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Abstract. Simultaneous confidence intervals for all contrasts of the mean
components in repeated measures with the intraclass correlation model are con-
sidered when the observations are missing at random. An exact test statistic for
the equality of means and Scheffé, Bonferroni and Tukey types of simultaneous
confidence intervals are given under the general case of missing observations.
Finally, numerical examples by simulation are given to illustrate the method.
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§1. Introduction

The problem of data set {xij}, i = 1, 2, . . . , p, j = 1, 2, . . . , n with missing
observations at random arises frequently in practice. In this paper, we con-
sider an exact test statistic for the equality of means and the simultaneous
confidence intervals for all contrasts in the mean components when the miss-
ing observations are of the non-monotone type in repeated measures with the
intraclass correlation model.

When the missing observations are of the monotone type, Seo, Kikuchi and
Koizumi[10] has given an exact test statistic for the equality of means and
Scheffé, Bonferroni and Tukey types of simultaneous confidence intervals for
all contrasts in the means by an extension of the transformation in Bhargava
and Srivastava[2]. In particular, Scheffé and Bonferroni types of simultane-
ous confidence intervals by Seo-Kikuchi-Koizumi procedure have exactly con-
fidence level at 1 − α. In this paper these results are extended to the general
case of missing observations.
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In the intraclass correlation model, simultaneous confidence intervals of
Scheffé and Tukey types for all contrasts in the means of a multivariate nor-
mal population has been given by Miller[6] and Scheffé[9] when the intraclass
correlation coefficient is known. For the case that the intraclass correlation co-
efficient is unknown, Bhargava and Srivastava[2] has given an extension of the
above results. When the missing observations are of the monotone type in the
intraclass correlation model, Seo and Srivastava[11] gave an exact test statistic
for the equality of means and simultaneous confidence intervals (Scheffé and
Bonferroni types) for all contrasts in the means, which are different from those
by Seo-Kikuchi-Koizumi procedure. Further, when the missing observations
are of the non-monotone type, Seo and Srivastava[11] gave asymptotic tests
and simultaneous confidence intervals based on the maximum likelihood esti-
mates which are obtained numerically by iterative method. For the iterative
method, see, Srivastava and Carter[14], Srivastava[12]. By using the same
idea of Srivastava[12], an extension of Seo-Kikuchi-Koizumi procedure for the
general case of missing observations can be obtained. The organization of
the paper is as follows. In Section 2, we provide an exact test procedure for
testing the equality of means under the general case of missing observations.
In Section 3, Scheffé, Bonferroni and Tukey types of simultaneous confidence
intervals for all contrasts in the means are given. Finally, numerical examples
by simulation are presented to illustrate the method in Section 4.

§2. An exact test for the equality of mean components

Starting from complete data set {xij}, i = 1, 2, . . . , p, j = 1, 2, . . . , n without
missing observations: ⎛⎜⎜⎜⎜⎝

x11 x12 · · · · · · x1n

x21 x22 · · · · · · x2n
...

... · · · · · · ...
xp1 xp2 · · · · · · xpn

⎞⎟⎟⎟⎟⎠ ,(2.1)

we have the intraclass correlation model in the following form. Let xj = (x1j ,
x2j , . . ., xpj)′, j = 1, 2, . . . , n and let x1, x2, . . . ,xn be independently dis-
tributed as Np(µ,Σ), where µ = (μ1, μ2, . . . , μp)′, Σ = σ2[(1− ρ)Ip + ρ1p1′

p],
Ip is p × p identity matrix and 1p is a p-vector, 1p = (1, 1, . . . , 1)′. When
the covariance matrix Σ is of the above structure, it is called an intraclass
correlation model. Then we consider an exact test for testing the hypothesis
H0 : μ1 = μ2 = . . . = μp against the alternative H1 �= H0 when the missing
observations are of the non-monotone type in repeated measures with the in-
traclass correlation model. Let ni and pj be the total numbers of the observed
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data for i-th row and j-th column, respectively. The data set is called a mono-
tone type of missing observations if ni and pj satisfy n = n1 ≥ n2 ≥ · · · ≥ np

