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Edge-connectivity and the orientation of a graph
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Abstract. Let G be a k-edge-connected graph and let L denote the subset of
all vertices having odd degree in G. For every subset K = {u1, u2, . . . , uk} of L

with |K| ≤ |L|
2

, and for every function h defined on K having the property that

h(ui) ∈
‰

dG(ui)

2

ı

,

—

dG(ui)

2

�ff

for all ui ∈ K, there exists an orientation D

of G such that d+
D(x) = h(x) when x ∈ K and

—

dG(x)

2

�

≤ d+
D(x) ≤

‰

dG(x)

2

ı

when x ∈ V (G) − K.
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§1. Introduction

All graphs considered are simple and finite. We refer the reader to [1] for
standard graph theoretic terms not defined in this paper.

Let G be a graph. The degree dG(u) of a vertex u in G is the number of
edges of G incident with u. For any subset S of vertices of G, we define the
neighbourhood of S in G to be the set of all vertices adjacent to vertices in S;
this set is denoted by NG(S). If S ⊆ V (G), the set V (G) − S will be denoted
by S. The subgraph of G whose vertex set is S and whose edge set is the set of
those edges of G that have both ends in S is called the subgraph of G induced
by S and will be denoted by G[S].

If S and T are disjoint subsets of vertices of G, we write EG(S, T ) and
eG(S, T ) for the set and the number respectively of the edges of G joining S
to T . If e is an edge of G having u and v as end-vertices, it will be denoted by
uv. The edge-connectivity k′(G) of G is the minimum number of edges whose
removal from G results in a disconnected graph or a trivial graph. We say
that G is k-edge-connected if k′(G) ≥ k.
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If we replace the edges of G by arcs, we will get a digraph D which is
called an orientation of G. An edge e of G is said to be subdivided when it is
deleted and replaced by a path of length two connecting its ends. Note that
the internal vertex of this path is a new vertex. If the edges of a walk W in
G are distinct, W is called a trail. A closed trail that traverses every edge
of G is called an Euler trail. We will say that G is Eulerian if it contains an
Euler trail. Let f(x) and g(x) be integer valued functions on the vertex set
V (G) such that 0 ≤ g(x) ≤ f(x) for each vertex x ∈ V (G). Then a spanning
subgraph F of G is called a (g, f)−factor of G if g(x) ≤ dF (x) ≤ f(x) for each
vertex x ∈ V (G).

Let D be a digraph. The indegree d−D(u) of a vertex u in D is the number
of arcs with head u, and the outdegree d+

D(u) of u is the number of arcs with
tail u.

The following Proposition appears in many textbooks on Graph Theory.

Proposition 1. For every graph G, there exists an orientation D such that⌊
dG(x)

2

⌋
≤ d+

D(x) ≤
⌈

dG(x)
2

⌉
for all x ∈ V (G).

Proof. We first assume that G is a connected graph. Let L = {v1, v2, . . ., v2r}
be the set of vertices of G, which have odd degree and let G∗ be the graph
obtained from G by adding the independent edges v1v2, v3v4, . . . , v2r−1v2r.
Since all the vertices of G∗ have clearly even degree in G∗, G∗ has a closed
Eulerian trail T ∗ [2]. We follow T ∗ and we orient the edges of G∗ in the same
direction as that of the Eulerian trail. The above orientation give us a digraph
D∗ such that

dG∗(x)
2

= d+
D∗(x) = d−D∗(x) for every vertex x of D∗.

Now we delete from D∗ the arcs arising from the orientation of the edges
v1v2, . . . , v2r−1v2r. The resulting digraph D is clearly an orientation of G
having the following property,

dG(x)
2

= d+
D(x) = d−D(x) when x ∈ V (G) − L

and
|d+

D(x) − d−D(x)| = 1 when x ∈ L.

If G is a disconnected graph, we will get a proof by applying the same
arguments to every component of G.

In the following theorem which is the main result of this paper we prove
that if the edge-connectivity of G is sufficiently high then G has an orientation
D having the property mentioned in Proposition 1 and additionally some of
the vertices of odd degree can have the prescribed outdegrees in D.
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Theorem 1. Let G be a k-edge-connected graph and L the set of all vertices
with degree odd in G.

