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Edge-connectivity and the orientation of a graph

P. Katerinis and N. Tsikopoulos

(Received May 6, 2004)

Abstract. Let G be a k-edge-connected graph and let L denote the subset of
all vertices having odd degree in G. For every subset K = {u1,us,...,ur} of L

L
with |K| < %, and for every function h defined on K having the property that

h(u;) € {[dc(ui)—‘ , {dcéui)J} for all u; € K, there exists an orientation D

of G such thatzdg (2) = h(z) when € K and VGT@)J < di@) < {Mw

2
when z € V(G) — K.
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8§1. Introduction

All graphs considered are simple and finite. We refer the reader to [1] for
standard graph theoretic terms not defined in this paper.

Let G be a graph. The degree dg(u) of a vertex w in G is the number of
edges of GG incident with u. For any subset S of vertices of G, we define the
neighbourhood of S in G to be the set of all vertices adjacent to vertices in S;
this set is denoted by Ng(S). If S C V(G), the set V(G) — S will be denoted
by S. The subgraph of G whose vertex set is S and whose edge set is the set of
those edges of G that have both ends in S is called the subgraph of G induced
by S and will be denoted by G[S].

If S and T are disjoint subsets of vertices of G, we write Eg(S,T) and
eq(S,T) for the set and the number respectively of the edges of G joining S
to T. If e is an edge of G having u and v as end-vertices, it will be denoted by
uv. The edge-connectivity £'(G) of G is the minimum number of edges whose
removal from G results in a disconnected graph or a trivial graph. We say
that G is k-edge-connected if k'(G) > k.
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If we replace the edges of G by arcs, we will get a digraph D which is
called an orientation of G. An edge e of GG is said to be subdivided when it is
deleted and replaced by a path of length two connecting its ends. Note that
the internal vertex of this path is a new vertex. If the edges of a walk W in
G are distinct, W is called a trail. A closed trail that traverses every edge
of GG is called an Euler trail. We will say that G is Eulerian if it contains an
Euler trail. Let f(x) and g(x) be integer valued functions on the vertex set
V(G) such that 0 < g(x) < f(x) for each vertex x € V(G). Then a spanning
subgraph F of G is called a (g, f)—factor of G if g(x) < dp(z) < f(x) for each
vertex z € V(G).

Let D be a digraph. The indegree d,(u) of a vertex u in D is the number
of arcs with head u, and the outdegree d},(u) of u is the number of arcs with
tail w.

The following Proposition appears in many textbooks on Graph Theory.

Proposition 1. For every graph G, there exists an orientation D such that

VGQ(:C)J < db(x) < [daz(x)

Proof. We first assume that G is a connected graph. Let L = {v1,vo, ..., vo,}
be the set of vertices of G, which have odd degree and let G* be the graph
obtained from G by adding the independent edges wvive,v3vy, ..., Vor_1V2.
Since all the vertices of G* have clearly even degree in G*, G* has a closed
Eulerian trail 7™ [2]. We follow 7™ and we orient the edges of G* in the same
direction as that of the Eulerian trail. The above orientation give us a digraph
D* such that
dg+(z)

2
Now we delete from D* the arcs arising from the orientation of the edges
V1V, ...,V9_102-. The resulting digraph D is clearly an orientation of G
having the following property,

de(z)

= dB(;];) = d,(r) when z € V(G) — L

-‘ for all z € V(G).

= d}.(z) = dp.(z) for every vertex z of D*.

and
|df(z) — dp(x)| =1 when = € L.

If G is a disconnected graph, we will get a proof by applying the same
arguments to every component of G. O

In the following theorem which is the main result of this paper we prove
that if the edge-connectivity of G is sufficiently high then G has an orientation
D having the property mentioned in Proposition 1 and additionally some of
the vertices of odd degree can have the prescribed outdegrees in D.
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Theorem 1. Let G be a k-edge-connected graph and L the set of all vertices
with degree odd in G.
L]

For every subset K = {uj,ug,...,ux} of L with |[K| < o and for ev-

dG(ui)-‘ 7

ery function h defined on K having the property that h(u;) € {[2
{d(;(ul)

2
di(z) = h(x) when x € K and {dcz(:U)J < dj(z) < [dGQ(x)l when x €
V(G) - K.

