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An inverse problem for the elastic equation
in plane-stratified media

Sei Nagayasu

(Received May 27, 2005)

Abstract. Assume that two media are laying in a half-space and the interface
wall is parallel to the boundary of the half-space. We can directly observe the
data near the boundary of the half-space, but we cannot directly observe inside
the half-space. In this situation, we try to identify these unknown things by
creating artificial explosions and observing on the boundary the waves generated
by the explosions. Here, the waves are described by the elastic equation.
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§1. Introduction

Our problem originates from a simplified model of an experiment conducted
by geophysicists. We cannot directly observe the structure inside the earth.
Then, for example, we perform the following experiment in order to guess it:
We create an artificial explosion at a certain point near the earth’s surface.
Waves generated by the explosion travel in the earth. We observe the waves
on the earth’s surface, and determine the structure inside the earth from the
observation data.

We consider this problem, in particular, in the case when the earth consists
of some layers. This problem has been studied by Bartoloni-Lodovici-Zirilli [2],
Fatone-Maponi-Pignotti-Zirilli [3], Hansen [4], and Nagayasu [6] for instance.
They deal with the wave equation as an equation which describes the behavior
of waves. However, in the model which we consider, the media through which
waves travel are the earth, and the waves which travel inside the earth are
described by the elastic equation rather than the wave equation. Therefore,
in this paper, we consider the problem by dealing with the elastic equation
as the equation which describes the waves through the media. We begin with
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Figure 1: The situation which we consider.

treating the simplified situation as follows, and we hope that the result for it
will suggest the results for more general situation.

Assume that two media, Medium 1 and Medium 2, are laying in a half-
space, and the interface wall is parallel to the boundary of the half-space (see
Figure 1). We assume that the speeds of the (primary and shear) waves and the
density of the medium in Medium 1 are known, but the width of Medium 1,
the speeds of the waves and the density of the medium in Medium 2 are
unknown. Under this situation, we try to identify these unknown data by
using the known data or the data which can be observed near the boundary.

In Nagayasu [6], from the known data we determined the width of Medium 1,
the speed of the waves through Medium 2 and the density of Medium 2 if the
waves which travel through the media are described by the wave equation.
Since we deal with the elastic equation in this paper, we must determine the
speeds of two kinds of the waves, namely, the primary and shear waves through
Medium 2. However we may expect to be able to determine these speeds
because we can observe these two kinds of the waves also. The objective of
this paper is to justify this consideration.

Now, we introduce the notations and formulate this problem. Let us write
x′ = (x0, x1, x2), x′′ = (x1, x2, x3) and x′′′ = (x1, x2) for the coordinate x =
(x0, x1, x2, x3) in R

4. The variable x0 plays the role of the time and x′′ the
physical space. We introduce x′ for short notation when we apply the Fourier-
Laplace transformations with respect to (x0, x1, x2).

Let h > 0, and Ω1 := {x′′ ∈ R
3 : 0 < x3 < h}, Ω2 := {x′′ ∈ R

3 : x3 >
h}. The constant h describes the width of Medium 1, and Ωk Medium k
for k = 1, 2. We set Dxj := (1/i)(∂/∂xj), ∇x′′ = (Dx1 , Dx2 , Dx3), Δx′′ =
D2

x1
+D2

x2
+D2

x3
. Let cpk

, csk
, and ρk be positive real numbers and set

Pk(Dx)u := −D2
x0
u+ (c2pk

− c2sk
)∇x′′(∇x′′ · u) + c2sk

Δx′′u,

Bk(Dx) := iρk

⎡⎣ c2sk
Dx3 0 c2sk

Dx1

0 c2sk
Dx3 c2sk

Dx2

(c2pk
− 2c2sk

)Dx1 (c2pk
− 2c2sk

)Dx2 c2pk
Dx3

⎤⎦
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Figure 2: Notation

for k = 1, 2. We assume cpk
> csk

for k = 1, 2. The positive number cpk

describes the speed of primary waves, csk
the speed of shear waves, ρk the

density of the medium in Ωk. Suppose 0 < y3 < h. Set y′′ := (0, 0, y3) ∈ R
3
x′′ ,

and y := (0, y′′) ∈ R
4.

We discuss the following equations:

P1(Dx)G(x) = δ(x− y)I, x0 ∈ R, x′′ ∈ Ω1,(1.1)
P2(Dx)G(x) = 0, x0 ∈ R, x′′ ∈ Ω2,(1.2)

B1(Dx)G(x)|x3=+0 = 0, x′ ∈ R
3,(1.3)

G(x)|x3=h−0 = G(x)|x3=h+0, x′ ∈ R
3,(1.4)

B1(Dx)G(x)|x3=h−0 = B2(Dx)G(x)|x3=h+0, x′ ∈ R
3,(1.5)

where I is the identity matrix of order 3. These equations describe the situ-
ation that the initial data are (δ, 0, 0), (0, δ, 0), (0, 0, δ) at a point y′′ ∈ Ω1 at
time x0 = 0 with the boundary condition (1.3) and the interface or transmis-
sion conditions (1.4) and (1.5). The equation (1.4) expresses the continuity
of the displacement of waves on the interface wall, and (1.5) the continuity of
the stress.

The following main result says that except the special case we can recon-
struct the width h of Ω1, the speeds cp2 , cs2 of waves and the density ρ2 of
medium in Ω2 from the observation data G(x)|x3=0 when the speeds cp1 , cs1

of waves and the density ρ1 of medium in Ω1 are known.

Main result. Let cp1, cs1, ρ1 and y3 be given. Assume that the obser-
vation data G(x)|x3=+0 are given, where G(x) denotes the solution of the
equations (1.1)–(1.5). Then the constants cp2, cs2, ρ2 are expressed with the
given data. Moreover, the constant h is expressed with the given data unless
G(x)|x3=+0 ≡ G̃(x)|x3=+0. Here G̃ is the waves in the situation that only one
medium Medium 1 is laying in the half-space, that is, the solution of

(1.6)

{
P1(Dx)G̃(x) = δ(x− y)I, x′ ∈ R

3, x3 > 0,

B1(Dx)G̃(x)|x3=+0 = 0, x′ ∈ R
3.
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On the other hand, if G(x)|x3=+0 ≡ G̃(x)|x3=+0 then h is not identified.