For every subset K = {u1, u2, . . . , uk} of L with |K| ≤ |L|
2

, and for ev-

ery function h defined on K having the property that h(ui) ∈
{⌈

dG(ui)
2

⌉
,⌊

dG(ui)
2

⌋}
for all ui ∈ K, there exists an orientation D of G such that

d+
D(x) = h(x) when x ∈ K and

⌊
dG(x)

2

⌋
≤ d+

D(x) ≤
⌈

dG(x)
2

⌉
when x ∈

V (G) − K.

§2. Proof of Theorem 1

For the proof of Theorem 1, we will use the following Lemmas.

Lemma 1 ([3]). A bipartite graph G has a (g, f)−factor if and only if for
every set S ⊆ V (G),∑

x∈S

max{0, g(x) − dG−S(x)} ≤
∑
x∈S

f(x).

Lemma 2. Let G be a graph and let f : V (G) → Z+ and g : V (G) → Z+

be functions such that g(x) ≤ f(x). We subdivide every edge of G and define
f and g, to be both 1 for the new vertices. The resulting graph G∗ has a
(g, f)−factor if and only if G has an orientation D such that g(x) ≤ d+

D(x) ≤
f(x) for every x ∈ V (D).

Proof. Suppose first that G∗ has a (g, f)−factor F . Clearly every edge of G∗

has an end-vertex in V (G) and the other in V (G∗)−V (G). Define S to be the
set of edges belonging to F and S′ = E(G∗) − E(F ). We orient the elements
of S in the following way: the tail of every arc belongs to V (G) and the head
belongs to V (G∗) − V (G). We also orient the elements of S′ as follows: the
tail of every arc belongs to V (G∗) − V (G) and the head belongs to V (G).
By considering such an orientation of G∗, we get a digraph D∗ having the
following properties:

d+
D∗(x) = 1 when x ∈ V (G∗) − V (G) and

g(x) ≤ d+
D∗(x) = dF (x) ≤ f(x) when x ∈ V (G).

Now we apply the following procedure to every vertex of V (G∗) − V (G). For
u ∈ V (G∗) − V (G), let a1 be the arc of D∗ having u as a tail and let a2 be
the arc having u as a head. Let v1 also be the tail of a2 and v2 the head of a1.
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We delete u, a1, a2 from D∗ and we add an arc having v1 as a tail and v2 as
a head.

The resulting digraph D is an orientation of G satisfying g(x) ≤ d+
D∗(x) =

d+
D(x) ≤ f(x) for every x ∈ V (D).

By reversing the argument we can prove easily that if G has an orienta-
tion D such that g(x) ≤ d+

D(x) ≤ f(x) for all x ∈ V (D), then G∗ has a
(g, f)−factor.

For the proof of Lemma 2, we used ideas and techniques mentioned in [4].

Proof of Theorem 1.
Let G∗ be the graph obtained from G by subdividing its edges. By Lemma 2,
G will have an orientation D if and only if G∗ has a (g, f)−factor having the
following properties:

g(x) = f(x) = h(x) for every x ∈ K;

g(x) =
⌊

dG(x)
2

⌋
, f(x) =

⌈
dG(x)

2

⌉
for every x ∈ V (G) − K;

and g(x) = f(x) = 1 for every x ∈ V (G∗) − V (G) = R (We note here that R
consists of all the inserted vertices of degree 2).

Suppose that G∗ has no (g, f)−factor having the above properties. Clearly
G∗ is a bipartite graph with bipartition (X,Y ) where X = V (G) and Y =
V (G∗) − V (G) = R. Then by Lemma 1, there exists S ⊆ V (G∗) such that

(2.1)
∑
x∈S

max {0, g(x) − dG∗−S(x)} >
∑
x∈S

f(x).

Define
S ∩ Y = Sy, S ∩ X = Sx,

S ∩ Y = Sy, S ∩ X = Sx,
Syi = {u ∈ Sy||NG∗(u) ∩ Sx| = i}
Syi = {u ∈ Sy||NG∗(u) ∩ Sx| = i}

}
for i = 0, 1, 2,

KS = K ∩ Sx, and KS = K ∩ Sx.

