

Claim 4.1. Let 1 ≤ i ≤ p, and take a ∈ NG(ui) ∩ V (H) and b ∈ NG(ui+1) ∩
V (H). Then

d∗Hi
(ui, ui+1) ≥

{
2 if a = b,
d∗H(a, b) + 2 otherwise.

Claim 4.2. Let ui ∈ T (1 ≤ i ≤ p). Then

|NG(ui) ∩ V (H)| = |NG(ui+1) ∩ V (H)| = 1.

The following claim follows from the assumption that C is locally longest
with respect to H in G.

Claim 4.3. Let 1 ≤ i ≤ p. Then

l(C[ui, ui+1]) ≥ d∗Hi
(ui, ui+1).

Now if t1 ≤ k, then the desired conclusion follows from Proposition D. Thus
we may assume that

t1 > k.(4.1)

Suppose that δ(H) ≥ k/2. Then since H is 3-connected and h− 1 ≥ k− 2, we
see that d∗H(a, b) ≥ k − 2 for all a, b ∈ V (H) with a �= b by applying Theorem
B with m = k. Hence by Claim 4.1, d∗Hi

(ui, ui+1) ≥ k for each ui ∈ T .



246 T. NAGAYAMA

This implies that T1 = ∅, which contradicts (4.1). Thus δ(G) ≤ k−1
2 . Since

δ(H) ≥ �(k − 1)/2� by assumption, this implies

δ(H) =
⌊

k − 1
2

⌋
.(4.2)

Again since H is 3-connected, δ(H) ≥ 3, and hence

k ≥ 7(4.3)

by (4.2). Let EG(C,H) denote the set of those edges of G which join a vertex
of C and a vertex of H.

Claim 4.4. (I) One of the following holds:

(i) |EG(C,H)| ≤ h

2
t1 + ht2 + s; or

(ii) k is even and there exists S ⊆ V (H) with |S| = δ(H) such that
E(H − S) = ∅.

(II) If G satisfies (I) (ii), then |EG(C,H)| ≤ h + δ(H)
2

t1 + ht2 + s.

Proof. We first show that either

|NG(ui) ∩ V (H)| + |NG(ui+1) ∩ V (H)| ≤ h(4.4)

for every ui ∈ T1 or (I) (ii) holds, and that if G satisfies (I) (ii), then

|NG(ui) ∩ V (H)| + |NG(ui+1) ∩ V (H)| ≤ h + δ(G)(4.5)

for every ui ∈ T . Let ui ∈ T1. Then by the definition of T (⊇ T1), there
exist a ∈ NG(ui) ∩ V (H) and b ∈ NG(ui+1) ∩ V (H) with a �= b, and hence
NG(ui) ∩ V (H) and NG(ui+1) ∩ V (H) are nonempty subsets of H satisfiying
|(NG(ui) ∩ V (H)) ∪ (NG(ui+1) ∩ V (H))| ≥ 2. Since d∗Hi

(ui, ui+1) < k by the
definition of T1, it follows from Claim 4.1 that

d∗H(a, b) ≤ d∗Hi
(ui, ui+1) − 2 ≤ k − 3(4.6)

for all a ∈ NG(ui) ∩ V (H) and b ∈ NG(ui+1) ∩ V (H) with a �= b. Also recall
that h ≥ k − 1. We may assume (4.4) does not hold. We aim at showing that
(I) (ii) and (4.5) hold. If k is odd, then it follows from (4.6) and (4.2) that
d∗G(a, b) ≤ 2δ(H) − 2 for all a ∈ NG(ui) ∩ V (H) and b ∈ NG(ui+1) ∩ V (H)
with a �= b, and we also have h ≥ 2δ(H), and hence by Corollary 3.3, we
get a contradiction to the assumption that (4.4) does not hold. Thus k is
even. Again it follows from (4.6) and (4.2) that d∗G(a, b) ≤ 2δ(H) − 1 for
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all a ∈ NG(ui) ∩ V (H) and b ∈ NG(ui+1) ∩ V (H) with a �= b, and we also
have h ≥ 2δ(H) + 1, and hence by Corollary 3.1, (I) (ii) holds. Further since
h ≥ 2δ(H) + 1, it follows from Corollary 3.2 that (4.5) holds.

Now for each ui ∈ T2, we clearly have

|NG(ui) ∩ V (H)| + |NG(ui+1) ∩ V (H)| ≤ |V (H)| + |V (H)| ≤ 2h(4.7)

and, for each ui ∈ T

|NG(ui) ∩ V (H)| + |NG(ui+1) ∩ V (H)| = 2(4.8)

by Claim 4.2. Define

θ =

{
h + δ(H) if G satisfies (I) (ii);
h otherwise.