In Section 3, we state our main results more precisely and prove them by
using the solution formula of the problem (1.1)–(1.5). The solution formula
can be written by using the Fourier-Laplace transformation in the same way as
Matsumura [5] and Shimizu [8]. Theoretically, this formula must describe the
dependence between behavior of the solution and information of the media.
However this dependence is rather intricate and is not expressed straightfor-
wardly. In this section, we give a process of reduction to clear the dependence.

During the reduction process, we use the result in Nagayasu [6]. However,
even if we use the result in [6], the speed cp2 of the primary waves through
Medium 2 cannot be determined. Moreover, the dependence between behavior
of the solution and the constant cp2 is also rather intricate and is not expressed
straightforwardly. In this paper, we give a process of reduction to clear also
the dependence between behavior of the solution and cp2 . This is the main
part of our methods.

Finally, we explain the plan of this paper. In Section 2, we rewrite the
equations (1.1)–(1.5), construct the solution, and discuss some properties of
the solution. In Section 3, we state the main results in this paper and give the
proofs.

§2. The solution formula and some properties of the solution

In this section, we solve the mixed problem (1.1)–(1.5), and prove lemmas
needed later. We mainly refer to Matsumura [5], Sakamoto [7], and Shimizu [8]
in order to solve the mixed problem.

We first rewrite these equations. We define E1(x) by the fundamental
solution of the forward Cauchy problem for P1(Dx) in the whole physical
space R

3
x′′ , namely, the inverse Fourier-Laplace transform of P1(ξ + iη)−1 in

the sense of distribution:

E1(x) =
1

(2π)4

∫
R

4
ξ

eix·(ξ+iη)P1(ξ + iη)−1dξ,

where we determine η so as to be able to define E1(x) as the distribution (cf.
Shimizu [8]).

We put F1(x) and F2(x) by

F1(x) := E1(x− y) −G(x), x′′ ∈ Ω1,(2.1)
F2(x) := G(x), x′′ ∈ Ω2,(2.2)

respectively. Since the distribution E1(x−y) describes the first propagation of
waves due to a point source, the distribution F1(x) describes the propagation in
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Ω1 of the second waves caused by the first waves, the boundary wall {x3 = 0},
and the interface wall {x3 = h}. By (2.1) and (2.2), the equations (1.1)–(1.5)
are equivalent to the following equations:

P1(Dx)F1(x) = 0, x0 ∈ R, x′′ ∈ Ω1,(2.3)
P2(Dx)F2(x) = 0, x0 ∈ R, x′′ ∈ Ω2,(2.4)

B1(Dx)F1(x)|x3=+0 = B1(Dx)E1(x− y)|x3=+0, x′ ∈ R
3,(2.5)

[E1(x− y) − F1(x)]|x3=h−0 = F2(x)|x3=h+0, x′ ∈ R
3,(2.6)

[B1(Dx)E1(x− y) −B1(Dx)F1(x)]|x3=h−0(2.7)

= B2(Dx)F2(x)|x3=h+0, x′ ∈ R
3.

Next, we take the Fourier-Laplace transformations with respect to x′ for
(2.3)–(2.7). In order not to vanish the Lopatinski determinant, we take it
along Sm := {(χ(ξ′), ξ1, ξ2) : ξ′ ∈ R

3
ξ′}, where χ(ξ′) := ξ0− im log(2+ |ξ′|), and

m is a positive real large enough. We remark that the Lopatinski determinant
does not vanish. Indeed, there exists γ > 0 such that
˛
˛
˛
˛
˛
˛
˛
˛
˛

|ζ′′′| τ+
s1 |ζ′′′| τ+

s2

−τ+
p1 |ζ′′′| τ+

p2 −|ζ′′′|
−2ρ1c

2
s1τ+

p1 |ζ′′′| −ρ1c
2
s1((τ

+
s1)

2 − |ζ′′′|2) 2ρ2c
2
s2τ+

p2 |ζ′′′| ρ2c
2
s2((τ

+
s2)

2 − |ζ′′′|2)
ρ1c

2
s1((τ

+
s1)

2 − |ζ′′′|2) −2ρ1c
2
s1τ+

s1 |ζ′′′| ρ2c
2
s2((τ

+
s2)

2 − |ζ′′′|2) −2ρ2c
2
s2τ+

s2 |ζ′′′|

˛
˛
˛
˛
˛
˛
˛
˛
˛

�= 0

and ∣∣∣∣∣ 2τ+
p1
|ζ ′′′| (τ+

s1
)2 − |ζ ′′′|2

(τ+
s1

)2 − |ζ ′′′|2 −2τ+
s1
|ζ ′′′|

∣∣∣∣∣ �= 0

hold for all ζ ′ = (ζ0, ζ1, ζ2) = (ξ0 − iη0, ξ1, ξ2) (ξ′ = (ξ0, ξ1, ξ2) ∈ R
3, η0 > γ)

by Achenbach [1, §5.11] and Shimizu [8, §3], respectively. Hence, we can
prove that the Lopatinski determinant does not vanish by the method of
Matsumura [5]. Then we obtain

P1(ζ ′, Dx3)F̂1(ζ ′, x3) = 0, 0 < x3 < h,(2.8)

P2(ζ ′, Dx3)F̂2(ζ ′, x3) = 0, x3 > h,(2.9)

B1(ζ ′, Dx3)F̂1(ζ ′, x3)|x3=0 =
1
2π

∫
Rξ3

e−iy3ζ3B1(ζ)P1(ζ)−1dξ3,(2.10)

[F̂1(ζ ′, x3) + F̂2(ζ ′, x3)]|x3=h =
1
2π

∫
Rξ3

ei(h−y3)ζ3P1(ζ)−1dξ3,(2.11)

[B1(ζ ′, Dx3)F̂1(ζ ′, x3) +B2(ζ ′, Dx3)F̂2(ζ ′, x3)]|x3=h(2.12)

=
1
2π

∫
Rξ3

ei(h−y3)ζ3B1(ζ)P1(ζ)−1dξ3,
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where ζ ′ ∈ Sm and ζ = (ζ ′, ξ3) ∈ C
4.

