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Abstract. A graph G is called supermagic if it admits a labelling of the
edges by pairwise different consecutive integers such that the sum of the labels
of the edges incident with a vertex, the weight of vertex, is independent of the
particular vertex. A graph G is called (a,1)-antimagic if it admits a labelling
of the edges by the integers {1,...,|E(G)|} such that the set of weights of
the vertices consists of different consecutive integers. In this paper we will
deal with the (a,1)-antimagic graphs and their connection to the supermagic
graphs. We will introduce three constructions of supermagic graphs using some
(a, 1)-antimagic graphs.
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8§1. Introduction

We consider finite undirected graphs without loops, multiple edges and isolated
vertices. If G is a graph, then V(G) and E(G) stand for the vertex set and
edge set of G, respectively.

Let a graph G and a mapping f from E(G) into positive integers be given.
The indez-mapping of f is the mapping f* from V(G) into positive integers
defined by

) = Z n(v,e)f(e) for every v € V(QG),

e€E(Q)

where 7(v, e) is equal to 1 when e is an edge incident with a vertex v, and 0
otherwise. An injective mapping f from E(G) into positive integers is called
a magic labelling of G for an index X if its index-mapping f* satisfies

ff(v)y=X forallve V(G).
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A magic labelling f of G is called a supermagic labelling of G if the set {f(e) :
e € E(G)} consists of consecutive positive integers. We say that a graph G is
supermagic (magic) if and only if there exists a supermagic (magic) labelling
of G.

The concept of magic graphs was introduced by Sedlacek [17]. The regular
magic graphs are characterized in [4]. Two different characterizations of all
magic graphs are given in [14] and [13]. Supermagic graphs were introduced
by Stewart [19]. It is easy to see that the classical concept of a magic square
of n? boxes corresponds to the fact that the complete bipartite graph K, ,, is
supermagic for every positive integer n # 2 (see also [19]). Stewart [20] char-
acterized supermagic complete graphs. In [10] supermagic regular complete
multipartite graphs and supermagic cubes are characterized. In [11] there are
given characterizations of magic line graphs of general graphs and supermagic
line graphs of regular bipartite graphs. In [16] and [1] supermagic labellings of
the M6bius ladders and two special classes of 4-regular graphs are constructed.
Some constructions of supermagic labellings of various classes of regular graphs
are described in [9] and [10]. In [5] there are established some bounds for num-
ber of edges in supermagic graph. More comprehensive information on magic
and supermagic graphs can be found in [8].

Let G be a graph. A bijective mapping f from F(G) into the set of integers
{1,2,...,|E(GQ)|} is called an antimagic labelling of G if the index-mapping
f* is injective, i.e., it satisfies

[*(v) # f*(u) for every wu,v € V(G), u # v.

The concept of an antimagic labelling was introduced by Hartsfield and
Ringel [9]. Bodendiek and Walther [2] introduced the special case of antimagic
graphs. For positive integers a, d, a graph G is said to be (a, d)-antimagic, if
it admits an antimagic labelling f such that

{ff(v) v eV(G)} ={a,a+d,...,a+ (|V(G)| —1)d}.

Obviously, a = |E(G)|‘\(/|fG(’ﬁ)‘+l) — (‘V(G%‘fl)d in this case.

In this paper we will deal with the (a, 1)-antimagic graphs and their con-
nection to the supermagic graphs. We will introduce three constructions of
supermagic graphs using some (a, 1)-antimagic graphs.

§2. (a,l)-antimagic graphs

It is known that the cycle C), and the path P,, on n vertices are (a, 1)-antimagic
if and only if n is odd, see [3]. To find other (a,1)-antimagic graphs we use
the edge-magic graphs which were introduced by Kotzig and Rosa [15].
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Let G be a graph. A bijection f : E(G) UV(G) — {1,2,...,|E(G)| +
|[V(G)|} is called an edge-magic total labelling of G if there is a constant o
such that

f(u) + flw) + fv) = o,

for every edge uv € E(G). Moreover, if the vertices are labelled with the values
from the set {1,2,...,|V(G)|} we say that G is a super edge-magic graph.

Theorem 2.1. Let G be a 2-reqular graph. Then G is super edge-magic if
and only if it is (a,1)-antimagic.

Proof. Evidently, there is a digraph G which we get from G by an orientation
of its edges such that the outdegree of every vertex of G is equal to 1. Let
[u,v] denote an arc of G.

Suppose that f is a super edge-magic labelling of G. Then the labelling g,
defined by g(uv) = f(u) for every arc [u,v] of G, is (a, 1)-antimagic.

Assume that g is an (a, 1)-antimagic labelling of G. Then the labelling f,
defined by f(u) = g(uv) for every arc [u,v] of G and f(uwv) = (5|V(G)| +
3)/2 — f(u) — f(v), is super edge-magic. O

According to the previous theorem and a corresponding result for super
edge-magic graphs proved in [12] we have the following statement.

Corollary 2.2. Let kG be a disjoint union of k copies of a graph G. If G is
a 2-reqular (a1, 1)-antimagic graph, then kG is (ag, 1)-antimagic for every odd
positive integer k.