Then it follows from (4.7), (4.8), and (4.4) or (4.5) that

|EG(C,H)| =
∑

u∈NG(H)∩V (C)

|NG(u) ∩ V (H)|

=
∑

ui∈NG(H)∩V (C)

|NG(ui) ∩ V (H)| + |NG(ui+1) ∩ V (H)|
2

=
∑

ui∈T1

|NG(ui) ∩ V (H)| + |NG(ui+1) ∩ V (H)|
2

+
∑

ui∈T2

|NG(ui) ∩ V (H)| + |NG(ui+1) ∩ V (H)|
2

+
∑
ui∈T

|NG(ui) ∩ V (H)| + |NG(ui+1) ∩ V (H)|
2

≤ θ

2
t1 + ht2 + s. �

Claim 4.5.

l(C) ≥ (d∗(H) + 2)t1 + kt2 + 2s.(4.9)

Proof. Note that for each ui ∈ T , there exist a ∈ NG(ui) ∩ V (H) and
b ∈ NG(ui+1) ∩ V (H) with a �= b by definition, and hence d∗Hi

(ui, ui+1) ≥
d∗H(a, b)+2 by Claim 4.1. Thus d∗Hi

(ui, ui+1) ≥ d∗(H)+2 for all ui ∈ T1(⊆ T ).
Again by definition, d∗Hi

(ui, ui+1) ≥ k for all ui ∈ T2. Further by Claim 4.1,
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d∗Hi
(ui, ui+1) ≥ 2 for all ui ∈ T̄ . Consequently it follows from Claim 4.3 that

l(C) =
∑
ui∈T

l(C[ui, ui+1]) +
∑
ui∈T̄

l(C[ui, ui+1])

≥
∑
ui∈T

d∗Hi
(ui, ui+1) +

∑
ui∈T̄

d∗Hi
(ui, ui+1)

≥

 ∑

ui∈T1

d∗Hi
(ui, ui+1) +

∑
ui∈T2

d∗Hi
(ui, ui+1)


 + 2s

≥ (d∗(H) + 2)t1 + kt2 + 2s. �

We are now in a position to complete the proof of the Main Theorem.
Define θ as in Claim 4.4. Write

t1 = t4 + k,(4.10)

and

(θ/2)t1 + ht2 + s = t3 + |EG(C,H)|.

Then

t2 = (1/h)t3 − (θ/2h)t4 − (1/h)s + |EG(C,H)|/h − kθ/2h.(4.11)

Also t3 and t4 are nonnegative by (4.1) and Claim 4.4. Substituting (4.10)
and (4.11) for t1 and t2 in (4.9), we obtain

l(C) ≥ k

h
t3 +

{
(d∗(H) + 2) − kθ

2h

}
t4 +

(
2 − k

h

)
s

+ k (d∗(H) + 2) + k

{
1
h
|EG(C,H)| − kθ

2h

}
.(4.12)

In the rest of the proof, we consider each term of (4.12). Since t3 is nonnega-
tive,

k

h
t3 ≥ 0.(4.13)

Since h ≥ k − 1, 2 − k/h ≥ 0, and hence(
2 − k

h

)
s ≥ 0.(4.14)

We now consider the second term of (4.12).
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Claim 4.6. (i) k − 2 ≥ k

2
.

(ii) If k ≥ 8, then k − 2 ≥ k(h + δ(H))
2h

.

Proof. Since k ≥ 5, (i) clearly holds. Since h ≥ k − 1, it follows from (4.2)
that δ(H) ≤ h/2, and hence (h + δ(H))/2h ≤ 3/4, which implies (ii). �

Recall that t4 is nonnegative. Also note that if θ = h + δ(H), then k is
even by the definition of θ, and hence k ≥ 8 by (4.3). Thus the following claim
shows that the second term of (4.12) is nonnegative.

Claim 4.7. (i) d∗(H) + 2 − k

2
≥ 0.

(ii) If k ≥ 8, then d∗(H) + 2 − k(h + δ(H))
2h

≥ 0.

Proof. Since H is 3-connected and h ≥ k − 1, and since 2δ(H) = 2�(k −
1)/2� ≥ k− 2 by (4.2), we obtain d∗(H) ≥ k− 4 by applying Theorem B with
m = k − 2. Hence the desired inequalities follow from Claim 4.6. �

Finally we consider the sum of the fourth and the fifth terms of (4.12).

Claim 4.8. (i) k (d∗(H) + 2) + k

(
1
h
|EG(C,H)| − k

2

)
> k(r + 2 − k).

(ii) If k ≥ 8, then

k (d∗(H) + 2) + k

(
1
h
|EG(C,H)| − k(h + δ(H))

2h

)
> k(r + 2 − k).

Proof. Take x, y ∈ V (H) with x �= y such that d∗H(x, y) = d∗(H). Let H
′
be

the graph obtained from H by adding two new vertices u, v with u �= v and
u, v /∈ V (H), and three new edges xu, uv, vy. Since H is 3-connected, H

′
is 2-

connected. Also the average degree of V (H) in H
′
is (

∑
w∈V (H) degH

′ (w))/h =
(rh−|EG(C,H)|+2)/h. Therefore it follows from Theorem C that d∗H(x, y)+
2 = d∗

H′ (u, v) ≥ (rh − |EG(C,H)| + 2)/h, and hence

(d∗(H) + 2) + |EG(C,H)|/h > r.(4.15)

Combining (4.15) and Claim 4.6, we obtain the desired inequalities. �

By (4.12), (4.13), (4.14) and Claims 4.7 and 4.8, we obtain l(C) > k(r +
2 − k). This completes the proof of the Main Theorem.
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