J} for all uw; € K, there exists an orientation D of G such that

§2. Proof of Theorem 1

For the proof of Theorem 1, we will use the following Lemmas.

Lemma 1 ([3]). A bipartite graph G has a (g, f)—factor if and only if for
every set S C V(G),

S max{0, g() — do—s(2)} < 3 f(@).

z€S €S

Lemma 2. Let G be a graph and let f : V(G) — Z+ and g : V(G) — Z7
be functions such that g(x) < f(x). We subdivide every edge of G and define
f and g, to be both 1 for the new wvertices. The resulting graph G* has a
(g, f)—factor if and only if G has an orientation D such that g(x) < df (x) <
f(z) for every x € V(D).

Proof. Suppose first that G* has a (g, f)—factor F. Clearly every edge of G*
has an end-vertex in V(G) and the other in V(G*) —V(G). Define S to be the
set of edges belonging to F' and S’ = E(G*) — E(F). We orient the elements
of S in the following way: the tail of every arc belongs to V(G) and the head
belongs to V(G*) — V(G). We also orient the elements of S as follows: the
tail of every arc belongs to V(G*) — V(G) and the head belongs to V(G).
By considering such an orientation of G*, we get a digraph D* having the
following properties:

di.(x)=1 whenz € V(G*) - V(G) and
g(x) < dp.(z) =dp(z) < f(x) when z € V(G).
Now we apply the following procedure to every vertex of V(G*) — V(G). For

u € V(G*) = V(G), let a; be the arc of D* having u as a tail and let az be
the arc having u as a head. Let v; also be the tail of as and vy the head of a;.
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We delete u, a1, as from D* and we add an arc having vy as a tail and v as
a head.

The resulting digraph D is an orientation of G satisfying g(x) < d'g* (x) =
di(x) < f(z) for every x € V(D).

By reversing the argument we can prove easily that if G has an orienta-
tion D such that g(z) < d},(z) < f(z) for all z € V(D), then G* has a
(g, f)—factor. O

For the proof of Lemma 2, we used ideas and techniques mentioned in [4].

Proof of Theorem 1.
Let G* be the graph obtained from G by subdividing its edges. By Lemma 2,
G will have an orientation D if and only if G* has a (g, f)—factor having the
following properties:

g(x) = f(z) = h(zx) for every x € K;

o(z) = VG;”:)J @) = [d(;(“")w for every z € V(G) — K

and g(z) = f(z) =1 for every z € V(G*) — V(G) = R (We note here that R
consists of all the inserted vertices of degree 2).

Suppose that G* has no (g, f)—factor having the above properties. Clearly
G* is a bipartite graph with bipartition (X,Y) where X = V(G) and Y =
V(G*) — V(G) = R. Then by Lemma 1, there exists S C V(G*) such that

xeS z€S
Define
SmY:Sya SﬁX:Sm7
EOY:FW gﬂngm’
Sy = {u € Sy||[Ng=(u) N Sy| =i} o
Sy, = {ue 8, Ne- () Ny =4} § =002
Kg=KnNn§S,, and KgZKﬂSI.

We assume that S is minimal with respect to (2.1). We will prove that
Sy, =0 and S, = 0.
Suppose that S, # 0) and let v € S, . Define S’ =S — {v}. Then

> max{0,g(x) - de-—s ()} > > _ f(2)

m€§, zes’

Y f@)=> flz)-1

zes’ x€S

since
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and

> max{0, g(x) — dg-—s/(x)} = > _max{0,g(x) — dg—s(w)} + 1.
zeS zes
This contradicts the fact S is minimal with respect to (2.1).
Similarly suppose that S, # () and let v € S, . Define S’ = S —{v}. Then

S max {0, g(x) — s ()} > 3 f(2)

29 xS’

since Z flx) = Zf(m) — 1, and Z max {0, g(x) — dg+_g/ ()} >
zes’ €S z€5

Zmax {0,g9(z) — dg+—s(x)} — 1. This is also a contradiction because S is

zeS

minimal with respect to (2.1).

