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Abstract. This paper is devoted to the investigation of sampling theory asso-
ciated with second order eigenvalue problems with an eigenparameter appearing
in the boundary conditions. We study two cases. The first is when the eigen-
parameter appears linearly in all boundary conditions and the second is when
it appears only in one condition. We closely follow the analysis derived by C.
T. Fulton (1977) to establish the needed relations for the derivations of the
sampling theorems including the construction of Green’s function as well as
the eigenfunction expansion theorem. We derive sampling representations for
transforms whose kernels are either solutions or Green’s functions.
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§1. Introduction

Throughout this paper we consider the differential equation

(1.1) �(y) := −y′′(x) + q(x)y(x) = λy(x), x ∈ [0, 1],

where q(·) is assumed to be real valued and continuous on [0, 1] and λ ∈ C is an
eigenvalue parameter. We also consider the following two boundary conditions

a1y(0) + a2y
′(0) = λ(a′1y(0) + a′2y

′(0)),(1.2)

b1y(1) + b2y
′(1) = λ(b′1y(1) + b′2y

′(1)),(1.3)

where ai, a
′
i, bi, b

′
i ∈ R, i = 1, 2. Further conditions will be imposed on the last

constants to guarantee that the problem could be defined in a Hilbert space.
In these boundary conditions the eigenparameter λ appears linearly in both
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boundary conditions. This is the only difference between problem (1.1)–(1.3)
and Sturm-Liouville eigenvalue problem studied extensively in the literature,
see e.g. [7, 14, 16]. There are several articles dealing with the sampling
theory of signal analysis associated with Sturm-Liouville eigenvalue problems.
See e.g. [9, 19, 20] where integral transforms associated with Sturm-Liouville
problems are constructed from their values at the eigenvalues. In other words
if we consider the Sturm-Liouville problem which consists of (1.1) together
with the boundary conditions (1.2) and (1.3) when a′i = b′i = 0, i = 1, 2, then
if φ(·, λ) is a solution of (1.1) and φ(0, λ) = a2, φ′(0, λ) = −a1, the transform

(1.4) f(λ) =
∫ 1

0
g(x)φ(x, λ) dx, g(·) ∈ L2(0, 1),

can be reconstructed in the sampling formula

(1.5) f(λ) =
∞∑

n=0

f(λn)
Δ(λ)

(λ− λn)Δ′(λn)
,

where Δ(λ) := b1φ(1, λ) + b2φ
′(1, λ) is an entire function of λ, {λn}∞n=0 is

the sequence of eigenvalues of the Sturm-Liouville problem, which are exactly
the zeros of Δ(λ). Series (1.5) converges absolutely on C and uniformly on
compact sets of C. For references concerning the sampling theory associated
with second order eigenvalue problems, see also [2, 3, 8, 9].

Our purpose of this article is two-fold. The first is to derive sampling the-
orems associated with problem (1.1)–(1.3). For this aim, we will study briefly
the spectral properties of problem (1.1)–(1.3) that we need for the derivation
of the sampling theorem. We closely follow the method developed by Fulton
[10], see also [17, 18] and therefore most of the proofs are omitted. This is
done in the next section. In section three we derive two sampling theorems
associated with problem (1.1)–(1.3). The first is of the type mentioned above
and the second is by the use of Green’s function. Then we indicate without
proofs, the way we derive the sampling theories associated with the problem
(1.1)–(1.3) when a′i = 0, i = 1, 2, i.e. where the eigenvalue parameter appears
in one boundary condition only. In this setting we use the results obtained by
Fulton in [10]. It is worthy to mention here that the two cases studied here are
independent. In fact while the operator associated with problem (1.1)–(1.3)
is constructed in L2(0, 1) ⊕ C

2, that of (1.1)–(1.3) when a′i = 0, i = 1, 2, is
defined in L2(0, 1) ⊕ C. We will illustrate our results via the examples of the
last section. For sampling theorems associated with eigenvalue problems with
eigenvalue parameter in the boundary conditions see [4] and for a discrete
analog of the theorems derived here, see [1].
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§2. The eigenvalue problem

To formulate a theoretic approach to problem (1.1)–(1.3) we define the Hilbert
space H := L2(0, 1) ⊕ C

2 with an inner product

(2.1) 〈f(·), g(·)〉H :=
∫ 1

0
f(x)g(x) dx+

1
η
αδ +

1
ρ
βγ,

where

f(x) =

⎛⎜⎝f(x)
α

β

⎞⎟⎠ , g(x) =

⎛⎜⎝g(x)δ
γ

⎞⎟⎠ ∈ H,

f(·), g(·) ∈ L2(0, 1), α, β, δ, γ ∈ C and the constants η, ρ are defined by

(2.2) η := det
(
a1 a′1
a2 a′2

)
, ρ := det

(
b′1 b1
b′2 b2

)
.

For the definiteness of the inner product of H, we assume that η, ρ > 0. For
convenience we put

(2.3)
(
U0(y) U ′

0(y)
U1(y) U ′

1(y)

)
:=
(
a1y(0) + a2y

′(0) a′1y(0) + a′2y′(0)
b1y(1) + b2y

′(1) b′1y(1) + b′2y′(1)

)
.

In the following we will define the minimal closed operator in H associated
with the differential expression �.

