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Hamiltonian cycles through a linear forest
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Abstract. Let G be a graph of order n. A graph is linear forest if every
component is a path. Let S be a set of m edges of G that induces a linear forest.
An edge zy € E(Q) is called an S-edge if zy € S. An S-edge-length of a cycle
in G is defined as the number of S-edges that it contains. We prove that if the
degree sum in G of every pair of nonadjacent vertices of G is at least n + m,
then G contains hamiltonian cycles of every S-edge-length between 0 and |S].

AMS 2000 Mathematics Subject Classification. 05C38.

Key words and phrases. Hamiltonian cycle, Linear forest.

§1. Introduction

In this paper, we consider only finite undirected graphs without loops or mul-
tiple edges. For standard graph-theoretic terminology not explained in this
paper, we refer the reader to [3]. For R C V(G) and a vertex z € V(G), we
denote Ng(z) = Ng(x)NR. We denote the degree of a vertex z in G by dg(z).
A path P connecting two vertices x and y is denoted by x Py, and is called an
x-y path. The distance dg(z,y) is the length of a shortest z-y path in Gj if
there is no such path in G, we define dg(z,y) = co. We write a cycle C' with
a given orientation by C. For x,y € VLC), we denote by xﬁy a path from x
to y on C'. The reverse sequence of xC'y is denoted by yﬁx For z € V((O),
we denote the successor of z on C by xt. Let X be a subset of V(C). The
set X1 (respectively, X ™) is the successors (predecessors, respectively ) of
the vertices of X in C and for z,y € C, we define C[z,y| (C[z,y), C(x,y),
respectively) to be the subgraph of C from x to y (from z to y~, from z™ to
y~). A vertex v is called an R-vertex if v € R. The R-length of a cycle in G
is defined as the number of R-vertices that it contains. A graph on n vertices
is called pancyclic if it contains cycles of every length [, 3 <[ < n. The graph
G is said R-pancyclable if it contains cycles of all R-lengths from 3 to |R|. A
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linear forest is a graph each of whose component is a path. Let S be a set
of edges of G that induces a linear forest. An edge xy € E(G) is called an
S-edge if zy € S. An S-edge-length of a cycle in G is defined as the number
of S-edges that it contains.

Among many sufficient conditions for a graph to be hamiltonian, the fol-
lowing sufficient condition is well-known.

Theorem A (Ore [5]). Let G be a graph of order n > 3. If dg(x)+da(y) >
n for every pair of nonadjacent vertices x and y in G, then G is hamiltonian.

Bondy [2] showed that the same condition as Theorem A implies the ex-
istence of cycles of every length between 3 and |V(G)| (except for complete
bipartite graphs).

Theorem B (Bondy [2]). Let G be a graph of order n. If dg(x)+da(y) >n
for every pair of nonadjacent vertices x and y in G, then G is either pancyclic
or the complete bipartite graph K, /2 /2.

About the cycles passing through some specified vertices, Bollobds and
Brightwell [1] proved the following.

Theorem C (Bollobas and Brightwell [1]). Let G be a graph on n ver-
tices and R a subset of V(G). If |R| > 3 and dg(z)+da(y) > n for every pair
of monadjacent vertices x and y in R, then G has a cycle that includes every
vertex of R.

Theorem C is generalized as follows, which shows the existence of a cycle
through a specified number of vertices of a vertex set.

Theorem D (Favaron et al. [4] and Stacho [7]). Let G be a graph of or-
dern and R a subset of V(G) such that |R| > 3. Ifdg(x)+da(y) > n for every
pair of nonadjacent vertices x and y of R, then either G is R-pancyclable or
else n is even, R =V (G) and G = Ky jon/2 or GR] = Ko = Cy = z1222324
and the structure of G is as follows: V(Q) is partitioned into SUV;UVLUV3UVy;
for any i, 1 < i < 4, G[V;] is any graph on |V;| vertices with |V;| > 0, and
each vertex x; is adjacent to all the vertices of Vi41 and V; where the index 1
s taken as modulo 4.

On the other hand, on the existence of a cycle passing through a linear
forest, the following theorem is known.
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Theorem E (Pésa [6]). Let m be a nonnegative integer, G a graph on n
vertices, where n > 3, and S a set of m edges of G that induces a linear forest.
If dg(x) +dg(y) = n+m for every pair of nonadjacent vertices x and y, then
G contains a hamiltonian cycle that includes every edge of S.

In this paper, we prove the following theorem, which shows the existence
of a hamiltonian cycle which contains a specified number of edges of a linear
forest.

Theorem 1. Let m be a nonnegative integer, G a graph on n vertices, where
n > 5, and S a set of m edges of G that induces a linear forest. If dg(x) +
da(y) > n+m for every pair of nonadjacent vertices x andy, then G contains
hamiltonian cycles of all the S-edge-lengths from 0 to m.

