SUT Journal of Mathematics
Vol. 42, No. 1 (2006), 145-155

Comprehensive family of harmonic univalent
functions
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Abstract. In this paper, we introduce a comprehensive family of harmonic uni-
valent functions which contains various well-known classes of harmonic univalent
functions as well as many new ones. Coefficient bounds, distortion bounds, ex-
treme points, convolution conditions, and convex combination are determined
for functions in this family. Consequently, many of our results are either exten-
sions or new approaches to those corresponding previously known results.
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§1. Introduction and definitions
A continuous complex valued function f = u+iv defined in a simply connected
complex domain D is said to be harmonic in D if both v and v are real harmonic

in D. In any simply connected domain we can write f = h+ g , where h and ¢
are analytic in D. We call h the analytic part and g the co-analytic part of f.
A necessary and sufficient for f to be locally univalent and sense preserving
in D is that |h/(2)| > |¢'(2)| in D.

Let ‘H denote the family of functions f = h+ g that are harmonic univalent
and sense preserving in the unit disk & = {z : |z| < 1} for which f(0) = f.(0)—

1 =0. Then for f = h+ ge H we may express the analytic functions h and g
as

(1.1) h(z) =2+ anz",  g(z2) =) bp2", || <1
n=2 n=1

The harmonic function f = h+ g for g = 0 reduces to an analytic function

f=h
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In 1984 Clunie and Sheil-Small [1] investigated the class H as well as
its geometric subclasses and obtained some coefficient bounds. Since then,
there has been several papers related on H and its subclasses. Jahangiri [2],
Silverman [3], Silverman and Silvia [4] studied the harmonic starlike func-
tions. Recently, Jahangiri [2] defined the class 73(«) consisting of functions

f=h+ g such that h and g are of the form

o0 [e. 9]

(1:2) M) =2 laal 2 g(z) =3 Ibal "
n=2 n=1
which satisfy the condition
9 0
(1.3) (arg f(re”)) > a, 0<a<l, |zl=r<l.

a9

Also Jahangiri [2] proved that if f = h+ g is given by (1.1) and if

o
n— o n—+«
(1.4) Z(l_ayan|+1_aybn\>§2, 0<a<l, a =1,

n=1

then f is harmonic, univalent, and starlike of order « in /. This condition is
proved to be also necessary if f € Ty (). The case when o = 0 is given in [4]
and for a = by = 0, see [3].

Let Sy (P, ¥; o) denote the subclass of H consisting of functions f = h+ ge
‘H that satisfy the condition

(1.5) Re{h(z) *0(z) -
h(z) + g(z)

9(=) * w)} o

where (0 < a < 1), ®(2) = 24+ > 2™ and ¥(z) = 2+ > upz™ are
n=2

n=2

“ ”

analytic in &/ with the conditions A, § 0, g, > 0. The operator “*” stands
for the Hadamard product or convolution of two power series. We further

let 7S84 (P, V¥;a) denote the subclass of Sy (P, ¥;«) consisting of functions

f = h+ g€ H such that h and g are of the form (1.2).

The family 7Sy (P, ¥; «) is of special interest because it contains various
classes of well-known harmonic univalent functions as well as many new ones.
For example TSH(ﬁ, ﬁ; a) = Ty ().

In this note, we obtain coeflicient bounds, distortion bounds, extreme
points, convolution conditions, and convex combination for functions in

TSH(P,V; ).
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82. Coefficients Bounds

We begin with a sufficient condition for functions in Sy (P, V; «).

Theorem 2.1. Let the function f = h+ g be so that h and g are given by
(1.1). Furthermore, let

A\, — Un + @
: n nl | <2,
(2.) > (T el 4 5 ) <2

n=1

wherea; = 1,0 <a<landn(l—a) < A\, —a < pp,+a. Then f is harmonic
univalent in U, and f € Sy (P, V; ).

Proof. First we note that f is locally univalent and sense-preserving in U.
This because

[e.9] o0 o0

W' (2)] =1 —Zn!anh"”*l > 1 —Zn\an\ >1 —Z )\1n_—a04 |an|

n=2 n=2 n=2
n —1 !
zzl T |bn222n]bn\>§:2n\bn|r” > |4'(2)|.
n= n= n=

To show that f is univalent in U , suppose z1, 29 € U so that z; # 2o, then

‘f(zu) —flz2) | |9(a) —g(z2)
h(Zl) — h(Zg) - h(Zl) — h(ZQ)
> an (2] — 23)
-1 n=1 —
(21— 22) + 22 b (27 — 25)
> o]
>1— =
1— > nlayl
n=2
> A 1bnl
>1_ _n=L > 0.

o =
1= 3 =2 an|
n=2

Now, we show that f € Sy (P, ¥;«). Using the fact that Rew > « if and
only if |[1 — a+ w| > |1 + a — w|, it suffices to show that