We assume that S is minimal with respect to (2.1). We will prove that
Sy2

= ∅ and Sy1
= ∅.

Suppose that Sy2
6= ∅ and let v ∈ Sy2

. Define S′ = S − {v}. Then∑
x∈S

′

max {0, g(x) − dG∗−S′(x)} >
∑
x∈S′

f(x)

since ∑
x∈S′

f(x) =
∑
x∈S

f(x) − 1
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and ∑
x∈S

′

max {0, g(x) − dG∗−S′(x)} =
∑
x∈S

max {0, g(x) − dG∗−S(x)} + 1.

This contradicts the fact S is minimal with respect to (2.1).
Similarly suppose that Sy1

6= ∅ and let v ∈ Sy1
. Define S′ = S−{v}. Then∑

x∈S
′

max {0, g(x) − dG∗−S′(x)} >
∑
x∈S′

f(x)

since
∑
x∈S′

f(x) =
∑
x∈S

f(x) − 1, and
∑
x∈S

′

max {0, g(x) − dG∗−S′(x)} ≥∑
x∈S

max {0, g(x) − dG∗−S(x)} − 1. This is also a contradiction because S is

minimal with respect to (2.1).
Now let v ∈ Sy0

and suppose that NG∗(v) = {w1, w2}. It is obvious that
w1, w2 ∈ Sx. We will prove that g(w1) > dG∗−S(w1) and g(w2) > dG∗−S(w2).
Without loss of generality, we may assume that g(w1) ≤ dG∗−S(w1). Define
S′ = S − {v}. We have∑

x∈S
′

max {0, g(x) − dG∗−S′(x)} >
∑
x∈S′

f(x)

since
∑
x∈S′

f(x) =
∑
x∈S

f(x) − 1 and
∑
x∈S

′

max {0, g(x) − dG∗−S′(x)} ≥∑
x∈S

max {0, g(x) − dG∗−S(x)}−1. This is a contradiction because S is minimal

with respect to (2.1).
Define M =

{
x ∈ Sx|NG∗(x) ∩ Sy0

6= ∅
}
. In fact we have just proved that

(2.2) dG∗−S(x) ≤ g(x) − 1 for every x ∈ M.

At this point we consider the following cases:

Case 1: M = V (G)
In this case Sx = ∅, Sx − M = ∅, Sy1

= ∅, and Sy0
= ∅.

So from (2.1), we have∑
x∈S

max {0, g(x) − dG∗−S(x)} > |Sy0
|.

By g(x) − dG∗−S(x) < 0 for each x ∈ Sy2
, the above inequality implies∑

x∈M

max {0, g(x) − dG∗−S(x)} > |Sy0
|.
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Since dG∗−S(x) ≤ g(x) − 1 for every x ∈ M , we have∑
x∈M

g(x) −
∑
x∈M

dG∗−S(x) > |Sy0
|.

This inequality together with
∑
x∈M

dG∗−S(x) = 2|Sy2
| yields

∑
x∈M

g(x) > 2|Sy2
| + |Sy0

|.

Moreover, it follows from |V (G)| ≥ |L| ≥ 2|K| that
1
2

∑
x∈V (G)

dG(x) ≥

∑
x∈M

g(x). Hence
1
2

∑
x∈M

dG(x) > 2|Sy2
| + |Sy0

|. This contradicts the fact

|Sy2
| + |Sy0

| = |E(G)| =
1
2

∑
x∈M

dG(x). This completes the proof of this case.

Case 2: M 6= V (G)
We have from (2.1),∑

x∈Sx

max {0, g(x) − dG∗−S(x)} + |Sy0
| >

∑
x∈Sx

f(x) + |Sy0
|.

So∑
x∈KS

max {0, g(x) − dG∗−S(x)} +
∑

x∈Sx−KS

max {0, g(x) − dG∗−S(x)} + |Sy0
|

>
∑

x∈KS

f(x) +
∑

x∈Sx−KS

f(x) + |Sy0
|.

