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Abstract. In this paper, we consider the effect of non-normality on the distri-
bution of the sample fourth order cumulant in elliptical distributions. Asymp-
totic properties of the distribution of the sample fourth order cumulant is pre-
sented under non-normality, especially, the class of elliptical populations in
detail. Asymptotic expansion formulas for the distributions are derived by a
perturbation method. Finally, the numerical results are obtained.

AMS 2000 Mathematics Subject Classification. 62H10 (62E20, 62F12)

Key words and phrases. Asymptotic expansion, bias correction, cumulant, el-
liptical distribution, kurtosis parameter, moment parameter, non-normality

§1. Introduction

The distribution of the sample fourth order cumulant is studied when the
parent population is elliptical. In the case of normal populations, the related
discussions have been given by Mardia ([Ma70], [Ma74]) and Srivastava [S84].
Under the non-normal populations, some works have already been done (see
Berkane and Bentler [BB90], Henze [H94], Seo and Toyama [ST96], Maruyama
and Seo [MS03] and Maruyama [M05]). However, little work has been done
regarding the effect of non-normality on the distribution of the sample fourth
order cumulant itself. One purpose of the present paper is to investigate the
effect of non-normality on the sample fourth order cumulant under elliptical
populations. The other is to suggest the more accurate estimation. For our
purposes, asymptotic expansion for the moments of the sample fourth order
cumulant is derived up to the higher order.

Let a p-variate random vector X be distributed as a p-variate elliptical
distribution with parameters μ and Λ, i.e., Ep(μ,Λ), where Λ is some positive
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definite symmetric matrix. If the probability density function exists, it has
the form

f(x) = cp|Λ|− 1
2 g

(
t(x − μ)Λ−1(x − μ)

)

for some non-negative function g, where cp is the normalizing constant and tx
denotes a transposition of a vector x. The characteristic function is φ(θ) =
exp[i tθμ]ψ(tθΛθ) for some function ψ, where i =

√−1. Note that E(X) = μ
and Cov(X) = −2ψ′(0)Λ =: Σ, respectively. For example, the multivariate
normal, the multivariate t and the contaminated normal distributions belong
to the class of elliptical distributions which is referred to e.g., Fang, Kotz and
Ng [FKN90] and Anderson [A03]. We also define the kurtosis parameter by
κ := ψ′′(0)/(ψ′(0))2−1, and in general let K(m) := ψ(m)(0)/(ψ′(0))m−1 which
is called the 2m-th order moment parameter. In elliptical distributions, the
fourth order cumulant is essentially equal to the kurtosis parameter from the
relation between the moments and cumulants (see Stuart and Ord [SO94]).
First, in Section 2, we study asymptotic properties of the distribution of the
sample fourth order cumulant under elliptical populations. In Seo and Toyama
[ST96] and Maruyama [M05], asymptotic expansions of the consistent estima-
tors of the kurtosis parameter and the general moment parameter were derived
up to the order n−1 as the size n of sample tends to infinity using the joint
probability density function (j.p.d.f.) of the sample mean and the sample co-
variance matrix (see Wakaki [W94] and Iwashita [I97]). In this paper, we make
use of the j.p.d.f. obtained by Wakaki [W97] in order to get an extension of
their results, that is to say up to the order n−2. Asymptotic expansion for-
mulas for the distributions are derived by a perturbation method. Moreover
we suggest the modified estimator of κ with the bias correction, which is the
extension of the result discussed by Seo and Toyama [ST96]. Finally, simula-
tion results are presented and the effect of non-normality on the distribution
of the sample fourth order cumulant is discussed in Section 3.

§2. The main results

Suppose that X1, · · · ,Xn are independent and identically distributed random
vectors according to Ep(μ,Λ). An extension of the multivariate coefficient of
kurtosis in the sense of Mardia [Ma70] has been discussed by Anderson [A03]
under the elliptical populations. Note that β2,p := E[{t(X − μ)Σ−1(X −
μ)}2] = p(p+ 2)(κ+ 1). Then, we have a consistent estimator of the kurtosis
parameter which is essentially equal to the fourth order cumulant given by

(2.1) κ̂ =
1

p(p+ 2)
b2,p − 1,
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where

b2,p :=
1
n

n∑
i=1

{
t(Xi − X)U−1(Xi − X)

}2
.

Also X is the sample mean and U is the unbiased sample covariance matrix.
Since b2,p is not affected by nonsingular affine transformations of the data
X1, · · · ,Xn, we can assume without loss of generality that μ = 0 and Σ = Ip.