(2.2) [A(2) + (1 = @) B(2)| = |A(z) — (1 + @) B(2)| = 0,
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where A(z) = h(z) * ®(2) — g(2) * ¥(2) and B(z) = h(z) + g(2).
Substituting for A(z) and B(z) in (2.2) and making use of (2.1) we obtain

[A() + (1= )B(:)| - A(z) = (1 + @) B(2)
= |1 = )h(z) + (z) = 8(=) + (1 - a)g(z) — 9(2) * ¥ (2)|

|+ @)n(z) — hz) < @) + T+ a)g(e) + 9() « 02)|

oo o0
= |2—a)z+ Z(An +1—-a)a,z" — Z(,un — 1+ a)byz"
n=2 n=1
oo [e.e]
- ‘—az + Z()\n —1—a)ayz" — Z(un + 1+ a)b,zn
n=2 n=1
o0 oo
> (2-a)lzl =) (At 1—a)lan| 2" =D (1 — 1+ ) [bal [2]"
n=2 n=1
[e.9] o0
—alz] =Y (= 1= a)fag| 2" =Y (s + 1+ @) bal |2]"
n=2 n=1
gy « N i +
_ n n—1 n n—1
- 2(1—a>|zr{1—zl_a|an|\z| B S AN }
n=2 n=1
M\ —a > i +
n n
S IRT R S =M ST LY B
n=2 n=1
The coefficient bound (2.1) is sharp for the function
N l-a = l-a
(2'3) f(Z) :z+zAn_axnzn+Zun+aynzn7
n=2 n=1
where

o0 o0
Dozl + ) lyal = 1.
n=2 n=1
The functions of the form (2.3) are in Sy (P, ¥; ) because

o
Ap — n +
> (ool +

n=1

0 o9
:1+Z|$n|+2|yn| <2.
n=2 n=1
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We next show that the above sufficient condition is also necessary for func-
tions in 7Sy (P, ¥; ).

Theorem 2.2. Let the function f = h+ g be so that h and g are given by
(1.2). Then f € TSH(P,V; ) if and only if

(2.4) Z ( % Jan| + E2 2 |bnr) <2

wherea; =1, 0<a<landn(l —a) <\, —a < p,+a forn>2.

Proof. The if part, follows from Theorem 2.1. To prove the only if part, let
f€TSH(P,¥; ) then from (1.5) we have

h(z) + 9(2)
(1=a)z— 3 O — @) |an] 2" — 3 (tin + @) [bu] 27
— Re n=2 n=1 > 0.

)
2o 3 Janl 2+ 3 bl 2
n=2 n=1

If we choose z to be real and z — 17, we get

o0 o0
(1 —a) = 2 (A = a)|an| = 3 (n + ) |bn]
n=2 n=1 >0
(o] o0 — )
=2 |an|+ > [bn]
n=2 n=1
or, equivalently,
o0 o
> =) lanl + > (a + ) bl <1 -0
n=2 n=1
which is the required condition (2.4). O

Taking different choices of ®(z) and ¥(z) in Theorem 2.2, we obtain the
following corollaries:

Corollary 2.3 ([2]). Let the function f = h+ g be so that h and g are given
by (1.2). Then f € TSH(ﬁ, ﬁ;a) if and only if

(2.5 i (=St + T2 l) <2

where a; =1, 0 < a < 1.
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Corollary 2.4. Let the function f = h+ g be so that h and g are given by

(1.2). Then f € TSH((l z);,(lﬁ, a) if and only if

/n?—a n—+ o
(2.6 S (2 el + 5 ) <2
n=1

where a; =1, 0 < a < 1.

Corollary 2.5. Let the functz'on f = h+ g be so that h and g are given by
(1.2). Then f € TSH(( 20 % ;o) if and only if

27) ff (=2 e+ 12 ) <2

wherea; =1, 0 < a < 1.

Corollary 2.6. Let the functwn f=h+ g be so that h and g are given by
(1.2). Then f €TS8 (ZJF(1 2027 = «) if and only if

(1 2)3 2a 7(1 2)2 2a7

(2.8) 3 ("C(f’_"L‘ @y + SO E Y, r)

n=1
n

where a; =1, 0 < a <1 and C(a,n) = [[ (@ —2a)/(n—1).
i=2

§3. Distortion Theorems

Our next theorem is on the distortion bounds for functions in 7Sy (®, ¥; a),
which yields a covering result for this family.