Let D(A) ⊆ H be the set of all f(x) =

⎛⎜⎜⎝ f(x)

U ′
0(f)

U ′
1(f)

⎞⎟⎟⎠ ∈ H such that f , f ′ are

absolutely continuous on [0,1] and �(f) ∈ L2(0, 1). Define the operator A :
D(A) −→ H by

(2.4) A

⎛⎜⎜⎝ f(x)

U ′
0(f)

U ′
1(f)

⎞⎟⎟⎠ =

⎛⎜⎝ �(f)

U0(f)

U1(f)

⎞⎟⎠ ,

⎛⎜⎜⎝ f(x)

U ′
0(f)

U ′
1(f)

⎞⎟⎟⎠ ∈ D(A).

For u, v ∈ L2(0, 1), where u′, v′ are absolutely continuous on [0,1], �(u), �(v) ∈
L2(0, 1), we have the following Lagrange’s identity

(2.5)
∫ 1

0
�(u(x))v(x) dx =

∫ 1

0
u(x)�(v(x)) dx+ [u(x), v(x)]10 .

Thus, we can prove in a manner similar to that of [10] that A is symmetric in
H. Here

[u, v](x) := u(x)v′(x) − u′(x)v(x).
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The operator A : D(A) −→ H is equivalent to the eigenvalue problem (1.1)–
(1.3) in the sense that the eigenvalues of A are exactly those of problem (1.1)–
(1.3). Let φλ(·) and χλ(·) be two solutions of (1.1) satisfying the following
initial conditions

(2.6) φλ(0) = a2 − a′2λ, φ′λ(0) = a′1λ− a1

and

(2.7) χλ(1) = b2 − b′2λ, χ′
λ(1) = b′1λ− b1, λ ∈ C.

These functions are entire in λ for all x ∈ [0, 1]. Obviously

(2.8) U ′
0(φλ) = −η, U ′

1(χλ) = ρ, λ ∈ C.

Let Wx(φλ, χλ) be the Wronskian of φλ and χλ which is independent of x,
since the coefficient of y′ in (1.1) is zero. Let

ω(λ) : = Wx(φλ, χλ) = φλ(x)χ′
λ(x) − φ′λ(x)χλ(x)

= W1(φλ, χλ) = λU ′
1(φλ) − U1(φλ).

(2.9)

Then ω(λ) is an entire function of λ whose zeros are precisely the eigenvalues of
the operator A. Using techniques similar of those established by Titchmarsh in
[16], see also [10], the zeros of ω(λ) are real and simple and if λn, n = 0, 1, 2, . . .
denote the zeros of ω(λ), then the three-component vectors

(2.10) Φn(x) :=

⎛⎜⎜⎝ φλn(x)

U ′
0(φλn)

U ′
1(φλn)

⎞⎟⎟⎠
are the corresponding eigenvectors of the operator A satisfying the orthogo-
nality relation

(2.11) 〈Φn(·),Φm(·)〉H = 0 forn �= m.

Here {φλn(·)}∞n=0 will be the sequence of eigenfunctions of (1.1)–(1.3) corre-
sponding to the eigenvalues {λn}∞n=0. We denote by Ψn(·) to the normalized
eigenvectors

(2.12) Ψn(x) :=
Φn(x)

‖Φn(·)‖H
=

⎛⎜⎜⎝ ψn(x)

U ′
0(ψn)

U ′
1(ψn)

⎞⎟⎟⎠ .
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Let kn �= 0 be the real constants for which

(2.13) χλn(x) = knφλn(x), x ∈ [0, 1], n = 0, 1, . . . .

To study the completeness of the eigenvectors of A, and hence the completeness
of the eigenfunctions of (1.1)–(1.3), we construct the resolvent of A as well
as Green’s function of problem (1.1)–(1.3). We assume without any loss of
generality that λ = 0 is not an eigenvalue of A. Now let λ ∈ C be not an
eigenvalue of A and consider the inhomogeneous problem
(2.14)

(λI −A)Φ(x) = f(x), for f(x) =

⎛⎜⎝f(x)
α

β

⎞⎟⎠ ∈ H and Φ(x) =

⎛⎜⎜⎝ φ(x)

U ′
0(φ)

U ′
1(φ)

⎞⎟⎟⎠ ∈ D(A),

where I is the identity operator. Using the method of variation of constants,
we can see after some easy calculations that
(2.15)

Φ = (λI −A)−1f =

⎛⎜⎜⎜⎜⎝
β

ω(λ)
φλ(x) − α

ω(λ)
χλ(x) +

∫ 1

0
G(x, ξ, λ)f(ξ) dξ

U ′
0(φ)

U ′
1(φ)

⎞⎟⎟⎟⎟⎠ ,

where

(2.16) G(x, ξ, λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
χλ(x)φλ(ξ)

ω(λ)
, 0 ≤ ξ ≤ x ≤ 1,

χλ(ξ)φλ(x)
ω(λ)

, 0 ≤ x ≤ ξ ≤ 1,

is Green’s function of problem (1.1)–(1.3).

Lemma 2.1. The operator A is self-adjoint in H.

Proof. Since A is a symmetric densely defined operator, then it is sufficient
to show that the deficiency spaces are the null spaces and hence A = A∗, cf.