and p = p1 ≥ p2 ≥ · · · ≥ pn, otherwise it is called a non-monotone type(general
case) of missing observations. For the case of the non-monotone type as well
as monotone type of missing observations, we can obtain a subvector without
missing part by a transformation of a sample vector with missing components.
As an example, suppose we have the observations xj = (x1j , ∗, ∗, x4j , x5j)′ for
the j-th column, where “∗” means a missing component. Then, we can define
as yj(= (y1j , y2j , y3j)′) = Bjxj = (x1j , x4j , x5j)′, where

Bj =

⎛⎜⎝ 1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎠ ,

which is distributed as N3(µ,Σ), µ = (μ1, μ4, μ5)′ and Σ = σ2[(1 − ρ)I3 +
ρ131′

3]. Therefore, in general, letting yj = (y1j , y2j , . . . , ypjj)′, then yj ’s are
independently distributed as Npj (Bjµj ,Σj), j = 1, 2, . . . , n, where Bj is a
pj × p matrix, Σj = σ2[(1 − ρ)Ipj + ρ1pj1

′
pj

].
Next, as in Seo, Kikuchi and Koizumi[10], let Cj be a pj × pj matrix such

that
Cj = Ipj −

νj

pj
1j1′

j ,

where νj = 1 ± (1 − ρ)
1
2 {1 + (pj − 1)ρ}− 1

2 . Then, by the transformation
wj = ((w1j , w2j , . . . , wpjj)′) = Cjyj , we have

wj ∼ Npj (CjBjµj , γ
2Ipj ),

where γ2 = σ2(1 − ρ). After this transformation, we can obtain zj given by
zj = B′

jwj .
Without loss of generality, the observed original data set {xij}, i = 1, 2,

. . ., p, j = 1, 2, . . . , n and the transformed data set {zij}, i = 1, 2, . . . , p,
j = 1, 2, . . . , n can be grouped into s subsets of data with same missing pattern,
respectively, where c-th group(c = 1, 2, . . . , s ≤ 2p − 1) consists of n(c) sample
vectors such that p(c) observations are available in p components. We note
that p(c) means the total number of components after excluding the missing
part.

Let y
(c)
k� and w

(c)
k� be a (k, �) component in the c-th group, respectively. Then

we have the original sample means y
(c)
k· , y

(c)
·� and y

(c)
·· are given by

y
(c)
k· =

1
n(c)

n(c)∑
�=1

y
(c)
k� , y

(c)
·� =

1
p(c)

p(c)∑
k=1

y
(c)
k� , y

(c)
·· =

1
p(c)n(c)

p(c)∑
k=1

n(c)∑
�=1

y
(c)
k� ,
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respectively. Similarly, the transformed sample means, w
(c)
k· , w

(c)
·� and w

(c)
··

given by

w
(c)
k· =

1
n(c)

n(c)∑
�=1

w
(c)
k� , w

(c)
·� =

1
p(c)

p(c)∑
k=1

w
(c)
k� , w

(c)
·· =

1
p(c)n(c)

p(c)∑
k=1

n(c)∑
�=1

w
(c)
k� ,

respectively. Hence, we have an unbiased estimator of γ2 as

γ̂(c)2 =
1

f (c)

p(c)∑
k=1

n(c)∑
�=1

(
w

(c)
k� − w

(c)
k· − w

(c)
·� + w

(c)
··
)2

=
1

f (c)

p(c)∑
k=1

n(c)∑
�=1

(
y

(c)
k� − y

(c)
k· − y

(c)
·� + y

(c)
··
)2

,

where f (c) = (p(c)−1)(n(c)−1). Then under the hypothesis H0, (f (c)γ̂(c)2)/γ2

has a χ2 distribution with f (c) degrees of freedom, and hence,
s∑

c=1

f (c)γ̂(c)2

γ2
(2.2)

has a χ2 distribution with f =
∑s

c=1 f (c) degrees of freedom.
On the other hand, letting the values of missing observations be zero, then

we have

xi· =
1
ni

n∑
j=1

xij , x̃·· =
1
p

p∑
i=1

xi·, zi· =
1
ni

n∑
j=1

zij , z̃·· =
1
p

p∑
i=1

zi·.