Moreover, we simplify these equations. Put

U(ζ1, ζ2) =
1

|ζ ′′′|

⎡⎣ ζ1 −ζ2 0
ζ2 ζ1 0
0 0 |ζ ′′′|

⎤⎦ , C =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ ,
where |ζ ′′′| =

√
ζ2
1 + ζ2

2 (=
√
ξ21 + ξ22). Then we have

Pk(ζ ′, Dx3) = −U(ζ1, ζ2)C

[
Pk1(ζ ′, Dx3) 0

0 Pk2(ζ ′, Dx3)

]
(U(ζ1, ζ2)C)−1,

Bk(ζ ′, Dx3) = U(ζ1, ζ2)C
[
Bk1(ζ ′, Dx3) 0

0 Bk2(ζ ′, Dx3)

]
(U(ζ1, ζ2)C)−1,

where

Pk1(ζ ′, Dx3) =

[
ζ2
0 − (c2sk

D2
x3

+ c2pk
|ζ ′′′|2) −(c2pk

− c2sk
)|ζ ′′′|Dx3

−(c2pk
− c2sk

)|ζ ′′′|Dx3 ζ2
0 − (c2pk

D2
x3

+ c2sk
|ζ ′′′|2)

]
,

Pk2(ζ ′, Dx3) = ζ2
0 − c2sk

(D2
x3

+ |ζ ′′′|2),

Bk1(ζ ′, Dx3) = iρk

[
c2sk
Dx3 c2sk

|ζ ′′′|
(c2pk

− 2c2sk
)|ζ ′′′| c2pk

Dx3

]
,

Bk2(ζ ′, Dx3) = iρkc
2
sk
Dx3 .

Hence we have

P11(ζ ′, Dx3)ϕ1(ζ ′, x3) = 0, 0 < x3 < h,(2.13)
P21(ζ ′, Dx3)ϕ2(ζ ′, x3) = 0, x3 > h,(2.14)

B11(ζ ′, Dx3)ϕ1(ζ ′, x3)|x3=0 = − 1
2π

∫
Rξ3

e−iy3ζ3B11(ζ)P11(ζ)−1dξ3,(2.15)

[ϕ1(ζ ′, x3) + ϕ2(ζ ′, x3)]|x3=h = − 1
2π

∫
Rξ3

ei(h−y3)ζ3P11(ζ)−1dξ3,(2.16)

[B11(ζ ′, Dx3)ϕ1(ζ ′, x3) +B21(ζ ′, Dx3)ϕ2(ζ ′, x3)]|x3=h(2.17)

= − 1
2π

∫
Rξ3

ei(h−y3)ζ3B11(ζ)P11(ζ)−1dξ3,

and

P12(ζ ′, Dx3)ψ1(ζ ′, x3) = 0, 0 < x3 < h,(2.18)
P22(ζ ′, Dx3)ψ2(ζ ′, x3) = 0, x3 > h,(2.19)

B12(ζ ′, Dx3)ψ1(ζ ′, x3)|x3=0 = − 1
2π

∫
Rξ3

e−iy3ζ3B12(ζ)P12(ζ)−1dξ3,(2.20)

[ψ1(ζ ′, x3) + ψ2(ζ ′, x3)]|x3=h = − 1
2π

∫
Rξ3

ei(h−y3)ζ3P12(ζ)−1dξ3,(2.21)
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[B12(ζ ′, Dx3)ψ1(ζ ′, x3) +B22(ζ ′, Dx3)ψ2(ζ ′, x3)]|x3=h(2.22)

= − 1
2π

∫
Rξ3

ei(h−y3)ζ3B12(ζ)P12(ζ)−1dξ3,

where ϕk(ζ ′, x3) and ψk(ζ ′, x3) are defined by

(2.23)
[
ϕk(ζ ′, x3) 0

0 ψk(ζ ′, x3)

]
= (U(ζ1, ζ2)C)−1F̂k(ζ ′, x3)(U(ζ1, ζ2)C)

for k = 1, 2.
In particular, we remark that the equations (2.18)–(2.22) are the Fourier-

Laplace transforms of

(c2s1
Δx′′ −D2

x0
)(−f1)(x) = 0, 0 < x3 < h,(2.24)

(c2s2
Δx′′ −D2

x0
)(−f2)(x) = 0, x3 > h,(2.25)

Dx3(−f1)(x)|x3=0 = Dx3e1(x− y)|x3=0,(2.26)
[e1(x− y) − (−f1)(x)]|x3=h = (−f2)(x)|x3=h,(2.27)

ρ1c
2
s1
Dx3(e1(x− y) − (−f1)(x))|x3=h = ρ2c

2
s2
Dx3(−f2)(x)|x3=h(2.28)

which are dealt with in Nagayasu [6], where e1(x) is the fundamental solution
of the forward Cauchy problem for c2s1

Δx′′ −D2
x0

in the whole physical space
R

3, namely, the inverse Fourier-Laplace transform of 1/P12(ξ+iη) in the sense
of distribution:

e1(x) :=
1

(2π)4

∫
R

4
ξ

eix·(ξ+iη)

P12(ξ + iη)
dξ.

On the other hand, by the equations (2.13) and (2.14), we have[
ϕ11l(ζ ′, x3)
ϕ12l(ζ ′, x3)

]
= α+ple

iτ+
p1

x3

[ |ζ ′′′|
τ+
p1

]
+ α−ple

−iτ+
p1

x3

[ |ζ ′′′|
−τ+

p1

]
(2.29)

+ α+sle
iτ+

s1
x3

[
τ+
s1

−|ζ ′′′|
]

+ α−sle
−iτ+

s1
x3

[
τ+
s1

|ζ ′′′|
]
,[

ϕ21l(ζ ′, x3)
ϕ22l(ζ ′, x3)

]
= β+ple

iτ+
p2

x3

[ |ζ ′′′|
τ+
p2

]
+ β+sle

iτ+
s2

x3

[
τ+
s2

−|ζ ′′′|
]

(2.30)

for l = 1, 2, where

(2.31) ϕk(ζ ′, x3) =
[
ϕk11(ζ ′, x3) ϕk12(ζ ′, x3)
ϕk21(ζ ′, x3) ϕk22(ζ ′, x3)

]
and τ+

pk
(ζ ′) [resp. τ+

sk
(ζ ′)] is the root which has positive imaginary part of the

equation in τ : ζ2
0 − c2pk

(ζ2
1 + ζ2

2 + τ2) = 0 [resp. ζ2
0 − c2sk

(ζ2
1 + ζ2

2 + τ2) = 0].
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With respect to the Fourier-Laplace transforms of E1, we remark that

1
2π

∫
Rξ3

e−iy3ζ3B11(ζ)P11(ζ)−1dξ3(2.32)