Now let v € Sy ~and suppose that Ng«(v) = {w1,w2}. It is obvious that
wi,wy € Sz. We will prove that g(w1) > dg+_s(w1) and g(ws) > dg_s(w2).
Without loss of generality, we may assume that g(w;) < dg«_g(w1). Define
S" =S — {v}. We have

Y max{0,g(z) —dg=—s(2)} > D f(x)

z€5 zeSs’

since Z flz) = Z f(z) — 1 and Z max {0,g(x) —dg~_g/(z)} >
xS’ x€S z€5
Z max {0, g(x) — dg«_s(x)}—1. This is a contradiction because S is minimal
z€S
with respect to (2.1).
Define M = { € S;|Ng-(x) NSy, # 0}. In fact we have just proved that

(2.2) dg+—s(x) < g(x) — 1 for every z € M.

At this point we consider the following cases:

Case 1. M =V(G) _ _
In this case S =0, Sx — M =0, S, =0, and S, =0.
So from (2.1), we have

> max{0, g(x) — dg-—s(x)} > [Sy, |
zeS
By g(z) — dg+—s(z) < 0 for each 2 € Sy, the above inequality implies

> max {0,g(z) — dg-—s(x)} > |Sy, |-

xeM
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Since dg+_s(x) < g(x) — 1 for every x € M, we have

D g(@) = > dar—s(x) > [Sy, |-

zeM TEM

This inequality together with Z dg«—s(z) = 2|§y2| yields
zeM

zeM

1
Moreover, it follows from |[V(G)| > |L| > 2|K]| that B Z dg(x) >
zeV(G)
1 _
Z g(x). Hence 3 Z da(z) > 2[Sy,| + [Sy,|. This contradicts the fact
zeM zeM 1
1Sy, | + 1Sy, | = |1E(G)| = 3 Z da(z). This completes the proof of this case.
zeM

Case 2: M # V(G)
We have from (2.1),

S max{0,9(2) = daws(@)} + Sy, | > 3 F@)+ 1Sy,

I‘Eggc IESz
So
> max{0,g(x) —de—s(@)}+ Y max{0,9(x) — dg-—s(z)} + [Sy,|
r€Kg 2€Ss—Kg
> f@+ Y f@)+ Sy
z€Kg x€Sz—Kg

For any z € S; — M, dg«_s(z) = dg+(z) holds. Thus the previous relation
implies

Z max {0, g(x) — dg+—g(x)} + Z max {0, g(z) — dg+—s(x)} + Sy, |

reKsNM zeM—K
>3 f@+ Y @) +1Sy,
z€Kg x€Sz—Kg

Now from (2.2), we have

g(x) — dg+_g(x) > 1 for every x € M.
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If we let g(z) — dg+_s(x) = 6(x) for every x € M, then the above can be
written as

(23) D @)+ Y @) ISyl > Y f@+ Y f@)+ISyl

zeKgNM reM—Kg 2€Ks 2€S,—Kg
Since
> (e(z) —da—s@)+ D (dg=(x) —dge—s(x)) = 2|5y,
ke i
we have
S (e @) —g@) +0@)+ Y (de(@) — 9(@) +0(2)) = 218, .
weKgNM ceM—Kg
So
2 o) 3 (15 o) <
Hence
(2.0 > [ |+ 5 o) < 215 1+ 1 0 k.

zeM

By (2.3) and (2.4),

do+(x _
245, |+ 10K = 3 |0 48, 1> 3 s+ S se+is|

zeM zeKg TESy—

which implies

(2.5)  [Sy, |+ M NKg[ - > [dG;(xw 1Sy, 1> > {dG;(x)w —|Kg|.

zeM TESy

At this point, we consider the following two subcases:

Case 2a: S, # 0
We first point out that S, # V(G). If S, = V(G), then by S, = 0 and (2.1),

BG) =[S, > Y 1> Y WD,

x€S zeV(Q)

This is a contradiction.
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Since G is k-edge-connected and the number of edges in G joining two

vertices of S, is Sy, |, we have k < eq(Sz, V(G Z da(x) —2[Sy, .
€Sy
Hence B
05, |+ k< Y do- ()
TES,
and so
3 dg-(x)| _k _ |Ks]|
(2.6) r%gszj[z W_2_iz'
TESy
y (2.5) and (2.6), we have
dg* (HJ k KS
(2.7) |Sy0|+|MmKS_Z[ 5 >W>2—’2‘.