[15]. Indeed, if f(x) =

⎛⎜⎝f(x)
α

β

⎞⎟⎠ ∈ H and λ is a non-real number, then letting

Φ(x) =

⎛⎜⎝φ(x)
c1
c2

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎝
β

ω(λ)
φλ(x) − α

ω(λ)
χλ(x) +

∫ 1

0
G(x, ξ, λ)f(ξ) dξ

U ′
0(φ)

U ′
1(φ)

⎞⎟⎟⎟⎟⎠ ,
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implies that Φ ∈ D(A). Since G(x, ξ, λ) satisfies the conditions (1.2)–(1.3),
then (λI −A)Φ(x) = f(x). Now we prove that the inverse of (λI −A) exists.
If AΦ(x) = λΦ(x), then

(λ− λ) 〈Φ(·),Φ(·)〉H = 〈Φ(·), λΦ(·)〉H − 〈λΦ(·),Φ(·)〉H

= 〈Φ(·),AΦ(·)〉H − 〈AΦ(·),Φ(·)〉H

= 0 (since A is symmetric).

Since λ �∈ R, we have λ − λ �= 0. Thus 〈Φ(·),Φ(·)〉H = 0, i.e. Φ = 0. Then
R(λ;A) := (λI −A)−1, the resolvent operator of A, exists. Thus

R(λ;A)f = (λI −A)−1f = Φ.

Take λ = ±i. The domains of (iI − A)−1 and (−iI − A)−1 are exactly H.
Consequently the ranges of (iI − A) and (−iI − A) are also H. Hence the
deficiency spaces of A are

N−i := N(−iI −A∗) = R(iI −A)⊥ = H⊥ = {0}

Ni := N(iI −A∗) = R(−iI −A)⊥ = H⊥ = {0}.
Therefore A is self-adjoint.

Theorem 2.2.
(i) For f(·) ∈ H

(2.17) ‖f(·)‖2
H =

∞∑
n=0

| 〈f(·),Ψn(·)〉H |2.

(ii) For f(·) ∈ D(A)

(2.18) f(x) =
∞∑

n=0

〈f(·),Ψn(·)〉H Ψn(x),

the series being absolutely and uniformly convergent in the first component for
on [0, 1], and absolutely convergent in the second and third components.

Proof. The proof is similar to [10, p. 298-299].

The following corollary corresponds to [17, p. 305, Theorem 2]

Corollary 2.3. The normalized eigenfunctions ψn(·) of (2.12) satisfy the fol-
lowing properties:

(i)
1
η

∞∑
n=0

U ′
0(ψn)ψn(x) = 0, with mean-square convergence in [0, 1],
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(ii)
1
η

∞∑
n=0

(U ′
0(ψn))2 = 1,

1
η

∞∑
n=0

U ′
0(ψn)U ′

1(ψn) = 0,

(iii)
1
ρ

∞∑
n=0

U ′
1(ψn)ψn(x) = 0 with mean-square convergence in [0, 1],

(iv)
1
ρ

∞∑
n=0

(U ′
1(ψn))2 = 1,

1
ρ

∞∑
n=0

U ′
0(ψn)U ′

1(ψn) = 0,

(v) f(x)=
∞∑

n=0

(∫ 1

0
f(x)ψn(x) dx

)
ψn(x), with mean-square convergence in [0, 1]

for any f(·) ∈ L2(0, 1),

(vi)
∞∑

n=0

(∫ 1

0
f(x)ψn(x) dx

)
U ′

0(ψn) = 0,
∞∑

n=0

(∫ 1

0
f(x)ψn(x) dx

)
U ′

1(ψn) = 0

for any f(·) ∈ L2(0, 1).

Proof. From the completeness of the eigenvectors of A, we have for an arbi-
trary element f(·) ∈ H

f(x) =

⎛⎝ f(x)
α
β

⎞⎠(2.19)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞∑
n=0

(∫ 1

0
f(x)ψn(x) dx+

1
η
αU ′

0(ψn) +
1
ρ
βU ′

1(ψn)
)
ψn(x)

∞∑
n=0

(∫ 1

0
f(x)ψn(x) dx+

1
η
αU ′

0(ψn) +
1
ρ
βU ′

1(ψn)
)
U ′

0(ψn)

∞∑
n=0

(∫ 1

0
f(x)ψn(x) dx+

1
η
αU ′

0(ψn) +
1
ρ
βU ′

1(ψn)
)
U ′

1(ψn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
with convergence in the H-norm. Properties (i) and (ii) follow from (2.19) by

taking f(x) =

⎛⎝ 0
1
0

⎞⎠, properties (iii) and (iv) follow by taking f(x) =

⎛⎝ 0
0
1

⎞⎠
and finally properties (v) and (vi) follow by the choice f(x) =

⎛⎝ f(x)
0
0

⎞⎠.

The asymptotics of the eigenvalues and eigenfunctions can be derived sim-
ilar to the classical techniques of [7, 14, 16] and [10]. We state the results
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briefly. Interested readers may be referred to [10].

φλ(x) = (a2 − a′2s
2) cos(sx) − 1

s
(a1 − a′1s

2) sin(sx)(2.20)

+
1
s

∫ x

0
sin{s(x− y)}q(y)φλ(y) dy,

φ′λ(x) = − s(a2 − a′2s
2) sin(sx) − (a1 − a′1s

2) cos(sx)(2.21)

+
∫ x

0
cos{s(x− y)}q(y)φλ(y) dy,

where s = σ + it =
√
λ is the principal branch and φλ(·) is the solution

determined by (2.6) above. For sufficiently large λ we have, if a′2 �= 0, cf. [11],

(2.22) φλ(x) = −a′2s2 cos(sx) +O(|s|e|t|x), φ′λ(x) = a′2s
3 sin(sx) +O(|s|2e|t|x),

and if a′2 = 0,

(2.23) φλ(x) = a′1s sin(sx) + O(e|t|x), φ′λ(x) = a′1s
2 cos(sx) + O(|s|e|t|x).