=
ρ1c

2
s1

2ζ2
0

⎡⎢⎣ 2|ζ ′′′|2eiy3τ+
p1 + ((τ+

s1
)2 − |ζ ′′′|2)eiy3τ+

s1

−|ζ ′′′|((τ+
s1

)2 − |ζ ′′′|2)
τ+
p1

eiy3τ+
p1 + 2|ζ ′′′|τ+

s1
eiy3τ+

s1

−2|ζ ′′′|τ+
p1
eiy3τ+

p1 +
|ζ ′′′|((τ+

s1
)2 − |ζ ′′′|2)
τ+
s1

eiy3τ+
s1

((τ+
s1

)2 − |ζ ′′′|2)eiy3τ+
p1 + 2|ζ ′′′|2eiy3τ+

s1

⎤⎦ ,
1
2π

∫
Rξ3

ei(h−y3)ζ3P11(ζ)−1dξ3(2.33)

=
i

2ζ2
0

⎡⎣ −|ζ ′′′|2
τ+
p1

ei(h−y3)τ+
p1 − τ+

s1
ei(h−y3)τ+

s1

−|ζ ′′′|ei(h−y3)τ+
p1 + |ζ ′′′|ei(h−y3)τ+

s1

−|ζ ′′′|ei(h−y3)τ+
p1 + |ζ ′′′|ei(h−y3)τ+

s1

−τ+
p1
ei(h−y3)τ+

p1 − |ζ ′′′|2
τ+
s1

ei(h−y3)τ+
s1

⎤⎥⎦ ,
1
2π

∫
Rξ3

ei(h−y3)ζ3B11(ζ)P11(ζ)−1dξ3(2.34)

=
ρ1c

2
s1

2ζ2
0

⎡⎢⎣ 2|ζ ′′′|2ei(h−y3)τ+
p1 + ((τ+

s1
)2 − |ζ ′′′|2)ei(h−y3)τ+

s1

|ζ ′′′|((τ+
s1

)2 − |ζ ′′′|2)
τ+
p1

ei(h−y3)τ+
p1 − 2|ζ ′′′|τ+

s1
ei(h−y3)τ+

s1

2|ζ ′′′|τ+
p1
ei(h−y3)τ+

p1 − |ζ ′′′|((τ+
s1

)2 − |ζ ′′′|2)
τ+
s1

ei(h−y3)τ+
s1

((τ+
s1

)2 − |ζ ′′′|2)ei(h−y3)τ+
p1 + 2|ζ ′′′|ei(h−y3)τ+

s1

⎤⎦
by the residue theorem.

Finally, we prove lemmas needed later.

Lemma 1. Let {ϕkml} be the solution of the equations (2.13)–(2.17), where
{ϕkml} are defined by (2.31). If α−p1 ≡ α−s1 ≡ 0 then α+p1 �≡ (i|ζ ′′′|/2ζ2

0τ
+
p1

)×
e−iy3τ+

p1 , where {α±pl, α±sl} are defined by (2.29).

Proof. We use a reduction to absurdity. Assume α−p1 ≡ α−s1 ≡ 0 and

α+p1 ≡ i|ζ ′′′|
2ζ2

0τ
+
p1

e−iy3τ+
p1 .
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Then we have

(2.35) α+s1 =
i|ζ ′′′|

ζ2
0 ((τ+

s1)2 − |ζ ′′′|2)(eiy3τ+
p1 − e−iy3τ+

p1 ) +
i

2ζ2
0

eiy3τ+
s1

by the (1, 1)-components of (2.15) and (2.32). In a similar way, we have

(2.36) α+s1 =
i((τ+

s1
)2 − |ζ ′′′|2)

4τ+
p1τ

+
s1ζ

2
0

(eiy3τ+
p1 + e−iy3τ+

p1 ) − i

2ζ2
0

eiy3τ+
s1

by the (2, 1)-components of (2.15) and (2.32). By (2.35) and (2.36), we have

− |ζ ′′′|
(τ+

s1)2 − |ζ ′′′|2 (eiy3τ+
p1 − e−iy3τ+

p1 )(2.37)

+
(τ+

s1
)2 − |ζ ′′′|2
4τ+

p1τ
+
s1

(eiy3τ+
p1 + e−iy3τ+

p1 ) = eiy3τ+
s1 .

Hence we obtain
cp1

4cs1

{
e−iy3ξ0/cp1 (2 + |ξ0|)−y3m/cp1 + eiy3ξ0/cp1 (2 + |ξ0|)y3m/cp1

}
(2.38)

= e−iy3ξ0/cs1 (2 + |ξ0|)−y3m/cs1

from substituting ξ1 = ξ2 = 0 into (2.37). Since

|(the left-hand side of (2.38))| → +∞
and

|(the right-hand side of (2.38))| → 0

as ξ0 → +∞, we have a contradiction.

Lemma 2. Let {ϕkml} be the solution of the equations (2.13)–(2.17), where
{ϕkml} are defined by (2.31). Then β+p1 �≡ 0 holds, where {β+pl, β+sl} are
defined by (2.30).

Proof. We use a reduction to absurdity. Assume that β+p1 ≡ 0. We de-
fine {α±pl, α±sl} by (2.29). By (2.29) and (2.32), and the (1, 1) and (2, 1)-
components of equation (2.15), we have

α+p12τ+
p1
|ζ ′′′| − α−p12τ+

p1
|ζ ′′′|(2.39)

+ α+s1((τ+
s1

)2 − |ζ ′′′|2) − α−s1((τ+
s1

)2 − |ζ ′′′|2)
=

i

2ζ2
0

{
2|ζ ′′′|2eiy3τ+

p1 + ((τ+
s1

)2 − |ζ ′′′|2)eiy3τ+
s1

}
,

α+p1((τ+
s1

)2 − |ζ ′′′|2) + α−p1((τ+
s1

)2 − |ζ ′′′|2)(2.40)
− α+s12τ+

s1
|ζ ′′′| − α−s12τ+

s1
|ζ ′′′|

=
i

2ζ2
0

{
−|ζ ′′′|((τ+

s1
)2 − |ζ ′′′|2)
τ+
p1

eiy3τ+
p1 + 2|ζ ′′′|τ+

s1
eiy3τ+

s1

}
.
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On the other hand, by (2.29), (2.30), (2.33), (2.34) and the assumption β+p1 ≡
0, we can rewrite the (1, 1) and (2, 1)-components of the equations (2.16)
and (2.17) to the four equations which include α±p1, α±s1, β+s1. These four
equations are simultaneous linear equations for α±p1 and α±s1, and∣∣∣∣∣∣∣∣∣

|ζ ′′′| |ζ ′′′| τ+
s1

τ+
s1

τ+
p1

−τ+
p1

−|ζ ′′′| |ζ ′′′|
2τ+

p1
|ζ ′′′| −2τ+

p1
|ζ ′′′| (τ+

s1
)2 − |ζ ′′′|2 −(τ+

s1
)2 + |ζ ′′′|2

(τ+
s1

)2 − |ζ ′′′|2 (τ+
s1

)2 − |ζ ′′′|2 −2τ+
s1
|ζ ′′′| −2τ+

s1
|ζ ′′′|

∣∣∣∣∣∣∣∣∣
=

4τ+
p1
τ+
s1
ζ2
0

s21
�= 0.