Theorem 3.1. Let f € TSH(P,V;a) and Ny —a < Ay — a < uy + « for
n > 2. Then we have,

l1-«a + a
I et vt (1) N E et

and

l-« p1+
32 1 0= (2% - R ) =,
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Proof. Let f € TSH (P, V; ), then we have

(L4 [bal)r + D (lanl + ba))r"

f(2)] <
n=2
< (@4 b+ (an| + [ba])r?
n=2
11—« > /\Q—Ot )\2—04 2
— (1+b , b
et 5= 3 (g ol + 0 )
l—a e= )\, —« tn + @ 9
<
< 3= (G el e ) o
-« M1+« 9
< (141 1 b by (2.4
< Qb (152 )y (2a)
B l—-a m+a 9
_ (1—1—]b1])r+<>\2_a ; yby>
and
F() = @ =[bil)r+ D (an] + [ba])r"
n=2
= (1—]61])7'—2(\@”]4—]6”‘)7’2
n=2
B l—a o=/ —a Ao — & 9
= Ot = S (P el + )
l—a o=\, —« U + 9
> 1-— — n n
2 (=5 S (G bl + 5 )
1_
> (1 |by|)r— —2 <1—’“+a|b1|>r2, by (2.4),

)\2—04

l—a wm+a

1«

The bounds (3.1) and (3.2) are sharp for the functions given by

_ _ 11—« 1+« 9
(33) f(Z)—Z—i-‘bl‘Z-i-()\Q_a )\2_0[’()1)2
and
1—«a n1 + o 9
4 (1 (b)) — _
(3.4) Fe ==l - (2% - ) -

for [b1] < (1— )/ + ).

151
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The following covering result follows from the left hand inequality in
Theorem 3.1.

Corollary 3.2. Let f € TSH(P,¥;a) and Ao —a < Ay — a < py, + « for
n > 2. Then we have,

{w w| < )\21—a (A2 =1+ (11 — A2 + 2a) |b1|)} C f().

84. Extreme Points
In this section we determine the extreme points of 783 /(®, ¥; a).

Theorem 4.1. Let hi(z) = z, hp(z) = z — %z" (n > 2) and gn(z) =
z+ 1227 (n > 1). Then f € TSy(®,V;a) if and only if it can be expressed

U+
as
(4'1) f(z) - Z(xnhn + yngn)a
n=1

[o.¢]

where x, >0, yp >0, > (2 +yn) = 1. In particular, the extreme points of
n=1

TSH(P,V;a) are {h,} and {gn}.

Proof. Suppose

o0

n=1

Then

i)\n—a 1—a$ +Ooyn+oz 11—«
21—a Ay —a " 11—« un+ozyn

n= n=2

oo oo
= anJrZyn:l—mSl
n=2 n=1

and so f € TSy (P, V; ).
Conversely, if f € TSy (P, ¥; ), then |a,| < )\ln_f‘a and |b,| < uln_fa. Setting

Ty = 222 (n > 2) and y, = 2% (n > 1). Then note that by Theorem 2.2,

o0
0<z,<1(n>2))and 0 <y, <1 (n>1). Wedefinex; =1- > =z, —
n=2
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oo
> yn = 0, by Theorem 2.2. Consequently, we can see that f(z) can be
n=1

expressed in the form (4.1). This completes the proof of the Theorem 4.1. [

§5. Convolution and Convex Combinations

In this section, we show that the class 7Sy (®, ¥; «) is invariant under con-
volution and convex combmatlons of its members For harmomc functions

f(z)—z—Zanz +sz and F(z )—Z—ZAZ —f—ZBz we define

n=1
the convolutlon of two harmonic functions f and F as

(f*F)(2) = f(2)x F(z) =2 = Y anAnz" + Y byBpz".
n=2 n=1

Theorem 5.1. If f € TSH(P,V;) and F € TSy(P,V;a) then fx F €
TSH(P,U; ).

o [e.0] o

Proof. Let f(z) = z— Y lan| 2™ + > [bp]|Z™ and F(z) = z — Y |An| 2" +
n=2 n=1 n=2

o0

> |Bn| 2™ be in TS#(®, ¥;a), Then by Theorem 2.2, we have

n=1
9]

Ap — & ,u,n—i—a
(5.1 S (T ol + ) <2

n=1

and

(5.2 S (s ) <o

n=1

So for the coefficients of f * F' we can write

Z(ﬁ ol + 52 1,5 )

n=1
+ «
< =[] + 5 !bn\> <2
—
n=1

Thus f* F € TSH (P, V; a). O

Finally, we prove
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Corollary 5.2. The class TS (P, V; «) is closed under conver combination.

Proof. For i =1,2,3,... suppose that f;(z) € TSH (P, V; ) where f; is given
by

) 0
fi2) =2 =) lai| 2"+ > |bi| 2"
n=2 n=1

Then by (2.4),

Ay — tn +
: i i <2
(5.3 S (G2 ol + 25 2 )

n=1

oo
For > t; =1,0 <t; <1, the convex combination of f; may be written as

=1
Ztifi(z) =z — Z (Z t; ]a,n]> 2"+ Z (Z t; ‘bzn|> z".
i=1 n=1 \i=1

n=2 \i=1

Then by (5.3),

+Hn+04
11—«

[o¢]
> tilbi,
i=1

n=1 n=1
o0
< 2) ti=2
n=1
[e.e]
and so by Theorem 2.2, we have > t;fi(z) € TSH (P, V; ). O

=1
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