Then we obtain four distinct cases for the asymptotic behavior of ω(λ) as
|λ| → ∞, namely

(2.24) ω(λ) =

⎧⎪⎪⎨⎪⎪⎩
a′2b′2s5 sin(s) + O(|s|4e|t|), if b′2 �= 0, a′2 �= 0;
−a′1b′2s4 cos(s) + O(|s|3e|t|), if b′2 �= 0, a′2 = 0;
−a′2b′1s4 cos(s) + O(|s|3e|t|), if b′2 = 0, a′2 �= 0;
−a′1b′1s3 sin(s) + O(|s|2e|t|), if b′2 = 0, a′2 = 0.

Consequently if λ0 < λ1 < · · · are the zeros of ω(λ), then we have for suffi-
ciently large n the following asymptotic formulae

(2.25)

⎧⎪⎪⎨⎪⎪⎩
(n− 3

2)π <
√
λn < (n− 1

2)π, if b′2 �= 0, a′2 �= 0,
(n− 1)π <

√
λn < nπ, if b′2 �= 0, a′2 = 0,

(n− 1)π <
√
λn < nπ if b′2 = 0, a′2 �= 0,

(n− 1
2)π <

√
λn < (n+ 1

2)π, if b′2 = 0, a′2 = 0,

or equivalently

(2.26)
√
λn =

⎧⎪⎪⎨⎪⎪⎩
(n− 1)π + O(n−1), if b′2 �= 0, a′2 �= 0,
(n− 1

2)π + O(n−1), if b′2 �= 0, a′2 = 0,
(n− 1

2)π + O(n−1), if b′2 = 0, a′2 �= 0,
nπ + O(n−1), if b′2 = 0, a′2 = 0.
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The asymptotic behavior of the first component of the normalized eigenvectors
(2.12) is given by

(2.27) ±ψn(x) =

⎧⎪⎪⎨⎪⎪⎩
√

2 cos((n− 1)πx) + O(n−1), if b′2 �= 0, a′2 �= 0,√
2 sin((n− 1/2)πx) + O(n−1), if b′2 �= 0, a′2 = 0,√
2 cos((n− 1/2)πx) + O(n−1), if b′2 = 0, a′2 �= 0,√
2 sin(nπx) + O(n−1), if b′2 = 0, a′2 = 0.

The O-terms are uniform for 0 ≤ x ≤ 1.

§3. The Sampling Theorem

In this section we derive two sampling theorems associated with problem (1.1)–
(1.3). We also give a remark concerning deriving similar results associated with
problem (1.1)–(1.3) when a′i = 0, i = 1, 2. For convenience we may assume
that the eigenvectors of A are real-valued.

Theorem 3.1. Consider the boundary value problem (1.1)–(1.3), and let φλ(·)
be the solution defined above. If

(3.1) F (λ) =
∫ 1

0
g(x)φλ(x) dx, g(·) ∈ L2(0, 1),

then F (λ) is an entire function of order 1/2 and type ν with 0 ≤ ν ≤ 1 which
admits the sampling representation

(3.2) F (λ) =
∞∑

n=0

F (λn)
ω(λ)

(λ− λn)ω′(λn)
,

where ω(λ) is the function defined in (2.9), which without any loss of generality
may be written as

(3.3) ω(λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∏
n=0

(1 − λ

λn
), if none of the eigenvalues is zero;

λ
∞∏

n=1

(1 − λ

λn
), if one of the eigenvalues, say λ0 = 0.

The series (3.2) converges uniformly on any compact subset of C.

Proof. Recalling (2.24), ω(λ) is an entire function of order 1/2 in λ whose
zeros are all real, simple and located exactly at the eigenvalues {λn}∞n=0. From
(2.26), the product (3.3) converges and defines an entire function of order 1/2
which will be denoted temporarily by ω̃(λ). By Hadamard’s factorization



166 M. H. ANNABY AND M. M. THARWAT

theorem for entire functions, cf. e.g. [13], ω(λ) = h(λ)ω̃(λ), where h(λ) is an
entire function of order zero with no zeros. Thus

ω(λ)
ω′(λn)

=
h(λ)ω̃(λ)
h(λn)ω̃′(λn)

and (3.1), (3.2) remain valid for the function
F (λ)
h(λ)

. Therefore without any

loss of generality, we may assume that ω(λ) = ω̃(λ). Since g(·) ∈ L2(0, 1) then
relation (3.1) can be rewritten in the form

(3.4) F (λ) = 〈g(·),Φλ(·)〉H =
∫ 1

0
g(x)φλ(x) dx,

where

g(x) =

⎛⎜⎝g(x)0
0

⎞⎟⎠ , Φλ(x) =

⎛⎜⎜⎝ φλ(x)

U ′
0(φλ)

U ′
1(φλ)

⎞⎟⎟⎠ ∈ H.

Since both g(·) and Φλ(·) are in H, then they have the Fourier expansions

(3.5) g(x) =
∞∑

n=0

ĝ(n)
Φn(x)

‖Φn(·)‖2
H

Φλ(x) =
∞∑

n=0

〈Φλ(·),Φn(·)〉H

Φn(x)
‖Φn(·)‖2

H

where

(3.6) ĝ(n) = 〈g(·),Φn(·)〉H =
∫ 1

0
g(x)φλn(x) dx, λ ∈ C.