Hence we can solve these four equations for α±p1 and α±s1. Then we substitute
these α±p1 and α±s1 into equations (2.39) and (2.40). Moreover we substitute
ξ1 = ξ2 = 0 into these equations and simplify these. Then we have

β+s1|ξ1=ξ2=0 = 0

and

(2.41) e2iy3ξ0/cs1 (2 + |ξ0|)2y3m/cs1 = 1.

Hence we have (2 + |ξ0|)2y3m/cs1 = 1 by taking the absolute value of the
equation (2.41). Therefore we have a contradiction since m is a positive large
enough.

§3. The main theorems and their proofs

In Section 2, we rewrite equations (1.1)–(1.5) to equations (2.13)–(2.17) and
(2.18)–(2.22). By (2.1), (2.2) and (2.23), we remark that the following are
equivalent:

• G(x)|x3=+0 is given.

• ϕ1(ζ ′, x3)|x3=0 and ψ1(ζ ′, x3)|x3=0 are given.

We first prove that we obtain the solution F1(x) in Ω1 when observation
data ϕ1(ζ ′, x3)|x3=0 and ψ1(ζ ′, x3)|x3=0 are given, that is, the following lemma:

Lemma 3. Let cp1, cs1, ρ1, and y3 be given. Assume that observation data
N(ζ ′) := ϕ1(ζ ′, x3)|x3=0 are given. Then ϕ1(ζ ′, x3) is expressed in the form of

ϕ1(ζ ′, x3) =

[
ϕN

111(ζ
′, x3) ϕN

112(ζ
′, x3)

ϕN
121(ζ

′, x3) ϕN
122(ζ

′, x3)

]
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where {ϕN
1ml(ζ

′, x3)} are defined by[
ϕN

11l(ζ
′, x3)

ϕN
12l(ζ

′, x3)

]
= αN

+ple
iτ+

p1
x3

[
|ζ ′′′|
τ+
p1

]
+ αN

−ple
−iτ+

p1
x3

[
|ζ ′′′|
−τ+

p1

]
(3.1)

+ αN
+sle

iτ+
s1

x3

[
τ+
s1

−|ζ ′′′|

]
+ αN

−sle
−iτ+

s1
x3

[
τ+
s1

|ζ ′′′|

]
for l = 1, 2 and⎡⎢⎢⎢⎣

αN
+p1 αN

+p2

αN−p1 αN−p2

αN
+s1 αN

+s2

αN−s1 αN−s2

⎤⎥⎥⎥⎦(3.2)

=

⎡⎢⎢⎢⎣
|ζ ′′′| |ζ ′′′| τ+

s1
τ+
s1

τ+
p1

−τ+
p1

−|ζ ′′′| |ζ ′′′|
2τ+

p1
|ζ ′′′| −2τ+

p1
|ζ ′′′| (τ+

s1
)2 − |ζ ′′′|2 |ζ ′′′|2 − (τ+

s1
)2

(τ+
s1

)2 − |ζ ′′′|2 (τ+
s1

)2 − |ζ ′′′|2 −2τ+
s1
|ζ ′′′| −2τ+

s1
|ζ ′′′|

⎤⎥⎥⎥⎦
−1

·
⎡⎣ N(ζ ′)

− 1
2π

1
iρ1c2s1

∫
Rξ3

e−iy3ζ3B11(ζ)P11(ζ)−1dξ3

⎤⎦ .
Proof. We remark that ϕ1ml(ζ ′, x3) can be expressed in the form of (2.29). By
ϕ1(ζ ′, x3)|x3=0 = N(ζ ′) and the equation (2.15), we have⎡⎢⎢⎢⎣

|ζ ′′′| |ζ ′′′| τ+
s1

τ+
s1

τ+
p1

−τ+
p1

−|ζ ′′′| |ζ ′′′|
2τ+

p1
|ζ ′′′| −2τ+

p1
|ζ ′′′| (τ+

s1
)2 − |ζ ′′′|2 −(τ+

s1
)2 + |ζ ′′′|2

(τ+
s1

)2 − |ζ ′′′|2 (τ+
s1

)2 − |ζ ′′′|2 −2τ+
s1
|ζ ′′′| −2τ+

s1
|ζ ′′′|

⎤⎥⎥⎥⎦(3.3)

·

⎡⎢⎢⎣
α+p1 α+p2

α−p1 α−p2

α+s1 α+s2

α−s1 α−s2

⎤⎥⎥⎦ =

⎡⎣ N(ζ ′)

− 1
2π

1
iρ1c2s1

∫
Rξ3

e−iy3ζ3B11(ζ)P11(ζ)−1dξ3

⎤⎦ .
Since∣∣∣∣∣∣∣∣∣

|ζ ′′′| |ζ ′′′| τ+
s1

τ+
s1

τ+
p1

−τ+
p1

−|ζ ′′′| |ζ ′′′|
2τ+

p1
|ζ ′′′| −2τ+

p1
|ζ ′′′| (τ+

s1
)2 − |ζ ′′′|2 −(τ+

s1
)2 + |ζ ′′′|2

(τ+
s1

)2 − |ζ ′′′|2 (τ+
s1

)2 − |ζ ′′′|2 −2τ+
s1
|ζ ′′′| −2τ+

s1
|ζ ′′′|

∣∣∣∣∣∣∣∣∣
=

4τ+
p1
τ+
s1
ζ2
0

s21
�= 0,
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we can solve the equation (3.3), and we obtain (3.2).

We mention that the case when the observation data G(x)|x3=+0 is identi-
cally equal to G̃(x)|x3=+0, where G̃(x) is the solution of equations (1.6).

Corollary 4. If the observation data G(x)|x3=+0 ≡ G̃(x)|x3=+0, then αN−p1 ≡
αN−s1 ≡ 0 holds.