To start with, we consider the cumulants of Y :=
√
n(κ̂−κ) up to the third

order, which take the following forms:

K1(Y ) =
a1√
n

+O(n−
3
2 ), K2(Y ) = a2

2 +O(n−1), K3(Y ) =
6a3√
n

+O(n−
3
2 ),

where a1 and a2 are obtained by Seo and Toyama [ST96]. Further, from a
general theory of asymptotic expansions (see [SHF85]), we can expand the
distribution of the sample fourth order cumulant as

(2.2) P

(√
n(κ̂− κ)
a2

≤ y

)
= Φ(y) − 1√

n

(
a1

a2
Φ′(y) +

a3

a3
2

Φ(3)(y)
)

+O(n−1),

where Φ(y) is the cumulative distribution function of the standard normal
distribution N(0, 1) and Φ(k)(y) is the k-th derivative of Φ(y). Therefore we
have to calculate the third order cumulant K3(Y ). Note that

K3(Y ) := E
[(
Y − E(Y )

)3
]

= n
√
nE

[(
κ̂− E(κ̂)

)3
]

=
n
√
n

p3(p+ 2)3
E

[(
b2,p − E(b2,p)

)3
]

=
n
√
n

p3(p+ 2)3
{
E(b32,p) − 3E(b22,p)E(b2,p) + 2

(
E(b2,p)

)3
}
.

2.1. Asymptotic expansions of b2,p, b22,p and b32,p

Let Ti := t(Xi − X)U−1(Xi − X), then note that E(b2,p) = E(T 2
i ). In order

to avoid the dependence of Xi, X and U , we define

X(i) :=
1

n− 1

n∑
k �=i

Xk,

U(i) :=
1

n− 2

n∑
k �=i

(Xk − X(i))
t(Xk − X(i)).
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Then we can expand T 2
i as

T 2
i = (tXiXi)2 +

1√
n

2 tXiXiQ1

+
1
n

{
Q2

1 + 2 tXiXiQ2 − 4(tXiXi)2 − 2(tXiXi)3
}

+
1

n
√
n

{
2 tXiXiQ3 − 8 tXiXiQ1 − 6(tXiXi)2Q1 + 2Q1Q2

}

+
1
n2

{
Q2

2 − 8 tXiXiQ2 − 6(tXiXi)2Q2 − 6 tXiXiQ
2
1 + 2Q1Q3 − 4Q2

1

+2 tXiXiQ4 + 6(tXiXi)2 + 8(tXiXi)3 + 3(tXiXi)4
}

+O(n−
5
2 ),

where

Q1 = −2 tXiy1 − tXiM1Xi,

Q2 = ty1y1 + 2 tXiM1y1 + tXiM
2
1 Xi + tXiXi,

Q3 = −tXiM
3
1 Xi − 2 tXiM

2
1 y1 − ty1M1y1 − 3 tXiy1 − 3

2
tXiM1Xi,

Q4 = tXiM
4
1 Xi + 2 tXiM

3
1 y1 + ty1M

2
1 y1 + 2 ty1y1 + 4 tXiM1y1 + 2 tXiM

2
1 Xi

+ 2 tXiXi,

and

y1 :=
√
n− 1 X(i),

M1 :=
√
n− 1(U(i) − Ip).

By using the asymptotic expanded j.p.d.f. of y1 and M1 (see Wakaki [W97]),
we can calculate the expectation for the expansion of T 2

i . Then we obtain

E(b2,p) = p(p+ 2)
(

A0 +
1
n

A1 +
1
n2

A2

)
+O(n−3),

where

A0 = κ+ 1,(2.3)

A1 = −2(p+ 4)(K(3) + 1) + (2p+ 7)(κ+ 1)2 − 5(κ+ 1) + 2,

A2 = 3(p+ 4)(p+ 6)(K(4) + 1) − 8(p+ 4)(p+ 5)(κ+ 1)(K(3) + 1)

+ 14(p+ 4)(K(3) + 1) + (p+ 4)(5p+ 22)(κ+ 1)3

− 7(2p+ 7)(κ+ 1)2 − (2p+ 3)(κ+ 1) + 2p+ 3.
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Next we consider the asymptotic expansion of b22,p. Since b2,p =
(1/n)

∑n
i=1 T

2
i , we can write

E(b22,p) =
1
n
E(T 4

i ) +
(

1 − 1
n

)
E(T 2

i T
2
j ).

In order to avoid the dependence of Xi, Xj , X and U , we define

X(ij) :=
1

n− 2

n∑
k �=i,j

Xk,

U(ij) :=
1

n− 3

n∑
k �=i,j

(Xk − X(ij))
t(Xk − X(ij)).

Further, let y2 :=
√
n− 2 X(ij) and M2 :=

√
n− 2(U(ij) − Ip). Then we can

expand T 2
i T

2
j as

T 2
i T

2
j = B2

1 +
1√
n

C1 +
1
n

(C2 − B2
1B2) +

1
n
√
n

{
C3 − 2B2

1(F1 + F5) − C1B2

}

+
1
n2

{
B2

1

{
8B2 − 2(B1 + F2 + F6) − 36 + 3(tXiXi + tXjXj)2

}

+ C4 − C2B2 − 2(F1 + F5)
}

+O(n−
5
2 ),

where

B1 = tXiXi
tXjXj ,

B2 = 2(tXiXi + tXjXj + 4),
C1 = 2B1(tXjXjF1 + tXiXiF2),

C2 = (F2
1 + 2 tXiXiF2)(tXjXj)2 + (F2

5 + 2 tXjXjF6)(tXiXi)2 + 4B1F1F5,

C3 = 2(F1F2 + tXiXiF3)(tXjXj)2 + 2(F5F6 + tXjXjF7)(tXiXi)2

+ 2 tXiXiF1(F2
5 + 2 tXjXjF6) + 2 tXjXjF5(F2

1 + 2 tXiXiF2),

C4 = (F2
2 + 2F1F3 + 2 tXiXiF4)(tXjXj)2

+ (F2
6 + 2F5F7 + 2 tXjXjF8)(tXiXi)2 + 4 tXiXiF1(F5F6 + tXjXjF7)