Applying Parseval’s identity to (3.4) and using (3.6), we obtain

(3.7) F (λ) =
∞∑

n=0

F (λn)
〈Φn(·),Φλ(·)〉H

‖Φn(·)‖2
H

.

Now we calculate 〈Φn(·),Φλ(·)〉H and ‖Φn(·)‖H. Let λ ∈ C be not an eigenvalue
and n ∈ N. To prove (3.2) we need to show that

(3.8)
〈Φn(·),Φλ(·)〉H

‖Φn(·)‖2
H

=
ω(λ)

(λ− λn)ω′(λ)
n = 0, 1, 2, · · · .

By the definition of the inner product of H, we have

〈Φλ(·),Φn(·)〉H(3.9)

=
∫ 1

0
φλ(x)φλn(x) dx+

1
η
U ′

0(φλ)U ′
0(φλn) +

1
ρ
U ′

1(φλ)U ′
1(φλn).
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Lagrange’s identity (2.5) and initial conditions (2.6) imply

(λ− λn)
∫ 1

0
φλ(x)φλn(x) dx = [φλ, φλn ](1) − [φλ, φλn ](0)

= −W1(φλn , φλ) − (φλ(0)φ′λn
(0) − φ′λ(0)φλn(0))

= −W1(φλn , φλ) + (λn − λ)η.

Thus

(3.10)
∫ 1

0
φλ(x)φλn(x) dx =

W1(φλn , φλ)
λn − λ

− η.

From (2.13), (2.7) and (2.3), the Wronskian of φλn and φλ at x = 1 will be

W1(φλn , φλ) = φλ(1)φ′λn
(1) − φ′λ(1)φλn(1)

= k−1
n [χλn(1)φ′λ(1) − χ′

λn
(1)φλ(1)]

= k−1
n [(b2 − b′2λn)φ′λ(1) − (b′1λn − b1)φλ(1)]

= −k−1
n [ω(λ) + (λn − λ)U ′

1(φλ)].

(3.11)

Relation (2.13) and the linearity of the boundary conditions yield

(3.12)
1
ρ
U ′

1(φλ)U ′
1(φλn) =

k−1
n

ρ
U ′

1(φλ)U ′
1(χλn).

From (2.8) and (3.12), we obtain

(3.13)
1
ρ
U ′

1(φλ)U ′
1(φλn) = k−1

n U ′
1(φλ),

1
η
U ′

0(φλ)U ′
0(φλn) = η.

Substituting from (3.10), (3.11) and (3.13) into (3.9), we get

(3.14) 〈Φλ(·),Φn(·)〉H = k−1
n

ω(λ)
λ− λn

.

Letting λ→ λn in (3.14) and since the zeros of ω(λ) are simple, we have

(3.15) 〈Φn(·),Φn(·)〉H = ‖Φn(·)‖2
H = k−1

n ω′(λn).

Therefore from (3.14) and (3.15) we establish (3.8). Since λ and n are arbi-
trary, then (3.2) is proved with a pointwise convergence on C, since the case
λ = λn is trivial.

Now we investigate the convergence of (3.2). First we prove that it is
absolutely convergent on C. Using Cauchy-Schwarz’ inequality for λ ∈ C,

∞∑
n=0

∣∣∣∣F (λn)
ω(λ)

(λ− λn)ω′(λn)

∣∣∣∣(3.16)

≤
( ∞∑

n=0

∣∣〈g(·),Φn(·)〉H

∣∣2
‖Φn(·)‖2

H

)1/2( ∞∑
n=0

∣∣〈Φn(·),Φλ(·)〉H

∣∣2
‖Φn(·)‖2

H

)1/2

.
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Since g(·), Φλ(·) ∈ H, then both series in the right-hand side of (3.16) converge.
Thus series (3.2) converges absolutely on C. For uniform convergence let
M ⊂ C be compact. Let λ ∈M and N > 0. Define σN (λ) to be

(3.17) σN (λ) :=

∣∣∣∣∣F (λ) −
N∑

n=0

F (λn)
ω(λ)

(λ− λn)ω′(λn)

∣∣∣∣∣ .
Using the same method developed above

(3.18) σN (λ) ≤
( ∞∑

n=N+1

∣∣〈g(·),Φn(·)〉H

∣∣2
‖Φn(·)‖2

H

)1/2( ∞∑
n=N+1

∣∣〈Φn(·),Φλ(·)〉H

∣∣2
‖Φn(·)‖2

H

)1/2

.

Therefore

(3.19) σN (λ) ≤ ‖Φλ(·)‖H

( ∞∑
n=N+1

∣∣〈g(·),Φn(·)〉H

∣∣2
‖Φn(·)‖2

H

)1/2

.

Since [0, 1] ×M is compact, then, cf. e.g. [6, p. 225], we can find a positive
constant CM such that

(3.20) ‖Φλ(·)‖H ≤ CM , for allλ ∈M.

Then

(3.21) σN (λ) ≤ CM

( ∞∑
n=N+1

∣∣〈g(·),Φn(·)〉H

∣∣2
‖Φn(·)‖2

H

)1/2

.

uniformly on M . In view of Parseval’s equality,( ∞∑
n=N+1

∣∣〈g(·),Φn(·)〉H

∣∣2
‖Φn(·)‖2

H

)1/2

−→ 0 as N −→ ∞.