Proof. We solve the equations (1.6) in a similar way to the equations (1.1)–
(1.5). Then we have[

ϕ̃11l(ζ ′, x3)
ϕ̃12l(ζ ′, x3)

]
= α̃+ple

iτ+
p1

x3

[ |ζ ′′′|
τp1

]
+ α̃+sle

iτ+
s1

x3

[
τ+
s1

−|ζ ′′′|
]
,

where

ϕ̃1(ζ ′, x3) =
[
ϕ̃111(ζ ′, x3) ϕ̃112(ζ ′, x3)
ϕ̃121(ζ ′, x3) ϕ̃122(ζ ′, x3)

]
and [

ϕ̃1(ζ ′, x3) 0
0 ψ̃1(ζ ′, x3)

]
= (U(ζ1, ζ2)C)−1[E1(x− y) − G̃(x)]∧(ζ ′)(U(ζ1, ζ2)C).

In particular,[
2τ+

p1
|ζ ′′′| (τ+

s1
)2 − |ζ ′′′|2

(τ+
s1

)2 − |ζ ′′′|2 −2τ+
s1
|ζ ′′′|

][
α̃+p1

α̃+s1

]
(3.4)

=
i

2ζ2
0

⎡⎢⎣ 2|ζ ′′′|2eiy3τ+
p1 + ((τ+

s1
)2 − |ζ ′′′|2)eiy3τ+

s1

−|ζ ′′′|((τ+
s1

)2 − |ζ ′′′|2)
τ+
p1

eiy3τ+
p1 + 2|ζ ′′′|τ+

s1
eiy3τ+

s1

⎤⎥⎦
and we can solve the equation (3.4) for α̃+p1 and α̃+s1. If the observation data
G(x)|x3=0 ≡ G̃(x)|x3=0, then

N(ζ ′) =

[
α̃+p1|ζ ′′′| + α̃+s1τ

+
s1

α̃+p1τ
+
p1

− α̃+s1|ζ ′′′|

]
,

where α̃+p1 and α̃+s1 are defined by the equation (3.4). In this case, we have
αN−p1 ≡ αN−s1 ≡ 0 by calculating the equation (3.2).

We remark that we also obtain G(x)|x3=+0 �≡ G̃(x)|x3=+0 when α−p1 �≡ 0
by the method of proof of Corollary 4.

On the other hand, we remark that the equations (2.18)–(2.22) are the
Fourier-Laplace transforms of (2.24)–(2.28) (see Section 2). By Nagayasu [6],
we obtain the following lemma and proposition:
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Lemma 5 ([6, Lemma 5]). Let cs1, ρ1 and y3 be given. Assume that the ob-
servation data M(ζ ′) := ψ1(ζ ′, x3)|x3=0 are given. Then ψ1(ζ ′, x3) is explicitly
expressed by the known data cs1, ρ1, y3 and M(ζ ′).

Proposition 6 ([6, Main result]). Let cs1, ρ1 and y3 be given. Assume that
the observation data M(ζ ′) := ψ1(ζ ′, x3)|x3=0 are given. Then the constants
cs2 and ρ2 are explicitly expressed with the known data cs1, ρ1, y3 and M(ζ ′).
Moreover, if M(ζ ′) �≡ ψ̃1(ζ ′, x3)|x3=0, then the constant h is explicitly expressed
with cs1, ρ1, y3 and M(ζ ′), where ψ̃1(ζ ′, x3) is the solution of

(3.5)

⎧⎪⎨⎪⎩
P12(ζ ′, Dx3)ψ̃1(ζ ′, x3) = 0, x3 > 0,

B12(ζ ′, Dx3)ψ̃1(ζ ′, x3)|x3=0 = − 1
2π

∫
Rξ3

ei(h−y3)ζ3B12(ζ)P12(ζ)−1dξ3.

On the other hand, if M(ζ ′) ≡ ψ̃1(ζ ′, x3)|x3=0, then cs2 = cs1 and ρ2 = ρ1.

We remark that we obtain the solution F1(x) in Ω1 when the observa-
tion data G(x)|x3=+0 are given by Lemmas 3 and 5. Hereafter, we define
{ϕN

1ml} and {αN
±pl, α

N
±sl} by (3.1) and (3.2) for the observation data N(ζ ′) =

ϕ1(ζ ′, x3)|x3=0.
Now, we determine the unknown constants. We first consider the case

when ψ1(ζ ′, x3)|x3=0 �≡ ψ̃1(ζ ′, x3)|x3=0, where ψ̃1(ζ ′, x3) is the solution of the
equations (3.5). In this case, we need only to prove the following theorem
because we can express cs2 , ρ2, and h with the known data by Proposition 6:

Theorem 7. Let cp1, cs1, ρ1 and y3 be given. Let cs2, ρ2, and h be known.
Assume that the observation data N(ζ ′) := ϕ1(ζ ′, x3)|x3=0 are given. Then the
constant cp2 is expressed as

(3.6) c2p2
=

ζ2
0

(KN
6 (ζ ′)/KN

5 (ζ ′))2 + |ζ ′′′|2 on V,

where

KN
1 (ζ ′)(3.7)

:= −ϕN
111(ζ

′, x3)|x3=h +
i

2ζ2
0

{ |ζ ′′′|2
τ+
p1

ei(h−y3)τ+
p1 + τs+

1
ei(h−y3)τ+

s1

}
,

KN
2 (ζ ′)(3.8)

:= −ϕN
121(ζ

′, x3)|x3=0 +
i

2ζ2
0

{
|ζ ′′′|ei(h−y3)τ+

p1 − |ζ ′′′|ei(h−y3)τ+
s1

}
,
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KN
3 (ζ ′)(3.9)

:= − ρ1

ρ2c2s2

{
c2s1

(Dx3ϕ
N
111)(ζ

′, x3)|x3=h + c2s1
|ζ ′′′|ϕN

121(ζ
′, x3)|x3=h

}
+

iρ1c
2
s1

2ζ2
0ρ2c2s2

{
2|ζ ′′′|2ei(h−y3)τ+

p1 + ((τ+
s1

)2 − |ζ ′′′|2)ei(h−y3)τ+
s1

}
,

KN
4 (ζ ′)(3.10)

:= − ρ1

ρ2c2s2

{
(c2p1

− 2c2s1
)|ζ ′′′|ϕN

111(ζ
′, x3)|x3=h

+ c2p1
(Dx3ϕ

N
111)(ζ

′, x3)|x3=h

}
+
iρ1c

2
s1
|ζ ′′′|

2ζ2
0ρ2c2s2

{
(τ+

s1
)2 − |ζ ′′′|2
τ+
p1

ei(h−y3)τ+
p1 − 2τ+

s1
ei(h−y3)τ+

s1

}
,

KN
5 (ζ ′) := 2|ζ ′′′|KN

1 (ζ ′) +KN
4 (ζ ′),(3.11)