+ 4 tXjXjF5(F1F2 +tXiXiF3) + (F2
1 + 2 tXiXiF2)(F2

5 + 2 tXjXjF6),
F1 = −2 tXiy2 − tXiM2Xi,

F2 = G2(i,i) − tXiXi − (tXiXj)2 − 2 tXiXj ,

F3 = G3(i,i) + F1 − 2G1(i,j)(
tXiXj + 1),

F4 = G4(i,i) + G2(i,i) − G2
1(i,j) − 2G2(i,j)(

tXiXj + 1) − 2 tXiXi + tXjXj

+ (tXiXj + 2)(tXjXj − 2),
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G1(i,j) = −tXiM2Xj − t(Xi + Xj)y2,

G2(i,j) = tXiXj + t(Xi + Xj)M2y2 + tXiM
2
2 Xj + ty2y2,

G3(i,j) = −2 tXiM2Xj − tXiM
3
2 Xj − t(Xi + Xj)M2

2 y2 − 2 t(Xi + Xj)y2

− ty2M2y2,

G4(i,j) = 3 tXiM
2
2 Xj + tXiM

4
2 Xj + ty2M

2
2 y2 + 3 ty2y2 + 3 t(Xi + Xj)M2y2

+ t(Xi + Xj)M3
2 y2 + 3 tXiXj ,

and Fk+4 (k = 1, 2, 3, 4) are given by exchanging the subscripts i and j of Fk.
Calculating the expectation for the expansion of T 4

i with respect to Xi, y1

and M1, and then doing for the expansion of T 2
i T

2
j with respect to Xi, Xj ,

y2 and M2, we may obtain the variance.
Finally we derive an asymptotic expansion for b32,p. Note that

E(b32,p) =
1
n2

E(T 6
i ) + 3

(
1
n
− 1
n2

)
E(T 4

i T
2
j ) +

(
1 − 3

n
+

2
n2

)
E(T 2

i T
2
j T

2
l ).

In order to avoid the dependence of Xi, Xj , Xl, X and U , we define

X(ijl) :=
1

n− 3

n∑
k �=i,j,l

Xk,

U(ijl) :=
1

n− 4

n∑
k �=i,j,l

(Xk − X(ijl))
t(Xk − X(ijl)).

Further, let y3 :=
√
n− 3 X(ijl) and M3 :=

√
n− 3(U(ijl)−Ip). Then, T 2

i T
2
j T

2
l

can be expanded as

T 2
i T

2
j T

2
l = J2

1 +
1√
n

H1 +
1
n

(H2 − J2
1J2)

+
1

n
√
n

{
H3 − H1J2 − 2J2

1(R1 + R5 + R9)
}

+
1
n2

{
J2
1

{
12J2 − 78 + 3(tXiXi + tXjXj + tXlXl)2 + J3

}

+ H4 − H2J2 − 2H1(R1 + R5 + R9)
}

+O(n−
5
2 ),

where

J1 = tXiXi
tXjXj

tXlXl,

J2 = 2(tXiXi + tXjXj + tXlXl + 6),
J3 = −2(tXiXi

tXjXj + tXjXj
tXlXl + tXiXi

tXlXl),
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H1 = 2J1(tXjXj
tXlXlR1 + tXiXi

tXlXlR5 + tXiXi
tXjXjR9),

H2 = D1(i)(
tXjXj)2(tXlXl)2+D2(j)(

tXiXi)2(tXlXl)2+D3(l)(
tXiXi)2(tXjXj)2

+ 4J1(tXiXiR5R9 + tXjXjR1R9 + tXlXlR1R5),

H3 = E1(i)(
tXjXj)2(tXlXl)2+E2(j)(

tXiXi)2(tXlXl)2+E3(l)(
tXiXi)2(tXjXj)2

+ (tXiXi)2 tXjXjR5D3(l) + (tXiXi)2 tXlXlR9D2(j)

+ (tXjXj)2 tXiXiR1D3(l) + (tXjXj)2 tXlXlR9D1(i)

+ (tXlXl)2 tXiXiR1D2(j) + (tXlXl)2 tXjXjR5D1(i)