Thus σN (λ) → 0 uniformly on M . Hence (3.2) converges uniformly on M .
Thus F (λ) is analytic on compact subsets of C and hence it is entire. Moreover
F (λ) is of order 1/2 and type ν with 0 ≤ ν ≤ 1 since

|F (λ)| ≤ ‖g(·)‖L2(0,1) max
0≤x≤1

|φλ(x)|

and φλ(x) has these properties, cf. (2.22). This completes the proof.

The next theorem is devoted to give interpolation sampling expansions as-
sociated with problem (1.1)–(1.3) for integral transforms whose kernels defined
in terms of Green’s function. As we see in (2.16), Green’s function G(x, ξ, λ) of
problem (1.1)–(1.3) has simple poles at {λn}∞n=0. Define the function G(x, λ)
to be G(x, λ) := ω(λ)G(x, ξ0, λ), where ξ0 ∈ [0, 1] is a fixed point and ω(λ) is
the function defined in (2.9) or it is the canonical product (3.3).
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Theorem 3.2. Let g(·) ∈ L2(0, 1) and F(λ) be the integral transform

(3.22) F(λ) =
∫ 1

0
G(x, λ)g(x) dx.

Then F(λ) is an entire function of order 1/2 and type ν with 0 ≤ ν ≤ 1 which
admits the sampling representation

(3.23) F(λ) =
∞∑

n=0

F(λn)
ω(λ)

(λ− λn)ω′(λn)
.

Series (3.23) converges absolutely on C and uniformly on compact subsets of
C.

Proof. The integral transform (3.22) can be written as

(3.24) F(λ) = 〈G(·, λ), g(·)〉H ,

g(x) =

⎛⎜⎝g(x)0
0

⎞⎟⎠ , G(x, λ) =

⎛⎜⎜⎝ G(x, λ)

U ′
0(G(x, λ))

U ′
1(G(x, λ))

⎞⎟⎟⎠ ∈ H.

Applying Parseval’s identity to (3.24) with respect to {Φn(·)}∞n=1, we obtain

(3.25) F(λ) =
∞∑

n=0

〈G(·, λ),Φn(·)〉H

〈g(·),Φn(·)〉H

‖Φn(·)‖2
H

.

Let λ �= λn. Since each Φn(·) is an eigenvectors of A, then

(λI −A)Φn(x) = (λ− λn)Φn(x).

Thus

(3.26) (λI −A)−1Φn(x) =
1

λ− λn
Φn(x).

From (2.15) and (3.26) we obtain

(3.27)
U ′

1(φλn)
ω(λ)

φλ(ξ0) − U ′
0(φλn)
ω(λ)

χλ(ξ0) +
∫ 1

0
G(x, ξ0, λ)φλn(x) dx

=
1

λ− λn
φλn(ξ0).

Using (2.8) and (2.13), (3.27) becomes

(3.28)
ρk−1

n

ω(λ)
φλ(ξ0)+

η

ω(λ)
χλ(ξ0)+

∫ 1

0
G(x, ξ0, λ)φλn(x) dx =

1
λ− λn

φλn(ξ0).
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Since λ �= λn, then,

(3.29) ρk−1
n φλ(ξ0) + ηχλ(ξ0) +

∫ 1

0
G(x, λ)φλn(x) dx =

ω(λ)
λ− λn

φλn(ξ0).

From the definition of G(·, λ), we have

〈G(·, λ),Φn(·)〉H =
∫ 1

0
G(x, λ)φλn(x) dx(3.30)

+
1
η
U ′

0(G(x, λ))U ′
0(φλn) +

1
ρ
U ′

1(G(x, λ))U ′
1(φλn).

From formula (2.16), we get

(3.31) U ′
0(G(x, λ)) = χλ(ξ0)U ′

0(φλ), U ′
1(G(x, λ)) = φλ(ξ0)U ′

1(χλ).

Combining (3.31), (2.8) and (2.13) together with (3.30), yields

(3.32) 〈G(·, λ),Φn(·)〉H = ηχλ(ξ0) + ρk−1
n φλ(ξ0) +

∫ 1

0
G(x, λ)φλn(x) dx.

Substituting from (3.29) and (3.32) gives

(3.33) 〈G(·, λ),Φn(·)〉H =
ω(λ)
λ− λn

φλn(ξ0).

As an element of H, G(·, λ) has the eigenvectors expansion

G(x, λ) =
∞∑
i=0

〈G(·, λ),Φi(·)〉H

Φi(x)
‖Φi(·)‖2

H

=
∞∑
i=0

ω(λ)
(λ− λi)

φλi(ξ0)
Φi(x)

‖Φi(·)‖2
H

.

(3.34)

Taking the limit when λ −→ λn in (3.24), we get

(3.35) F(λn) = lim
λ→λn

〈G(·, λ), g(·)〉H .

The interchange of the limit and summation processes is justified by the uni-
form convergence of the eigenvector expansion of G(x, λ) on [0, 1] for any λ ∈ C.
Making use of (3.34), we may rewrite (3.35) as

F(λn) = lim
λ→λn

∞∑
i=0

ω(λ)
(λ− λi)

φλi(ξ0)
〈Φi(·), g(·)〉H

‖Φi(·)‖2
H

= ω′(λn)φλn(ξ0)
〈Φn(·), g(·)〉H

‖Φn(·)‖2
H

.