For any x ∈ Sx − M , dG∗−S(x) = dG∗(x) holds. Thus the previous relation
implies∑
x∈KS∩M

max {0, g(x) − dG∗−S(x)}+
∑

x∈M−KS

max {0, g(x) − dG∗−S(x)} + |Sy0
|

>
∑

x∈KS

f(x) +
∑

x∈Sx−KS

f(x) + |Sy0
|.

Now from (2.2), we have

g(x) − dG∗−S(x) ≥ 1 for every x ∈ M.
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If we let g(x) − dG∗−S(x) = θ(x) for every x ∈ M , then the above can be
written as

(2.3)
∑

x∈KS∩M

θ(x)+
∑

x∈M−KS

θ(x)+ |Sy0
| >

∑
x∈KS

f(x)+
∑

x∈Sx−KS

f(x)+ |Sy0
|.

Since ∑
x∈M∩KS

(dG∗(x) − dG∗−S(x)) +
∑

x∈M−KS

(dG∗(x) − dG∗−S(x)) = 2|Sy0
|,

we have∑
x∈KS∩M

(dG∗(x) − g(x) + θ(x)) +
∑

x∈M−KS

(dG∗(x) − g(x) + θ(x)) = 2|Sy0
|.

So ∑
x∈KS∩M

(⌊
dG∗(x)

2

⌋
+ θ(x)

)
+

∑
x∈M−KS

(⌈
dG∗(x)

2

⌉
+ θ(x)

)
≤ 2|Sy0

|.

Hence

(2.4)
∑
x∈M

⌈
dG∗(x)

2

⌉
+

∑
x∈M

θ(x) ≤ 2|Sy0
| + |M ∩ KS |.

By (2.3) and (2.4),

2|Sy0
|+ |M ∩KS |−

∑
x∈M

⌈
dG∗(x)

2

⌉
+ |Sy0

| >
∑

x∈KS

f(x)+
∑

x∈Sx−KS

f(x)+ |Sy0
|,

which implies

(2.5) |Sy0
| + |M ∩ KS | −

∑
x∈M

⌈
dG∗(x)

2

⌉
+ |Sy0

| >
∑
x∈Sx

⌈
dG∗(x)

2

⌉
− |KS |.

At this point, we consider the following two subcases:

Case 2a: Sx 6= ∅
We first point out that Sx 6= V (G). If Sx = V (G), then by Sy0

= ∅ and (2.1),

|E(G)| = |Sy0
| >

∑
x∈S

f(x) ≥
∑

x∈V (G)

dG(x)
2

.

This is a contradiction.
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Since G is k-edge-connected and the number of edges in G joining two
vertices of Sx is |Sy0

|, we have k ≤ eG(Sx, V (G) − Sx) =
∑
x∈Sx

dG(x) − 2|Sy0
|.

Hence
2|Sy0

| + k ≤
∑
x∈Sx

dG∗(x)

and so

(2.6) |Sy0
| ≤

∑
x∈Sx

⌈
dG∗(x)

2

⌉
− k

2
− |KS |

2
.

By (2.5) and (2.6), we have

(2.7) |Sy0
| + |M ∩ KS | −

∑
x∈M

⌈
dG∗(x)

2

⌉
>

k

2
− |KS |

2
.

We also should point out here that M 6= ∅. If M = ∅, then |KS | > k holds
by (2.7). But this is a contradiction since |KS | ≤ |K| ≤ k. Therefore M 6= ∅.
By (2.7), |M ∩ KS | + |KS | ≤ |K| = k and∑

x∈M

⌈
dG∗(x)

2

⌉
≥ 1

2

∑
x∈M

dG∗(x),

we have |Sy0
|+ k

2
>

1
2

∑
x∈M

dG∗(x) and hence 2|Sy0
|+ k >

∑
x∈M

dG∗(x). On the

other hand, by the edge-connectivity of G,∑
x∈M

dG∗(x) =
∑
x∈M

dG(x) = 2|E(G[M ])| + eG(M,V (G) − M) ≥ 2|Sy0
| + k.