KN
6 (ζ ′) := ((τ+

s1
)2 − |ζ ′′′|2)KN

2 (ζ ′) + |ζ ′′′|KN
3 (ζ ′)(3.12)

and V := {ζ ′ = (χ(ξ′), ξ1, ξ2) : KN
5 (ζ ′) �= 0, ξ′ ∈ R

3}.
Proof. By the (1, 1)-component of (2.16) and the (2, 1)-component of (2.17),
we have [ |ζ ′′′| 1

(τ+
s2

)2 − |ζ ′′′|2 −2|ζ ′′′|
][

β+p1e
iτ+

p2
h

β+s1e
iτ+

s2
hτ+

s2

]
=
[
KN

1 (ζ ′)
KN

4 (ζ ′)

]
,

where KN
1 (ζ ′) and KN

4 (ζ ′) are defined by (3.7) and (3.10). Since∣∣∣∣ |ζ ′′′| 1
(τ+

s2
)2 − |ζ ′′′|2 −2|ζ ′′′|

∣∣∣∣ = − ζ2
0

c2s2

�= 0,

we can solve this equation, and obtain

(3.13) β+p1e
iτ+

p2
h =

c2s2

ζ2
0

KN
5 (ζ ′)

in particular, where KN
5 (ζ ′) is defined by (3.11). In a similar way, by the

(2, 1)-component of (2.16) and the (1, 1)-component of (2.17), we have[
1 −|ζ ′′′|

2|ζ ′′′| (τ+
s2

)2 − |ζ ′′′|2
][

β+p1e
iτ+

p2
hτ+

p2

β+s1e
iτ+

s2
h

]
=
[
KN

2 (ζ ′)
KN

3 (ζ ′)

]
,

where KN
2 (ζ ′) and KN

3 (ζ ′) are defined by (3.8) and (3.9). Since∣∣∣∣ 1 −|ζ ′′′|
2|ζ ′′′| (τ+

s2
)2 − |ζ ′′′|2

∣∣∣∣ = ζ2
0

c2s2

�= 0,
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we can solve this equation, and obtain

(3.14) β+p1e
iτ+

p2
hτ+

p2
=
c2s2

ζ2
0

KN
6 (ζ ′)

in particular, where KN
6 (ζ ′) is defined by (3.12). We remark that KN

5 (ζ ′) �≡ 0
by Lemma 2. From the equalities (3.13) and (3.14), we obtain

(3.15) τ+
p2

=
KN

6 (ζ ′)
KN

5 (ζ ′)
on V,

where V := {ζ ′ = (χ(ξ′), ξ1, ξ2) : KN
5 (ζ ′) �= 0, ξ′ ∈ R

3}. Squaring the equality
(3.15) and simplifying it, we have the equality (3.6).

Next, we consider the case when ψ1(ζ ′, x3)|x3=0 ≡ ψ̃1(ζ ′, x3)|x3=0, where
ψ̃1(ζ ′, x3) is the solution of the equations (3.5). In this case, we need only to
prove the following theorem because in this situation we obtain cs2 = cs1 and
ρ2 = ρ1 from Proposition 6. We remark that if G(x)|x3=+0 ≡ G̃(x)|x3=+0 then
ψ1(ζ ′, x3)|x3=0 ≡ ψ̃1(ζ ′, x3)|x3=0 and αN−p1 ≡ 0 by Corollary 4.

Theorem 8. Let cp1, cs1, ρ1 and y3 be given. Let cs2 = cs1 and ρ2 = ρ1.
Assume that the observation data N(ζ ′) := ϕ1(ζ ′, x3)|x3=0 are given. If αN−p1 �≡
0, then the constants cp2 and h are expressed as

c2p2
=

12χ(ζ ′)3(Dξ0χ)(ζ ′) − (Dξ0K
N
10)(ζ

′)
10χ(ζ ′)(Dξ0χ)(ζ ′)|ζ ′′′|2 on |ζ ′′′| �= 0, αN

−p1 �= 0,(3.16)

h =
ic2p1

2

{
|ζ ′′′|

c2p2
(τ+

p2)3
− (Dξ0K

N
8 )(ζ ′)

2χ(ζ ′)(Dξ0χ)(ζ ′)

}
,(3.17)

where

KN
7 (ζ ′) :=

αN−p1

α+p1 − (i|ζ ′′′|/2χ(ζ ′)2τ+
p1)e

−iy3τ+
p1

,(3.18)

KN
8 (ζ ′) :=

χ(ζ ′)τ+
p1

(Dξ0K
N
7 )(ζ ′)

(Dξ0χ)(ζ ′)KN
7 (ζ ′)

,(3.19)

KN
9 (ζ ′) :=

χ(ζ ′)
|ζ ′′′|

{
(Dξ0K

N
8 )(ζ ′)

2(Dξ0χ)(ζ ′)
− τ+

p1
(Dξ0K

N
7 )(ζ ′)

(Dξ0χ)(ζ ′)KN
7 (ζ ′)

}
,(3.20)

KN
10(ζ

′) = − 3|ζ ′′′|χ(ζ ′)(Dξ0χ)(ζ ′)KN
9 (ζ ′)

Dξ0((Dξ0K
N
8 )(ζ ′)/2χ(ζ ′)(Dξ0χ)(ζ ′))

.(3.21)

If αN−p1 ≡ 0, then cp2 = cp1 holds and h is not identified.
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Proof. By the (1, 1)-component of (2.16) and the (2, 1)-component of (2.17),
we have[ |ζ ′′′| τ+

s1

(τ+
s1

)2 − |ζ ′′′|2 −2τ+
s1
|ζ ′′′|

] [
αN

+p1e
iτ+

p1
h + αN−p1e

−iτ+
p1

h + β+p1e
iτ+

p2
h

αN
+s1e

iτ+
s1

h + αN−s1e
−iτ+

s1
h + β+s1e

iτ+
s1

h

]

=
i

2ζ2
0

⎡⎢⎢⎣
|ζ ′′′|2
τ+
p1

ei(h−y3)τ+
p1 + τ+

s1
ei(h−y3)τ+

s1

|ζ ′′′|((τ+
s1

)2 − |ζ ′′′|2)
τ+
p1

ei(h−y3)τ+
p1 − 2|ζ ′′′|τ+

s1
ei(h−y3)τ+

s1

⎤⎥⎥⎦ .
Hence, we obtain

(3.22)

[
αN

+p1e
iτ+

p1
h + αN−p1e

−iτ+
p1

h + β+p1e
iτ+

p2
h

αN
+s1e

iτ+
s1

h + αN−s1e
−iτ+

s1
h + β+s1e

iτ+
s1

h

]
=

i

2ζ2
0

⎡⎣ |ζ ′′′|
τ+
p1

ei(h−y3)τ+
p1

ei(h−y3)τ+
s1

⎤⎦
because ∣∣∣∣ |ζ ′′′| τ+

s1

(τ+
s1

)2 − |ζ ′′′|2 −2τ+
s1
|ζ ′′′|

∣∣∣∣ = −τ+
s1

ζ2
0

c2s1

�= 0.