§2. Proof of Theorem 1

Let G be a graph on n vertices which satisfies the hypothesis. Let S be a set
of m edges of G that induces a linear forest. By Theorem E, G contains a
hamiltonian cycle H of G such that S C E(H). We show that if G contains
a hamiltonian cycle H of G such that |[E(H) N S| = [, then there exists a
hamiltonain cycle H' of G such that |E(H') N S| =1—1. So we assume that
G contains a hamiltonain cycle H of G such that |[E(H)N S| =1. Set H =
122 ...xn2r1 and consider the subscripts as modulo n. Let Y = {z;|z;z;41 €
S}, Z = {xi|zrizit1 ¢ S} and ¢ = |S\E(H)|. Note that ¢ = m — L.

Lemma 1. If there exist x; € Y and xj € Z such that dp(x;,xj) > 2, ;25 €
E(G)\S and zit1xj11 ¢ S, then there exists a hamiltonian cycle H' such that
|[E(H)NS|=1-1 and z;z;41 ¢ E(H').

Proof of Lemma 1.

We assume that G contains z;z; € E(G) such that z; € YV, z; € Z
and dg(zs, ;) > 2. If vipxj0 € E(G)\S, then G contains a hamilto-
nian cycle H' = xixjﬁ$i+1$j+lﬁxi such that |[E(H')N S| =1-1. So
we assume that z;112j41 ¢ E(G). Then dg(zitv1) + da(zjr1) > n+ m.
Let G' = (V(G),E(G)\{S\E(H)}). Let p = min{q,3}. Then dg(zi+1) +
de/(xj4+1) > n+m —p. Let C1 = V(H[zit1,x4]) and Co = V(H[zj41,x]).
Let X7 = Né{($i+1) NCy, YT = NG/(LEjJrl) NCy, Xo = NG/(LEiJrl) N Cy and
Ys = Ngo(xj41) N Ca. By ¢ > p, we have

IXinYi|+[XanYa| = |[Xaf + V2| + [Xo| + [Ya| = (| X1 UY1] + [X2 U Y2)
> n+m—p—n
= l4+q—p=>1L
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Since z; ¢ {X1NY1}U{X2NY>}, there exists a vertex v € {X;NY1U{X2N
Y2} such that v ¢ Y. If v € X; NY), then there exists a hamiltonian cycle
H = xi+1ﬁvxj+1ﬁxixjﬁv+xi+l such that |E(H,)QS| =[-1. Ifv e XoNYs,
then there exists a hamiltonian cycle H' = xi+1ﬁx]’$iﬁll)+x]’+lﬁvxi+l such
that |[E(H')N S| =1—1. Since G’ is subgraph of G, G contains H'. 0o

Lemma 2. If there exist z1,22,23 € Z andy € Y such that dg(y, z;) > 2 and
yz; € E(Q) for every i, 1 < i < 3, then there exists a hamiltonian cycle H'
such that |[E(H')NS|=1-1.

Proof of Lemma 2.

Assume that z1,29,23 € Z and y € Y such that dy(y, z;) > 2 for every i,
1 <4 < 3. Since edges of S induce a linear forest, without loss of generality,
we may assume yz1,yze ¢ S and y*z{ ¢ S. By Lemma 1, G contains a
hamiltonian cycle H' such that |[E(H")NS|=1- 1. oo

Case 1. m <n —4.

If ¢ = 0, since |E(H)\S| > 4, there exist z € Z and y € Y such that
du(y,z) > 2. If yz,yt 2T € BE(G), then H = ytHzyHz" is a hamiltonian
cycle such that |[E(H')NS| = [—1. Hence we may consider only the case yz or
yT2zt ¢ E(G). Concerning the reverse sequence of H in case of y*27 ¢ E(G),
we obtain that there exist z € Z and y € Y such that yz ¢ E(G). If ¢ > 1,
then |E(H)\S| > 5 implies that, for any y € Y, there exist zj,29,23 € Z
such that dy(y,z;) > 2(1 < i < 3). If yz1,y2,yz3 € E(G), by Lemma 2,
G contains a hamiltonian cycle H' such that |[E(H') N S| =1 — 1. Hence we
may consider only the case where at least one of yz1, yze and yz3 is not in
E(G). Therefore, in both cases ¢ = 0 and ¢ > 1, we may assume that there
exists y € Y and z € Z such that yz ¢ F(G) and dg(y,z) > 2. Clearly
Hyt,y~} N Z| < 2. Tt follows from the facts [Y]| = [ and dy(y,2) > 2 that
{z",27}NY| < min{l — 1,2}. Hence

Hyt,y ¥nZ|+ |{zT,27}nY| < 24 min{l —1,2}
< 141 (1)
By yz ¢ E(G),
[Ny (y)| + [Nz (y)| + [Ny (2)| + INz(2)| = da(y) +da(z)
> n+m.