+ 8J1R2R5R9,

H4 = (R2
2 + 2R1R3 + 2 tXiXiR4)(tXjXj)2(tXlXl)2

+ 4D1(i)
tXjXj

tXlXlR5R9

+ (R2
6 + 2R5R7 + 2 tXjXjR8)(tXiXi)2(tXlXl)2

+ 4D2(j)
tXiXi

tXlXlR1R9

+ (R2
10 + 2R9R11 + 2 tXlXlR12)(tXiXi)2(tXjXj)2

+ 4D3(l)
tXiXi

tXjXjR1R5

+ 2
{
(tXiXi)2 tXjXjR5E3(l) + (tXiXi)2 tXlXlR9E2(j)

+ (tXjXj)2 tXiXiR1E3(l) + (tXjXj)2 tXlXlR9E1(i)

+ (tXlXl)2 tXjXjR5E1(i) + (tXlXl)2 tXiXiR1E2(j)

}
+ (tXiXi)2D2(j)D3(l) + (tXjXj)2D1(i)D3(l) + (tXlXl)2D1(i)D2(j),

and

Dk(i) = R2
4k−3 + 2 tXiXiR4k−2,

Ek(i) = 2(R4k−3R4k−2 + tXiXiR4k−1),

for k = 1, 2, 3, 4, what is more

R1 = −2 tXiy3 − tXiM3Xi,

R2 = L2(i,i) + 2 tXiXi − tXiXj(tXiXj + 2) − tXiXl(tXiXl + 2),

R3 = L3(i,i) + 2L1(i,i) − 2L1(i,j)(
tXiXj + 1) − 2L1(i,l)(

tXiXl + 1),

R4 = L4(i,i)+ L2(i,i)−2L2(i,j)(
tXiXj + 1)−2L2(i,l)(

tXiXl + 1)−L2
1(i,j)−L2

1(i,l)

+ tXiXj(tXiXj + 2)(tXjXj − 2) + tXiXl(tXiXl + 2)(tXlXl − 2)

− 2
{

tXiXj(tXiXj − tXjXl + 1) + tXiXl(tXiXl − tXjXl + 1)

− tXiXl
tXiXj(tXjXl+ 1) −tXjXl+ 1

}
− 7 tXiXi+tXjXj +tXlXl,
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where

L1(i,j) = −t(Xi + Xj)y3 − tXiM3Xj ,

L2(i,j) = tXiXj + tXiM
2
3 Xj + t(Xi + Xj)M3y3 + ty3y3,

L3(i,j) = −5
2

t(Xi + Xj)y3 − 5
2

tXiM3Xj − tXiM
3
3 Xj − t(Xi + Xj)M2

3 y3

− ty3M3y3,

L4(i,j) = 4 t(Xi + Xj)M3y3 + 4 tXiM
2
3 Xj + 4 ty3y3 + 4 tXiXj

+ t(Xi + Xj)M3
3 y3 + ty3M

2
3 y3 + tXiM

4
3 Xj ,

and Rk+4 (k = 1, 2, 3, 4) are obtained by permuting (i, j, l) → (j, l, i) in Rk. In
the same way, Rk+8 are done with the permutation (i, j, l) → (l, i, j). Calcu-
lating the expectation for the expansion of T 6

i with respect to Xi, y1 and M1,
and for the expansion of T 4

i T
2
j with respect to Xi, Xj , y2 and M2, and then

doing for the expansion of T 2
i T

2
j T

2
l with respect to Xi, Xj , Xl, y3 and M3,

we may come by the skewness.

2.2. Distribution of the sample fourth order cumulant

Therefore after a great deal of calculation, the first three cumulants of Y :=√
n(κ̂− κ) can be expressed as

K1(Y ) =
1√
n
a11 +

1
n
√
n
a12 +O(n−

5
2 ),

K2(Y ) = a2
2 +O(n−1),

K3(Y ) =
6√
n
a3 +O(n−

3
2 ),

where the coefficients a11 (= a1 in page 99) and a12 are equal to A1 and A2

obtained by (2.3), respectively,

a2
2 = b1(K(4) + 1) + b2(K(3) + 1)(κ+ 1) + b3(κ+ 1)3 − (κ+ 1)2,

here
b1 =

(p+ 4)(p+ 6)
p(p+ 2)

, b2 = −4(p+ 4)
p

, b3 =
4(p+ 2)

p
,

and

a3 = d1(K(6) + 1) + d2(K(5) + 1)(κ+ 1) + d3(K(4) + 1)(κ+ 1)

+ d4(K(4) + 1)(κ+ 1)2 + d5(K(4) + 1)(K(3) + 1) + d6(K(3) + 1)(κ+ 1)2

+ d7(K(3) + 1)(κ+ 1)3 + d8(K(3) + 1)2(κ+ 1) + d9(κ+ 1)5 + d10(κ+ 1)4

+
2
3
(κ+ 1)3,
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where

d1 =
(p+ 4)(p+ 6)(p+ 8)(p+ 10)

6p2(p+ 2)2
, d2 = −(p+ 4)(p+ 6)(p+ 8)

p2(p+ 2)
,

d3 = −3(p+ 4)(p+ 6)
2p(p+ 2)

, d4 =
6(p+ 4)(p+ 6)

p2
, d5 = −2(p+ 4)2(p+ 6)

p2(p+ 2)
,

d6 =
6(p+ 4)

p
, d7 = −64(p+ 2)(p+ 4)

3p2
, d8 =

7(p+ 4)2

p2
,

d9 =
12(p+ 2)2

p2
, d10 = −6(p+ 2)

p
.