In a similar way, by the (2, 1)-component of (2.16) and the (1, 1)-component
of (2.17), we have[

1 −|ζ ′′′|
2|ζ ′′′| (τ+

s1
)2 − |ζ ′′′|2

] [
(αN

+p1e
iτ+

p1
h − αN−p1e

−iτ+
p1

h)τ+
p1

+ β+p1e
iτ+

p2
hτ+

p2

αN
+s1e

iτ+
s1

h − αN−s1e
−iτ+

s1
h + β+s1e

iτ+
s1

h

]

=
i

2ζ2
0

[
|ζ ′′′|ei(h−y3)τ+

p1 − |ζ ′′′|ei(h−y3)τ+
s1

2|ζ ′′′|2ei(h−y3)τ+
p1 + ((τ+

s1
)2 − |ζ ′′′|2)ei(h−y3)τ+

s1

]
.

Hence, we obtain[
(αN

+p1e
iτ+

p1
h − αN−p1e

−iτ+
p1

h)τ+
p1

+ β+p1e
iτ+

p2
hτ+

p2

αN
+s1e

iτ+
s1

h − αN−s1e
−iτ+

s1
h + β+s1e

iτ+
s1

h

]
(3.23)

=
i

2ζ2
0

[
|ζ ′′′|ei(h−y3)τ+

p1

ei(h−y3)τ+
s1

]
because ∣∣∣∣ 1 −|ζ ′′′|

2|ζ ′′′| (τ+
s1

)2 − |ζ ′′′|2
∣∣∣∣ = ζ2

0

c2s1

�= 0.

We remark that we have αN−s1 ≡ 0 by the second components of the equalities
(3.22) and (3.23). On the other hand, we have

(3.24) αN
−p1e

−iτ+
p1

h(τ+
p2

+ τ+
p1

) =
(
αN

+p1 −
i|ζ ′′′|
2ζ2

0τ
+
p1

e−iy3τ+
p1

)
eihτ+

p1 (τ+
p1

− τ+
p2

)
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by subtracting the first component of the equality (3.23) from the first com-
ponent of the equality (3.22) multiplied by τ+

p2
. If αN−p1 ≡ 0 then cp2 = cp1

by the equality (3.24) and Lemma 1, and it is easy to check that we cannot
identify h in this case. Hereafter we assume αN−p1 �≡ 0. Then we have cp2 �= cp1

by the equality (3.24). On the other hand, we can rewrite the equality (3.24)
to

(3.25)
τ+
p1

− τ+
p2

τ+
p1 + τ+

p2

= KN
7 (ζ ′)e−2iτ+

p1
h(�= 0) on αN

−p1 �= 0,

where KN
7 (ζ ′) is defined by (3.18). We remark that

Dξ0τ
+
pk

=
χ(ζ ′)(Dξ0χ)(ζ ′)

c2pk
τ+
pk

.

Hence we have

2(c2p1
− c2p2

)|ζ ′′′|χ(ζ ′)(Dξ0χ)(ζ ′)
c2p1
c2p2
τ+
p1τ

+
p2(τ

+
p1 + τ+

p2)2
(3.26)

=

(
Dξ0K

N
7 (ζ ′) − 2ih

χ(ζ ′)(Dξ0χ)(ζ ′)
c2p1
τ+
p1

KN
7 (ζ ′)

)
e−2iτ+

p1
h

by applying Dξ0 to the equality (3.25). By the equalities (3.25) and (3.26), we
have

(3.27) − 2|ζ ′′′|
τ+
p2χ(ζ ′)2

=
τ+
p1

(Dξ0K
N
7 )(ζ ′)

χ(ζ ′)(Dξ0χ)(ζ ′)KN
7 (ζ ′)

− 2ih
1
c2p1

.

Hence we have

(3.28)
|ζ ′′′|

c2p2
(τ+

p2)3
=

(Dξ0K
N
8 )(ζ ′)

2χ(ζ ′)(Dξ0χ)(ζ ′)
− 2ih

1
c2p1

by multiplying the equality (3.27) by χ(ζ ′)2 and applying Dξ0 to it, where
KN

8 (ζ ′) is defined by (3.19). Subtracting the equality (3.27) from the equality
(3.28), we obtain

(3.29)
3χ(ζ ′)2 − 2c2p2

|ζ ′′′|2
c2p2

(τ+
p2)3

= KN
9 (ζ ′),

where KN
9 (ζ ′) is defined by (3.20). Applying Dξ0 to the equality (3.28), we

have

(3.30) −3
|ζ ′′′|χ(ζ ′)(Dξ0χ)(ζ ′)

c4p2
(τ+

p2)5
= Dξ0

(
Dξ0K

N
8 (ζ ′)

2χ(ζ ′)Dξ0χ(ζ ′)

)
.
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Hence we have

(3.31) 3χ(ζ ′)4 − 5c2p2
χ(ζ ′)2|ζ ′′′|2 + 2c4p2

|ζ ′′′|4 = KN
10(ζ

′)

by substituting the equality (3.29) into the equality (3.30), where KN
10(ζ

′) is
defined by (3.21). Therefore we have (3.16) by applying Dξ0 to the equality
(3.31). We obtain (3.17) from the equality (3.28).

Finally, we make a remark concerning the value of m.

Remark 9. We deal with m as a fixed number. Indeed, this m depends on
the unknown constants. However, we can check whether this m is so large that
the Lopatinski determinant does not vanish for the determined constants or
not after we determine the unknown constants in the above way. If this m is
large enough then there is no problem. If this m is not large enough, then we
take larger number as new m instead of this m, and determine the unknown
constants once again. This procedure is sure to conclude since there exists a
large enough number m certainly.
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