This is a contradiction.

Case 2b: Sx = ∅
We have from (2.5),

(2.8) |Sy0
| + |M ∩ KS | >

∑
x∈M

⌈
dG∗(x)

2

⌉

since Sy0
= ∅ and KS = ∅ when Sx = ∅.

We should point out here that M 6= ∅, since otherwise (2.8) give us a
contradiction. By |E(G[M ])| ≥ |Sy0

| and

∑
x∈M

⌈
dG∗(x)

2

⌉
=

∑
x∈M

dG∗(x)
2

+
|M ∩ L|

2
≥

∑
x∈M

dG∗(x)
2

+
|M ∩ KS |

2
,
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(2.8) implies

|E(G[M ])| +
|M ∩ KS |

2
>

∑
x∈M

dG∗(x)
2

.

It follows from
|M ∩ KS |

2
≤

|KS |
2

≤ |K|
2

=
k

2
that

2|E(G[M ])| + k >
∑
x∈M

dG∗(x).

This is a contradiction, since by the edge-connectivity of G,∑
x∈M

dG∗(x) = 2|E(G[M ])| + eG(M,V (G) − M) ≥ 2|E(G[M ])| + k.

Next, we will describe a family of graphs, which shows that the connectivity
condition imposed on graph G in Theorem 1 is necessary.

Let H1 and H2 be two (k − 1)-edge-connected graphs with V (H1) ={
u1, u2, . . . , u|V (H1)|

}
, V (H2) =

{
v1, v2, . . . , v|V (H2)|

}
and min {|V (H1)| ,

|V (H2)|} ≥ k + 1. We also assume that H1 and H2 have the following prop-
erties:

(a) the vertices u1, u2, . . . , uk−1 and v1, v2, . . . , vk−1 have even degree in H1

and H2 respectively,

(b) the vertices uk and vk have odd degree in H1 and H2 respectively.

If we add the independent edges u1v1, u2v2, . . . , uk−1vk−1 to H1 ∪ H2, we
obtain a graph G which is clearly (k − 1)-edge-connected having at least 2k
vertices of odd degree.

However, G has no orientation D such that d+
D(x) =

⌊
dG(x)

2

⌋
when x ∈

{u1, u2, . . . , uk} = K and
⌊

dG(x)
2

⌋
≤ d+

D(x) ≤
⌈

dG(x)
2

⌉
when x ∈ V (G) − K.

In fact, we will show the above claim as follows:
Let G∗ be the bipartite graph obtained from G by subdividing all edges.

We define functions f : V (G∗) → Z+, g : V (G∗) → Z+ such that

(i) f(x) =
⌈

dG(x)
2

⌉
and g(x) =

⌊
dG(x)

2

⌋
when x ∈ V (G) − K,

(ii) f(x) = g(x) =
⌊

dG(x)
2

⌋
when x ∈ K, and

(iii) f(x) = g(x) = 1 when x ∈ V (G∗) − V (G).
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According to Lemma 2, G will have an orientation D having the properties
stated before if and only if G∗ has a (g, f)−factor having properties (i), (ii)
and (iii).

We will prove that G∗ has no such a (g, f)−factor. As in the proof of The-
orem 1, G∗ has bipartition (X,Y ) where X = V (G), Y = V (G∗)− V (G). We
use the notation defined in Theorem 1. Let Sx = K, Sy = ∅, Sx = V (G)−K,

and Sy = V (G∗) − V (G). We have
∑
x∈S

f(x) =
∑
x∈K

f(x) =
∑
x∈K

⌊
dG(x)

2

⌋
=

∑
x∈K

dG(x)
2

− k

2
,

∑
x∈S

max {0, g(x) − dG∗−S(x)} = |Sy0
| = |E(G[Sx])| =

|E(G[K])| and 2|E(G[K])| =
∑
x∈K

dG(x) − eG(K,V (G) − K) =
∑
x∈K

dG(x) −

(k − 1).
So ∑

x∈S

max{0, g(x) − dG∗−S(x)} >
∑
x∈S

f(x)

and therefore by Lemma 1, G∗ has no (g, f)−factor.
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