We can see that a11 (= a1) and a2
2 coincide with the expressions obtained by

Seo and Toyama [ST96]. Further, if the underlying distribution is normal then
K(m) = 0, the coefficients are equal to

a11 = −4, a12 = 7, a2
2 =

8
p(p+ 2)

, a3 =
32(p+ 8)

3p2(p+ 2)2
.

Note that a2
2 is essentially the same as the result given by Mardia [Ma70].

It may be noticed that more efficient estimate could be found by some trans-
formations, for example, the variance stabilizing transformation, the normal-
izing transformation, etc. These are generally derived from solving differential
equations; however, we have difficulty in finding such transformations because
asymptotic expansions given here include a lot of moment parameters which
are practically unknown. In addition, the above mentioned equations them-
selves are complicated so that it is hard to solve them.

2.3. Bias correction for κ̂

In this section, we shall correct the bias of the estimator κ̂ given by (2.1). First,
it follows from (2.3) that the bias in κ̂ is of order n−1. Then an estimator with
the bias correction has been by Seo and Toyama [ST96], which is as follows

(2.4) κ̃ := κ̂− 1
n

Â1,

where Â1 is given by replacing K(m) with K̂(m) in A1, that is

Â1 = −2(p+ 4)(K̂(3) + 1) + (2p+ 7)(κ̂+ 1)2 − 5(κ̂+ 1) + 2.

Remark that the bias in κ̃ is of order n−2 with the same variance up to the
order n−1 as that of κ̂.
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Further, we may obtain another estimator as

(2.5) κ̆ := κ̃− 1
n2

(Â2 − P̂),

where Â2 is given by replacing K(m) with K̂(m) in A2, and also P̂ is done by
calculation the expectation of Â1 up to the order n−1 with asymptotic results
in Maruyama [M05]. Note that the bias in κ̆ is improved, that is order n−3

with the same variance of κ̂ up to the order n−1 and the same third order
cumulant up to the order n−2.

§3. Numerical results

In order to examine the accuracy of the obtained approximations, we give
simulation results of the mean, variance and skewness of the distribution of
sample fourth order cumulant. Computations are made for selected values:
p = 2, 5 and n = 100, 200, 500, 4000. We consider the following six types of
distributions for elliptical populations,

M1 : Contaminated normal (ω = 0.1, τ = 3),
M2 : Contaminated normal (ω = 0.4, τ = 3),
M3 : Contaminated normal (ω = 0.7, τ = 3),
M4 : Multivariate normal,
M5 : Multivariate t (ν = 13),
M6 : Compound normal U(1, 2),

where the random vector X from M6 is the product of a normal vector Z which
has the standard normal distribution Np(0, Ip) and the inverse of a random
variable according to the uniform distribution on the interval [1, 2]. We note
that the theoretical values of K(m) are computed easily using formulas, i.e.,
for the contaminated normal distribution,

K(m) =
1 + ω(τ2m − 1){
1 + ω(τ2 − 1)

}m − 1, 0 ≤ ω ≤ 1,

for the multivariate t distribution with ν degrees of freedom is given by

K(m) =
(ν − 2)m

2m(ν
2 −m)m

− 1, ν > 2m,

where (ν)m := ν(ν+1) · · · (ν+m−1) and for the compound normal distribution
M6,

K(m) =
2m(2−2m+1 − 1)

−2m+ 1
− 1.
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Table 1: Theoretical values of K(m).

κ K(3) K(4) K(5) K(6)

M1 1.78 11.65 61.58 311.54 1561.52
M2 0.87 2.94 7.43 17.07 37.72
M3 0.31 0.77 1.42 2.30 3.50
M4 0 0 0 0 0
M5 0.22 0.92 3.22 14.49 169.42
M6 0.16 0.55 1.26 2.54 4.81

Since we need them up to the sixth order for computing, the moment param-
eters of each distribution are given by Table 1.