Since we note that ni(zi· − z̃··) = ni(xi· − x̃··),
p∑

i=1

(√
ni(zi· − z̃··)

γ

)2

=
p∑

i=1

(√
ni(xi· − x̃··)

γ

)2

,

which has a χ2 distribution with p− 1 degrees of freedom and is independent
of (2.2). Thus, we can obtain the following theorem.

Theorem 1. Suppose that a data set has the general missing observations at
random in the intraclass correlation model. Then a test statistic for the null
hypothesis H0 is given by

F0 =

p∑
i=1

ni(xi· − x̃··)2/(p − 1)

s∑
c=1

f (c)γ̂(c)2/f

,(2.3)

where the distribution of F0 under the null hypothesis H0 is an F distribution
with p − 1 and f =

∑s
c=1(p

(c) − 1)(n(c) − 1) degrees of freedom.
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Large value of this statistic (2.3) leads to the rejection of hypothesis H0. It
may be noted that the value of F0 is directly calculated from the original data
set. Also, when the missing observations are of the monotone type, the statistic
F0 in (2.3) reduces to the test statistic by Seo, Kikuchi and Koizumi[10].

§3. Scheffé, Bonferroni and Tukey types of simultaneous
confidence intervals for all contrasts

In this section, we consider Scheffé, Bonferroni and Tukey types of simul-
taneous confidence intervals for all contrasts in the means, that is, simul-
taneous confidence intervals of a′µ for non-null vector a such that a′1 =
(a1, a2, . . . , ap)1 = 0.

Since the test statistic F0 in (2.3) has an F distribution with p − 1 and f
degrees of freedom, we have Scheffé type of simultaneous confidence intervals
given by

a′µ ∈
⎡⎣ p∑

i=1

aixi· ±
√√√√(p − 1)Fp−1,f,α

s∑
c=1

f (c)γ̂(c)2

f

p∑
i=1

a2
i

ni

⎤⎦ ,(3.1)

where Fp−1,f,α is the upper 100α% of an F distribution with p − 1 and f
degrees of freedom.

We can also obtain simultaneous confidence intervals for h linear contrasts
a′

1µ, a′
2µ, . . . ,a′

hµ by Bonferroni’s inequality. Let aj = (a(j)
1 , a

(j)
2 , . . . , a

(j)
p )′,

j = 1, 2, . . . , h such that a′
j1 = 0. Then we have Bonferroni type of simulta-

neous confidence intervals given by

a′
jµ ∈

⎡⎢⎢⎣ p∑
i=1

a
(j)
i xi· ± tf, α

2h

√√√√√ s∑
c=1

f (c)γ̂(c)2

f

p∑
i=1

a
(j)
i

2

ni

⎤⎥⎥⎦ , j = 1, 2, . . . , h,(3.2)

where tf,α/(2h) is the upper 100α/(2h)% of a t distribution with f degrees of
freedom.