By [Ny (y)| + |Nz(2)| <n —2,

INz(y)| + [Ny (2)| >m+2>1+q+2. 2)
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From (1) and (2),

[Ny ()\ =" 2 H + INz()\{y ",y H > g+ 1.

Hence G contains a set of edges E’ of cardinality ¢ + 1 such that for any
uv € E,

(1) Huvyn{y, 2} =1,

(i) {uw,v}NY|=1{u,0}nZ| =1,
)
)

(iii) dg(u,v) > 2 and

(iv) wv ¢ E(H).

Therefore, by pigeonhole principle, G' contains z; € Y and x; € Z such that
dr(xi,x) > 2, zyx; € E(G)\S and xj41241 ¢ S. By Lemma 1, G contains a
hamiltonian cycle H' such that |[E(H')N S| =1- 1.

Case 2. m > n — 3.

By the degree condition, G is complete. If | < n — 5, there exist y € Y and
21, 22,23 € Z such that dg(y,z;) > 2 for every i, 1 < i < 3. By Lemma 2,
G contains a hamiltonian cycle H' such that |[E(H') N S| =1 — 1. Hence we
assume n —4 <[ <n—1. If ¢ = 0, immediately G contains a hamiltonian
cycle H' such that |EF(H')N S| =1 — 1. Hence we may assume ¢ > 1, then we
have n —4 <[ <n-2.

Subcase 2.1. [ =n — 2.

In this case we have ¢ = 1. Let 21,29 € Z. Since n > 5, there exist
y1,y2 € Y such that dg(y;,2) > 2 (i =1 and 2). It follows from ¢ = 1 that
YiZi, y;r z;r ¢ S for i =1 or 2, hence ylﬁz;r y;r ﬁziyi is a required cycle.

Subcase 2.2. [ =n — 3.

Byl = n—3, we have ¢ < 2. If n = 5, then we may assume H =
r1zoxsrarsry. Y = {1,220} and Z = {x3, x4, x5}, since edges of S induce a
linear forest, we have x1x3, xoxy ¢ S. Hence H' = xix3x0x42577 I8 a required
cycle. If Y = {x1,23}, then Z = {z9, 24, 25}. First we suppose x1z4 € S. If
Toxs, r3x5 € S, then the edges of S do not induce linear forest. Hence, without
loss of generality, we may assume xox5 ¢ S. Since the edges of S induce a
linear forest, we have zyx3 ¢ S. Then H' = ziz4x52092321 is a required cycle.
Next, we suppose z124 ¢ S. If z3z5 ¢ S, then H' = xjxox3x52471 IS 2
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required cycle. So we assume zgx; € S. If xox5 ¢ S, then H' = xyz403000571
is a required cycle. If z9z5 € S, then z123 ¢ S. Thus H' = xix3200052477 8
a required cycle. We can prove the other case in n = 5 by the same argument
as above, so we assume n > 6. Let y1,¥y2,y3 € Y, then there exist 21, 29, 23 €
Z,z # 2z(i # j,1 <1 < 3,1 < j <3) such that dg(yi,2) > 2,1 <@ < 3.
Since ¢ < 2, y;z; ¢ S and y;rz;r ¢ S for some i with 1 < ¢ < 3. Hence
yzﬁz:r y:r ﬁziyi is a required cycle.

Subcase 2.3. | = n — 4.

If n = 5, without loss of generality we may assume Y = {z1} and Z =
{za, 23,24, 25}. U 2123, 20224 ¢ S, then H' = xy2309147527 i & required cycle.
If zox4 € S, since the edges of S induce a linear forest, we have x4, Toxs ¢ S.
Hence H' = x1x423200521 is a required cycle. If zyz3 € S and zoz4 ¢ S, then
we have z1z4 ¢ S. If wows ¢ S, then H' = ziz4x3092521 is a required
cycle. If zox; € S, then we obtain zgzs ¢ S. Thus H' = zyzyxex3rsr is a
required cycle. Hence we may assume n > 6. Let y1,y2 € Y, then there exist
21,21, 22, 25 € Z such that dg(z;,y;) > 2 and dg(z],y;) > 2 for i = 1,2. Since
q < 3, {yizi,yf 27y NS = ¢ or {y;2},yF 2"} NS = ¢ holds for i = 1 or 2.
Without loss of generality, we may assume that {y;2;,y; 2} NS = ¢. Then
yzﬁzf yf ﬁziyi is a required cycle. 0o
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