Table 2 shows the asymptotic approximations for the mean, variance and
skewness of κ̂ obtained by

(3.1) Mκ̂ := κ+
1
n
a11 +

1
n2
a12, Vκ̂ :=

1
n
a2

2, γκ̂ :=
6
n2
V

− 3
2

κ̂ a3,

respectively, in the case p = 2. On the other hand, when we may assume that
Σ = Ip without any loss of generality, the sample mean, variance and skewness
for κ̂ based on 10,000 simulations are also obtained. Table 3 gives the results
in the case p = 5. Also Figure 1-3 present the relative error from the limiting
distribution based on (2.2) for p = 3. It may be seen from Tables 2 and 3
that the simulation results nearly coincide with the approximate values for the
mean under these elliptical distributions. It can also turn out to be that the
approximations to the variance and the skewness are better estimates as n is
large. But in the models which have large values of the moment parameters
meaning the non-normality, for instance, M1 and M5, the convergence is slow
and the approximate expressions (3.1) are not always precise. In the other
models, both values agree for a sufficiently large n. The value obtained for the
estimator was acceptable for a large n and improved as ω increased for the
contaminated normal M1, M2 and M3, and when n increased for M5 and the
compound normal M6. It may be noted that the largeness of p does not have
much effect on the mean of κ̂. In addition, when p is large, Vκ̂ and γκ̂ decrease
monotonously. As regards the limiting distribution, it can be seen from Figures
that the distribution of the sample fourth order cumulant tends to the normal
distribution as n → ∞. It may be also noted that the errors in the case M1
and M5 are pretty large for small n because of the large values of the moment
parameters. In conclusion, it can be noted that the asymptotic expansion for
the distribution of a function of the sample fourth order cumulant with the
coefficients a11, a12, a2

2 and a3 are not so bad approximations under the class
of elliptical population.
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Next we shall focus our concentration on the bias and the mean-squared
error (MSE) for the estimators of the kurtosis parameter. Here make a com-
parison between the consistent estimator given by (2.1) and others by (2.4)
and (2.5) about the bias and the MSE. Table 4 gives the results mentioned
above based on 20,000 simulations in the case p = 2. Also Table 5 presents
the results in the case p = 5. It may be seen from simulation results in Tables
4 and 5 that the expectation of the any estimators converges to the kurtosis
parameter when the sample size is large. Especially in normal case M4, it is
noted that the modified estimator κ̆ rapidly approaches κ than κ̃ in addition
to κ̂. Also from Tables 4 and 5, we notice that κ̂ is underestimated for el-
liptical populations. The bias of κ̆ is actually smaller than that of κ̂ and κ̃
in magnitude. As for the MSE, it may be noted that the MSE of κ̃ is small
as compared with that of κ̂ and κ̆ is even smaller when the size of p is large.
In particular when the sample size is moderately small, the fact mentioned
above is true for populations with large moment parameters (e.g., M1 and
M5) rather than the normal case M4. Therefore, it can be seen that the bias
for κ̃ and κ̆ is reduced as well as the MSE when the sample size is large. As
far as we can judge these results, κ̆ is better than κ̂ and κ̃.
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Table 2: Simulations and approximations to mean, variance and skewness for
p = 2.

n mean Mκ̂ variance Vκ̂ skewness γκ̂

M1 100 1.147 1.169 0.421 1.175 0.247 2.636
200 1.429 1.430 0.339 0.587 0.187 0.659
500 1.623 1.629 0.187 0.235 0.620∗ 0.105
4000 1.760 1.760 0.287∗ 0.293∗ 0.156∗∗ 0.164∗∗

M2 100 0.715 0.712 0.721∗ 0.109 0.196∗ 0.516∗

200 0.794 0.790 0.447∗ 0.546∗ 0.826∗∗ 0.129∗

500 0.838 0.838 0.200∗ 0.219∗ 0.175∗∗ 0.206∗∗

4000 0.867 0.866 0.270∗∗ 0.273∗∗ 0.301† 0.323†

M3 100 0.240 0.241 0.216∗ 0.287∗ 0.286∗∗ 0.543∗∗

200 0.274 0.275 0.125∗ 0.143∗ 0.107∗∗ 0.135∗∗

500 0.294 0.296 0.542∗∗ 0.574∗∗ 0.179∗∗∗ 0.217∗∗∗

4000 0.307 0.308 0.702∗∗∗ 0.718∗∗∗ 0.340†† 0.339††

M4 100 −0.414∗ −0.393∗ 0.819∗∗ 0.100∗ 0.631∗∗∗ 0.100∗∗

200 −0.201∗ −0.198∗ 0.449∗∗ 0.500∗∗ 0.196∗∗∗ 0.250∗∗∗

500 −0.799∗∗ −0.797∗∗ 0.189∗∗ 0.200∗∗ 0.375† 0.400†

4000 −0.788∗∗∗ −0.999∗∗∗ 0.246∗∗∗ 0.250∗∗∗ 0.513††† 0.625†††

M5 100 0.122 0.133 0.349∗ 0.102 0.155∗ 1.257
200 0.167 0.171 0.282∗ 0.513∗ 0.123∗ 0.314
500 0.193 0.199 0.144∗ 0.205∗ 0.552∗∗ 0.503∗

4000 0.211 0.217 0.249∗∗ 0.256∗∗ 0.431∗∗∗ 0.786∗∗∗

M6 100 0.945∗ 0.887∗ 0.215∗ 0.317∗ 0.424∗∗ 0.102∗

200 0.130 0.123 0.127∗ 0.158∗ 0.136∗∗ 0.255∗∗

500 0.153 0.144 0.603∗∗ 0.634∗∗ 0.321∗∗∗ 0.408∗∗∗

4000 0.165 0.158 0.814∗∗∗ 0.793∗∗∗ 0.567†† 0.638††

* : value×10−1, ** : value×10−2, *** : value×10−3, †: value×10−4,
††: value×10−5, †††: value×10−6.
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Table 3: Continued. for p = 5.