In the same as Seo, Kikuchi and Koizumi[10], we note that Bonferroni type
of simultaneous confidence intervals should be used only if

(p − 1)Fp−1,f,α ≥ t2f, α
2h

,

otherwise Scheffé type of simultaneous confidence intervals should be used. It
holds that (p−1)Fp−1,f,α < t2f,α/(2h) if h is considerably bigger than p−1 (see,
Miller[6]).
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Further, Tukey type of simultaneous confidence intervals for all contrasts
are given by

a′µ ∈
⎡⎣ p∑

i=1

aixi· ± qp,f,α

p∑
i=1

|ai|
2

√√√√ s∑
c=1

f (c)γ̂(c)2

f

p∑
i=1

1
ni|ai|

( p∑
i=1

1
|ai|

)−1
⎤⎦ ,(3.3)

where qp,f,α is the upper 100α% of a Studentized range on p and f degrees of
freedom. It may be noted that the these confidence intervals (3.1), (3.2) and
(3.3) are directly calculated from the original data set. Also, when observed
data is monotone type of missing data, these confidence intervals reduce to
those results by Seo, Kikuchi and Koizumi[10].

§4. Numerical example

In this section, in order to investigate the accuracy of the procedure developed
in this paper, we give numerical examples for some selected parameters by
simulation study. We generate an artificial complete data set as (2.1) from
the multivariate normal population in the intraclass correlation model. A data
set with missing observations at random is composed by deleting some data
from the above artificial complete data set.

The values of p, n, µ, σ2, ρ and α were selected as follows:

p = 4, 6;
n = 20, 40;
µ = (1, 1, 5, 5)′, (1, 5, 10, 15)′, (1, 1, 5, 5, 10, 10)′;
σ2 = 1, 9;
ρ = 0.1, 0.5, 0.9 and α = 0.05.

Also letting m be a total number of available observations, we consider the
following five cases for p = 4, n = 20:

(I) A complete data set(m = 80), that is s = 1, given by

{xij} =

⎛⎜⎜⎜⎝
x11 · · · x1,10 · · · x1,20

x21 · · · x2,10 · · · x2,20

x31 · · · x3,10 · · · x3,20

x41 · · · x4,10 · · · x4,20

⎞⎟⎟⎟⎠ .

(II) A complete data set(m = 40), that is s = 1, given by

{xij} =

⎛⎜⎜⎜⎝
x11 · · · x1,10

x21 · · · x2,10

x31 · · · x3,10

x41 · · · x4,10

*

⎞⎟⎟⎟⎠ .
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(III) A missing data set(m = 60) with s = 2. Practically, the numbers of
components for first and third rows are twenty and those for second
and fourth rows are ten. We delete each of the ten observations in the
second and fourth rows, that is, we have two kinds of missing patterns:
(x1j , x2j , x3j , x4j)′ and (x1j , ∗, x3j , ∗)′.

(IV) A missing data set(m = 60) with s = 3. Practically, the numbers of
components for first and second rows are twenty and those for third and
fourth are five and fifteen, respectively. In this case, we delete the fifteen
observations in the third row and the five observations in the fourth
row, that is, we have three kinds of missing patterns: (x1j , x2j , x3j , x4j)′,
(x1j , x2j , ∗, x4j)′ and (x1j , x2j , ∗, ∗)′.

(V) A missing data set(m = 50) with s = 4. Practically, the numbers
of components for the first, second, third and fourth rows are twenty,
fifteen, five and ten, respectively. In this case, we have four kinds of
the missing patterns: (x1j , x2j , x3j , x4j)′, (x1j , x2j , ∗, x4j)′, (x1j , ∗, ∗, x4j)′

and (x1j , ∗, ∗, ∗)′.
Further, we consider the following five cases for p = 6, n = 20:

(I) A complete data set(m = 120), that is s = 1, given by

{xij} =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x11 · · · x1,10 · · · x1,20

x21 · · · x2,10 · · · x2,20

x31 · · · x3,10 · · · x3,20

x41 · · · x4,10 · · · x4,20

x51 · · · x5,10 · · · x5,20

x61 · · · x6,10 · · · x6,20

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(II) A complete data set(m = 60), that is s = 1, given by