(3.36)
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The interchange of the limit and summation is justified by the asymptotic
behavior of Φi(x) and ω(λ). If φλn(ξ0) �= 0, then (3.36) gives

(3.37)
〈g(·),Φn(·)〉H

‖Φn(·)‖2
H

=
F(λn)

ω′(λn)φλn(ξ0)
.

Combining (3.33), (3.37) and (3.25) we get (3.23) under the assumption that
φλn(ξ0) �= 0 for all n. If φλn(ξ0) = 0, for some n, the same expansion holds with
F(λn) = 0. The convergence properties as well as the analytic and growth
properties can be established as in Theorem 3.1 above.

Remark 3.3. Now we indicate how to derive sampling theorems associated
with problem (1.1)–(1.3) when a′i = 0, i = 1, 2. This problem contains only one
boundary condition with an eigenvalue parameter in the boundary condition.
In this case, cf. [10], the eigenvalue problem is equivalent to the operator
B : DB −→ H, H = L2(0, 1) ⊕ C with

〈f, g〉H :=
∫ 1

0
f(x)g(x) dx+

1
ρ
αβ, f(x) =

(
f(x)
α

)
, g(x) =

(
g(x)
β

)
∈ H,

DB ⊆ H is the set of all f(x) =

(
f(x)

U ′
1(f)

)
∈ H such that f , f ′ are absolutely

continuous on [0,1] and �(f) ∈ L2(0, 1), U0(f) = 0, and

B
(

f

U ′
1(f)

)
=
(
�(f)
U1(f)

)
,

(
f

U ′
1(f)

)
∈ DB.

In this case η = 0. This indicates that the present problem cannot be consid-
ered as a special case of problem (1.1)–(1.3) above. In this problem we define
the solutions θλ(x) and χλ(x) of (1.1) via the following initial conditions

θλ(0) = a2, θλ(0) = −a1

and
χλ(1) = b2 − b′2λ, χλ(1) = b′1λ− b1, λ ∈ C.

As we mentioned this problem is studied by Fulton in [10], see also [12, 17,
18]. Among the results obtained in [10] is, the asymptotics of eigenvalues
{μn}∞n=0 ⊆ R [10, p. 300], the completeness of the eigenfunctions, {θμn(·)}∞n=0
or {χμn(·)}∞n=0. Moreover all eigenvalues are real and simple. Green’s function
of this problem has the form [10, p. 297]

(3.38) K(x, ξ, λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
χλ(x)θλ(ξ)

γ(λ)
, 0 ≤ ξ ≤ x ≤ 1,

χλ(ξ)θλ(x)
γ(λ)

, 0 ≤ x ≤ ξ ≤ 1,
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where γ(λ) is the characteristic determinant of the problem, i.e,

(3.39) γ(λ) := U0(χλ), or γ(λ) := λU ′
1(θλ) − U1(θλ).

Similar to Theorem 3.1 and Theorem 3.2 above we state without proofs the
sampling theorems associated with the considered problem.

Theorem 3.4. Consider the boundary value problem (1.1)–(1.3) with a′i = 0,
i = 1, 2, and let θλ(x) be the solution defined above. If

(3.40) F (λ) =
∫ 1

0
g(x)θλ(x) dx, g(·) ∈ L2(0, 1),

then F (λ) is an entire function of order 1/2 and type ν with 0 ≤ ν ≤ 1 which
admits the sampling representation

(3.41) F (λ) =
∞∑

n=0

F (μn)
γ(λ)

(λ− μn)γ′(μn)
,

where γ(λ) is the function defined in (3.39), which without any loss of gener-
ality may be written as

(3.42) γ(λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∏
n=0

(1 − λ

μn
), if none of the eigenvalues is zero;

λ
∞∏

n=1

(1 − λ

μn
), if one of the eigenvalues, say μ0 = 0.

The series (3.41) converges uniformly on any compact subset of C.

Now let ξ0 ∈ [0, 1]. Let K(x, λ) be the function

(3.43) K(x, λ) := γ(λ)K(x, ξ0, λ).

Theorem 3.5. Let g(·) ∈ L2(0, 1) and F(λ) be the integral transform

(3.44) F(λ) =
∫ 1

0
K(x, λ)g(x) dx.

Then F(λ) is an entire function of order 1/2 and type ν with 0 ≤ ν ≤ 1 which
admits the sampling representation

(3.45) F(λ) =
∞∑

n=0

F(μn)
γ(λ)

(λ− μn)γ′(μn)
.

Series (3.45) converges absolutely on C and uniformly on compact subsets of
C.
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§4. Examples

In this section we give some examples exhibiting the obtained results.

Example 4.1. Consider the boundary value problem

y′′(x) = −λy(x), 0 ≤ x ≤ 1,(4.1)

y′(0) = −λy(0), y′(1) = λy(1).(4.2)

This problem is a special case of problem (1.1)–(1.3) when q ≡ 0 , a1 = a′2 =
b1 = b′2 = 0, b2 = b′1 = a2 = 1, a′1 = −1. Then ρ = η = 1 > 0. In the previous
notations

φλ(x) = cos
√
λx−

√
λ sin

√
λx, χλ(x) =

√
λ sin

√
λ(x−1)+cos

√
λ(x−1).