n mean Mκ̂ variance Vκ̂ skewness γκ̂

M1 100 0.960 0.996 0.107 0.363 0.942∗∗ 0.214
200 1.306 1.313 0.929∗ 0.181 0.912∗∗ 0.537∗

500 1.576 1.575 0.570∗ 0.726∗ 0.411∗∗ 0.859∗∗

4000 1.751 1.753 0.862∗∗ 0.908∗∗ 0.146∗∗∗ 0.134∗∗∗

M2 100 0.685 0.684 0.225∗ 0.388∗ 0.201∗∗ 0.600∗∗

200 0.778 0.776 0.147∗ 0.194∗ 0.751∗∗∗ 0.150∗∗

500 0.834 0.832 0.714∗∗ 0.776∗∗ 0.213∗∗∗ 0.240∗∗∗

4000 0.866 0.865 0.964∗∗∗ 0.970∗∗∗ 0.438†† 0.375††

M3 100 0.236 0.237 0.696∗∗ 0.968∗∗ 0.346∗∗∗ 0.588∗∗∗

200 0.271 0.273 0.408∗∗ 0.484∗∗ 0.968† 0.147∗∗∗

500 0.294 0.295 0.181∗∗ 0.193∗∗ 0.201† 0.235†

4000 0.306 0.308 0.238∗∗∗ 0.242∗∗∗ 0.239††† 0.367†††

M4 100 −0.388∗ −0.393∗ 0.173∗∗ 0.228∗∗ 0.354† 0.679†

200 −0.198∗ −0.198∗ 0.101∗∗ 0.114∗∗ 0.143† 0.169†

500 −0.784∗∗ −0.797∗∗ 0.426∗∗∗ 0.457∗∗∗ 0.228†† 0.271††

4000 −0.107∗∗ −0.999∗∗∗ 0.566† 0.571† 0.570‡ 0.424‡

M5 100 0.109 0.126 0.928∗∗ 0.376∗ 0.139∗∗ 0.207
200 0.156 0.163 0.756∗∗ 0.188∗ 0.100∗∗ 0.517∗

500 0.189 0.194 0.467∗∗ 0.752∗∗ 0.887∗∗∗ 0.828∗∗

4000 0.211 0.216 0.859∗∗∗ 0.940∗∗∗ 0.147∗∗∗ 0.129∗∗∗

M6 100 0.870∗ 0.789∗ 0.527∗∗ 0.864∗∗ 0.259∗∗∗ 0.904∗∗∗

200 0.125 0.117 0.340∗∗ 0.423∗∗ 0.111∗∗∗ 0.226∗∗∗

500 0.150 0.142 0.166∗∗ 0.179∗∗ 0.300† 0.361†

4000 0.164 0.157 0.229∗∗∗ 0.216∗∗∗ 0.512††† 0.565†††

* : value×10−1, ** : value×10−2, *** : value×10−3, †: value×10−4,
††: value×10−5, †††: value×10−6, ‡: value×10−7.
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Table 4: Simulation results for bias and MSE of the estimators in the case
p = 2.

bias MSE
n κ̂ κ̃ κ̆ κ̂ κ̃ κ̆

M1 100 −0.631 −0.277 −0.224 0.817 0.868 0.877
200 −0.361 −0.107 −0.718∗ 0.465 0.548 0.551
500 −0.148 −0.168∗ −0.651∗∗ 0.211 0.235 0.238
4000 −0.209∗ −0.169∗∗ −0.149∗∗ 0.291∗ 0.285∗ 0.286∗