{xij} =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x11 · · · x1,10

x21 · · · x2,10

x31 · · · x3,10

x41 · · · x4,10

x51 · · · x5,10

x61 · · · x6,10

*

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(III) A missing data set(m = 90) with s = 2. Practically, the numbers of
components for first, second, third and fifth rows are twenty and those for
fourth and sixth rows are ten. We delete each of the ten observations in
the fourth and sixth rows, that is, we have two kinds of missing patterns:
(x1j , x2j , x3j , x4j , x5j , x6j)′ and (x1j , x2j , x3j , ∗, x5j , ∗)′.
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(IV) A missing data set(m = 90) with s = 3. Practically, the numbers
of components for first, second, third and fourth rows are twenty and
those for fifth and sixth are five and fifteen, respectively. In this case,
we delete the fifteen observations in the fifth row and the five observa-
tions in the sixth row, that is, we have three kinds of missing patterns:
(x1j , x2j , x3j , x4j , x5j , x6j)′, (x1j , x2j , x3j , x4j , ∗, x6j)′ and (x1j , x2j , x3j ,
x4j , ∗, ∗)′.

(V) A missing data set(m = 90) with s = 4. Practically, the numbers of com-
ponents for first, second and third rows are twenty and those for fourth,
fifth and sixth rows are fifteen, ten and five, respectively. In this case,
we have four kinds of the missing patterns: (x1j , x2j , x3j , x4j , x5j , x6j)′,
(x1j , x2j , x3j , x4j , ∗, x6j)′, (x1j , x2j , x3j , ∗, ∗, x6j)′ and (x1j , x2j , x3j , ∗, ∗,
∗)′.

Figure 1. Scheffé and Tukey types of S.C.I.(simultaneous confidence intervals)
for p = 4, σ2 = 1, ρ = 0.5 and µ = (1, 1, 5, 5)′
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In the same way, we selected the missing patterns for p = 4, n = 40 and
p = 6, n = 40 respectively. Figures 1, 2 and 3 give the simultaneous confidence
intervals for each parameter sets of p = 4, n = 20, µ = (1, 1, 5, 5)′, σ2 = 1, ρ =
0, 5 and α = 0.05. For the cases of the complete data sets (I) and (II), we note
that Scheffé type of simultaneous confidence intervals for μi−μj , 1 ≤ i < j ≤ 4
have the same width. Similarly, we note that Tukey type of simultaneous
confidence intervals have the same width for the complete data sets (I) and
(II).

For all cases (I) ∼ (V), it may be noted that the simultaneous confidence
intervals for μ1 − μ2 and μ3 − μ4 include zero, and those for μ1 − μ3, μ1 − μ4,
μ2 − μ3 and μ2 − μ4 do not include zero. In particular, comparing case (III)
with (IV), it can be seen that the width for the case (IV) is shorter than
that for case (III) in μ1 − μ3, μ2 − μ3 and μ3 − μ4. Concerning the width of
intervals, it may be seen from the figures that the width tends to depend on
total number of the observed data. Figure 3 gives Scheffé and Tukey types
of simultaneous confidence intervals for some contrasts in the means, that is,
2μ1−(μ2 +μ3), 3μ1−(μ2 +μ3 +μ4), μ1−μ2−(μ3−μ4) and μ1−μ3−(μ2−μ4).

Figure 2. (continued)
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It may be also noted from simulation results that Tukey type of simultane-
ous confidence intervals in (3.3) are shorter than Scheffé type of simultaneous
confidence intervals in (3.1) if the cases are pairwise differences, otherwise
Scheffé’s tends to be shorter though it must be checked by the simulation
study for the other cases. The mention of the above results is the same as the
monotone type of missing observations (see, Seo, Kikuchi and Koizumi[10]). In
conclusion, the proposed procedure in this paper is useful for the simultaneous
confidence intervals under the general case of missing observations.

Figure 3. Scheffé and Tukey types of S.C.I.(simultaneous confidence intervals)
for p = 4, σ2 = 1, ρ = 0.5 and µ = (1, 1, 5, 5)′
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