xeM

We also should point out here that M # (). If M = (), then |Kg| > k holds
by (2.7). But this is a contradiction since |Kg| < |K| < k. Therefore M # ().
By (2.7), [M N Kg| + |Ks| < |K| =k and

Z[dG* l—2ZdG*

zeM reM

k1
we have |Sy |+ 373 Z dg+(x) and hence 2|S, |+k > Z dg+(z). On the
zeM zeEM
other hand, by the edge-connectivity of G,

D dge(x) = dglx) = 2| E(GIM])| + ea(M,V(G) — M) > 2|5, | + k.
zeM zeEM

This is a contradiction.

Case 2b: S, =0
We have from (2.5),

da+(x
(2.8) Sy | + M N Eg| > > [ 2( W

xeM

since gyo =0 and Kg = () when S, = 0.
We should point out here that M # 0, since otherwise (2.8) give us a
contradiction. By [E(G[M])| > [Sy, | and

do+(x do+(x MNL da+(x MNKs
> [fe] -y derle)  WIOLL, 3 dota) , MOK)

xeM xeM zeM




EDGE-CONNECTIVITY AND THE ORIENTATION OF A GRAPH 9

(2.8) implies

B+ MO 5 de @)

2 2
reM
IMNKg| |Kgl |K| K
It foll f < < -—=—th
t follows from 5 S5 s 2tat
AB(GIM))| + k> > da-(x).
zeM

This is a contradiction, since by the edge-connectivity of G,

Y de(2) = 2|E(GIM])| + ec(M, V(G) — M) = 2|E(G[M])| + k.
reM

O]

Next, we will describe a family of graphs, which shows that the connectivity
condition imposed on graph G in Theorem 1 is necessary.

Let H; and Hs be two (k — 1)-edge-connected graphs with V(H;) =
{ul, Uy v o vy U|V(H1)|}a V(HQ) = {1)1, V2, ... 7U|V(H2)|} and min {’V(Hl)’ N
|\V(H2)|} > k+ 1. We also assume that H; and Hs have the following prop-
erties:

(a) the vertices uj,ug,...,ur_1 and vy, va,...,vx_1 have even degree in H;
and Hj respectively,

(b) the vertices ug and vi have odd degree in Hy and Hs respectively.

If we add the independent edges uivi, usvs, ..., ux_1vk_1 to Hi U Hy, we
obtain a graph G which is clearly (k — 1)-edge-connected having at least 2k

vertices of odd degree.

d
However, G has no orientation D such that dj (z) = G2($)J when z €

d d
{u,ug,...,ux} = K and {Gz(x)J <dh(z) < [GQ(:C)—‘ when z € V(G) — K.
In fact, we will show the above claim as follows:
Let G* be the bipartite graph obtained from G by subdividing all edges.
We define functions f : V(G*) — Zt, g : V(G*) — Z™" such that

(i) fz) = [d%@)w and g(z) = VG;@J when z € V(G) — K,

(i) f(z) = g(z) = VG;””)J when z € K, and

(iii) f(z) =g(x) =1 when z € V(G*) — V(G).
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According to Lemma 2, G will have an orientation D having the properties
stated before if and only if G* has a (g, f)—factor having properties (i), (ii)
and (iii).

We will prove that G* has no such a (g, f)—factor. As in the proof of The-
orem 1, G* has bipartition (X,Y’) where X = V(G), Y = V(G*) — V(G). We
use the notation defined in Theorem 1. Let S, = K, S, =0, S, = V(G) — K,

and Fy = V(G*) — V(G). We have Zf(x) = Z f(z) = Z VZGQ(@“)J _

€S zeK rzeK
dG -
> -5 Zmax{o 9(@) —dg-—s(x)} = [y, | = [E(G[S:])| =
zeK xES
|E(G[K])| and 2|E(G = da(x) — eq(K, V(G = da(x
reK zeK
(k—1).
So

> max{0,g(x) — da-—s(z)} > > f(x)

zeS zes

and therefore by Lemma 1, G* has no (g, f)—factor.
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