M2 100 −0.155 −0.321∗ −0.276∗ 0.969∗ 0.114 0.127
200 −0.785∗ −0.811∗∗ −0.572∗∗ 0.512∗ 0.582∗ 0.594∗

500 −0.314∗ −0.247∗∗ −0.221∗∗ 0.211∗ 0.227∗ 0.232∗

4000 −0.431∗∗ −0.291∗∗∗ −0.281∗∗∗ 0.274∗∗ 0.277∗∗ 0.279∗∗

M3 100 −0.681∗ −0.833∗∗ −0.822∗∗ 0.265∗ 0.310∗ 0.324∗

200 −0.349∗ −0.271∗∗ −0.243∗∗ 0.137∗ 0.152∗ 0.156∗

500 −0.136∗ −0.751∗∗∗ −0.718∗∗∗ 0.553∗∗ 0.584∗∗ 0.590∗∗

4000 −0.188∗∗ −0.136∗∗∗ −0.129∗∗∗ 0.709∗∗∗ 0.713∗∗∗ 0.715∗∗∗

M4 100 −0.399∗ −0.466∗∗ −0.451∗∗ 0.977∗∗ 0.111∗ 0.121∗

200 −0.205∗ −0.189∗∗ −0.161∗∗ 0.495∗∗ 0.533∗∗ 0.538∗∗

500 −0.771∗∗ −0.303∗∗∗ −0.301∗∗∗ 0.199∗∗ 0.198∗∗ 0.200∗∗

4000 −0.117∗∗ −0.175∗∗∗ −0.168∗∗∗ 0.249∗∗∗ 0.248∗∗∗ 0.250∗∗∗

M5 100 −0.980∗ −0.294∗ −0.241∗ 0.456∗ 0.637∗ 0.683∗

200 −0.537∗ −0.124∗ −0.975∗∗ 0.297∗ 0.406∗ 0.414∗

500 −0.197∗ −0.401∗∗ −0.304∗∗ 0.149∗ 0.176∗ 0.182∗

4000 −0.705∗∗ −0.297∗∗ −0.194∗∗ 0.248∗∗ 0.245∗∗ 0.247∗∗

M6 100 −0.704∗ −0.124∗ −0.102∗ 0.261∗ 0.324∗ 0.344∗

200 −0.363∗ −0.364∗∗ −0.255∗∗ 0.141∗ 0.165∗ 0.173∗

500 −0.149∗ −0.749∗∗∗ −0.647∗∗∗ 0.618∗∗ 0.632∗∗ 0.636∗∗

4000 −0.238∗∗ −0.533∗∗∗ −0.526∗∗∗ 0.815∗∗∗ 0.822∗∗∗ 0.826∗∗∗

* : value×10−1, ** : value×10−2, *** : value×10−3.
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Table 5: Continued. in the case p = 5.

bias MSE
n κ̂ κ̃ κ̆ κ̂ κ̃ κ̆

M1 100 −0.820 −0.385 −0.317 0.781 0.378 0.371
200 −0.467 −0.132 −0.910∗ 0.311 0.182 0.178
500 −0.206 −0.291∗ −0.167∗ 0.969∗ 0.785∗ 0.787∗

4000 −0.273∗ −0.924∗∗∗ −0.648∗∗∗ 0.948∗∗ 0.920∗∗ 0.919∗∗

M2 100 −0.185 −0.422∗ −0.236∗ 0.564∗ 0.395∗ 0.396∗

200 −0.932∗ −0.113∗ −0.102∗ 0.234∗ 0.205∗ 0.202∗

500 −0.378∗ −0.225∗∗ −0.218∗∗ 0.844∗∗ 0.814∗∗ 0.815∗∗

4000 −0.535∗∗ −0.678∗∗∗ −0.650∗∗∗ 0.984∗∗∗ 0.975∗∗∗ 0.973∗∗∗

M3 100 −0.730∗ −0.210∗∗ −0.109∗∗ 0.121∗ 0.100∗ 0.103∗

200 −0.366∗ −0.155∗∗ −0.992∗∗∗ 0.537∗∗ 0.502∗∗ 0.504∗∗

500 −0.152∗ −0.952∗∗∗ −0.750∗∗∗ 0.203∗∗ 0.198∗∗ 0.196∗∗

4000 −0.193∗∗ −0.945† −0.934† 0.238∗∗∗ 0.237∗∗∗ 0.235∗∗∗

M4 100 −0.394∗ −0.207∗ −0.110∗ 0.329∗∗ 0.260∗∗ 0.261∗∗

200 −0.197∗ −0.246∗∗ −0.987∗∗∗ 0.138∗∗ 0.123∗∗ 0.121∗∗

500 −0.794∗∗ −0.344∗∗∗ −0.123∗∗∗ 0.500∗∗∗ 0.481∗∗∗ 0.480∗∗∗

4000 −0.101∗∗ −0.198† −0.175† 0.578† 0.575† 0.574†

M5 100 −0.113 −0.366∗ −0.357∗ 0.220∗ 0.206∗ 0.207∗

200 −0.654∗ −0.178∗ −0.162∗ 0.120∗ 0.139∗ 0.136∗

500 −0.325∗ −0.995∗∗ −0.918∗∗ 0.601∗∗ 0.627∗∗ 0.624∗∗

4000 −0.117∗ −0.861∗∗ −0.851∗∗ 0.958∗∗∗ 0.944∗∗∗ 0.943∗∗∗

M6 100 −0.800∗ −0.162∗ −0.156∗ 0.115∗ 0.913∗∗ 0.911∗∗

200 −0.416∗ −0.488∗∗ −0.430∗∗ 0.516∗∗ 0.480∗∗ 0.476∗∗

500 −0.163∗ −0.164∗∗∗ −0.135∗∗∗ 0.191∗∗ 0.198∗∗ 0.194∗∗

4000 −0.218∗∗ −0.589† −0.576† 0.232∗∗∗ 0.232∗∗∗ 0.231∗∗∗

* : value×10−1, ** : value×10−2, *** : value×10−3, †: value×10−4.
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Figure 2: Continued.
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