Green’s function of problem (4.1)–(4.2) is given by

G(x, ξ, λ)(4.3)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[√
λ sin

√
λ(x− 1) + cos

√
λ(x− 1)

] [
cos

√
λξ −√

λ sin
√
λξ
]

ω(λ)
0 ≤ ξ ≤ x ≤ 1,[√

λ sin
√
λ(ξ − 1) + cos

√
λ(ξ − 1)

] [
cos

√
λx−√

λ sin
√
λx
]

ω(λ)
0 ≤ x ≤ ξ ≤ 1,

where

(4.4) ω(λ) = 2λ cos
√
λ+ (

√
λ− λ3/2) sin

√
λ

By Theorem 3.1, the transform

(4.5) F (λ) =
∫ 1

0
g(x)

[
cos

√
λx−

√
λ sin

√
λx
]
dx, g(·) ∈ L2(0, 1)

has the following expansion
(4.6)

F (λ) =
∞∑

n=0

F (λn)
2
√
λn

[
2λ cos

√
λ+ (

√
λ− λ3/2) sin

√
λ
]

(λ− λn)
[
(5
√
λn − λ

3/2
n ) cos

√
λn + (1 − 5λn) sin

√
λn

] ,
where {λn}∞n=0 are the zeros of ω(λ). In the view of Theorem 3.2, let ξ0 = 0
and g(·) ∈ L2(0, 1). Then the function G(x, λ) will be

G(x, λ) =
√
λ sin

√
λ(x− 1) + cos

√
λ(x− 1)
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and the transform

F(λ) =
∫ 1

0
g(x)

(√
λ sin

√
λ(x− 1) + cos

√
λ(x− 1)

)
dx,

will have a sampling formula of the type (4.6) above. The choice ξ0 = 1 will
lead to the case (4.5)–(4.6).

Example 4.2. Consider the boundary value problem which consists of (4.1)
and the boundary conditions

(4.7) y(0) = λy′(0), y(1) = −λy′(1).

In this problem we have q ≡ 0, a′1 = a2 = b′1 = b2 = 0, b1 = a1 = a′2 = 1,
b′2 = −1. Then ρ = η = 1 > 0. Hence

φλ(x) =
sin

√
λx√
λ

+ λ cos
√
λx, χλ(x) = λ cos

√
λ(x− 1) − sin

√
λ(x− 1)√
λ

.

Green’s function of problem (4.1) and (4.7) will be

G(x, ξ, λ)(4.8)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
λ cos

√
λ(x− 1) − sin

√
λ(x− 1)√
λ

][
sin

√
λξ√
λ

+ λ cos
√
λξ

]
ω(λ)

0 ≤ ξ ≤ x ≤ 1,[
λ cos

√
λ(ξ − 1) − sin

√
λ(ξ − 1)√
λ

][
sin

√
λx√
λ

+ λ cos
√
λx

]
ω(λ)

0 ≤ x ≤ ξ ≤ 1,

where

(4.9) ω(λ) = −2λ cos
√
λ+ (λ5/2 − λ−1/2) sin

√
λ

By Theorem 3.1, the transform,

(4.10) F (λ) =
∫ 1

0
g(x)

[
sin

√
λx√
λ

+ λ cos
√
λx

]
dx, g(·) ∈ L2(0, 1)

can be recovered via the sampling representation

F (λ)

(4.11)

=
∞∑

n=0

F (λn)
2λ3/2

n

[
−2λ cos

√
λ+ (λ5/2 − λ−1/2) sin

√
λ
]

(λ− λn)
[
(λ7/2

n − 4λ3/2
n −√

λn) cos
√
λn + (5λ3

n + 2λ2
n + 1) sin

√
λn

] ,



ON SAMPLING THEORY AND EIGENVALUE PROBLEMS 175

where {λn}∞n=0 are the zeros of ω(λ). In the view of Theorem 3.2, let ξ0 = 0
and g(·) ∈ L2(0, 1). Then the function G(x, λ) will be

G(x, λ) = λ2 cos
√
λ(x− 1) −

√
λ sin

√
λ(x− 1)

and the transform

F(λ) =
∫ 1

0
g(x)

(
λ2 cos

√
λ(x− 1) −

√
λ sin

√
λ(x− 1)

)
dx

will have a sampling formula similar to (4.11) above.

References

[1] M.H. Abu-Risha, M.H. Annaby and R.M. Asharabi, Spectral and sampling
theorems in �2(a, b;ω)⊕C

r, Sampling Theory in Signal and Image Processing,
2 (2003), 145-163.

[2] M.H. Annaby, On sampling theory associated with the resolvents of singular
Sturm-Liouville problems, Proc. Amer. Math. Soc. 131 (2003), 1803-1812.

[3] M.H. Annaby and P.L. Butzer, On sampling associated with singular Sturm-
Liouville eigenvalue problems: the limit-circle case, Rocky Mountain Journal
of Mathematics, 32 (2002).

[4] M.H. Annaby and G. Freiling, Sampling integrodifferential transforms arising
from second order differential operators, Math. Nachr., 216 (2000), 25-43.

[5] M.H. Annaby and A.I. Zayed, On the use of Green’s function in sampling
theory, J. Integral Equations and Applications, 10 (1998), 117-139.

[6] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations,
McGraw-Hill, New York, 1955.

[7] M.S.P. Eastham, Theory of Ordinary Differential Equations, Van Nostrand
Reinhold, London, 1970.

[8] W.N. Everitt and G. Nasri-Roudsari, Interpolation and sampling theories, and
linear ordinary boundary value problems. In: Sampling theory in Fourier and
signal analysis; advanced topics. Oxford University Press, Oxford. Edited by
J.R. Higgins and R.L. Stens, (1999), 96-129.
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