Using the previous assertions and results on super edge-magic unions of
two cycles (see [6]) we have

Corollary 2.3. Let k, n and m be positive integers. For k odd each of the
following graphs is (a, 1)-antimagic

(i) kC, if 3<n=1 (mod 2),
(ii

)

) k(C3UCy) if 6<n=0 (mod 2),
(iii)

)

)

k( (

E(CyUC)) if 5<n=1 (mod 2),
(iv) k(C5UCy) if 4<n=0 (mod 2),
(v) K(

Graphs G, Gy form a decomposition of a graph G if V(Gy) = V(G2) =
V(G), E(G1) N E(G2) =0 and E(G1) U E(G2) = E(G). If Go is an r-regular
graph then we say that the graph G arose from G; by adding the r-factor Gs.
At IWOGL held in Herlany 2005 Petr Kovar presented an interesting method

CnnUC,) if 6<m=0 (mod2),n=1 (mod 2), n>m/2+2.
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of construction of vertex-magic and antimagic total labellings of graphs (for
definitions see [7]). However, this idea can be also used for (a,d)-antimagic
graphs.

Theorem 2.4. Let k be a positive integer and let H be a graph which arose
from a graph G by adding an arbitrary 2k-factor. If G is an (a1, 1)-antimagic
graph, then H is also (a2, 1)-antimagic.

Proof. As every 2k-regular graph is decomposable into k edge-disjoint 2—
factors, it is sufficient to consider that H arose from G by adding a 2-factor
F. Let F be a digraph which we get from F' by an orientation of its edges
such that the outdegree of every vertex of Fis equal to 1. Let [u,v] denote
an arc of F.

The graph G is (a1, 1)-antimagic and so there is its (a1, 1)-antimagic la-
belling f, where a; = min{f*(v) : v € V(G)}. Consider a mapping h :
E(H) — {1,2,...,|E(H)|} defined by

ey~ {1 if e € E(Q),
a1+ |E(H)| — f*(u) if e =ww € E(F) and [u,v] is an arc of F.

It is easy to see that h is a bijection and h*(v) = a1 + |E(H)| + h(uv),
where [u,v] is an arc of F. As {h(e) : e € E(F)} = {|E(G)| + 1,|E(G)| +
2,...,|E(H)|}, the labelling h is (ag, 1)-antimagic, where a2 = a; + |E(H)| +
|E(G)| + 1. O

Let n, mand 1 < a1 < -+ < ap < L%J be positive integers. A graph
Cn(a1,...,an) with the vertex set {v1,...,v,} and the edge set {vjvjyq; : 1 <
i <n,1 <j <m}, the indices are being taken modulo n, is called a circulant
graph. Clearly, Cy (a1, ..., ay) arose from Cy,(a,,) by adding a 2(m —1)-factor.
Moreover, if n is odd, then Cy,(an,) is an (a, 1)-antimagic graph because it is
isomorphic to kC,., where k and r are odd. Therefore, we have immediately

Corollary 2.5. Fvery circulant graph of odd order is (a,1)-antimagic.

The cycle of odd order is (a,1)-antimagic and every regular Hamiltonian
graph arose from its Hamilton cycle by adding a factor, so

Corollary 2.6. Every 2r-reqular Hamiltonian graph of odd order is (a,1)-
antimagic.

Any graph of order n with minimum degree at least n/2 is Hamiltonian,
thus we get

Corollary 2.7. Let G be a 2r-regular graph of odd order n. If n < 4r, then
G is (a,1)-antimagic.
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83. Supermagic graphs

For any graph G we define a graph G™ by V(G™) = UUeV(G){vo,vl} and
E(GM) = El(G[X]) U EQ(G[X]), where El(GN) = UvueE(G){UOUI,UIUO} and
Ba(G™) = Upey (e {v™'}

Theorem 3.1. Let G be an (a,1)-antimagic 2r-regular graph. Then G™ is
a supermagic graph.

Proof. Put n := |V(G)|. As G is a 2r-regular graph, every its component
is Eulerian. Therefore, there is a digraph G which we get from G by an
orientation of its edges such that the outdegree (and also the indegree) of
every vertex of G is equal to r. By [u,v] we denote an arc of G and by
N*(v), N=(v) the outneighbourhood, inneighbourhood of a vertex v in G,
respectively.

Let f: EF(G) — {1,2,...,rn} be an (a, 1)-antimagic labelling of G. Con-
sider the bijection g : E1(G™) — {1,2,...,2rn} given by

i f(uv) ifi=0,j=1,
g(u'v’) = iy .
fluv)+rn ifi=1,j=0,

for every arc [u,v] of G.
For its index-mapping we have

g @)= Y g+ > g’

weENT(v) ueN~(v)
= Z flow) + Z (f(uv) +7rn) = f*(v) +r’n
weNT(v) ueN~(v)

for every vertex v° € V(G™). Similarly, we have g*(v') = f*(v) + r?n for
every vertex v! € V(G™). Thus ¢g*(v°) = g*(v!') = f*(v)+r2n for every vertex
v € V(G). As f is an (a,1)-antimagic labelling, the set {f*(v) : v € V(G)}
consists of consecutive integers. It means that the bijection h : E(G™) —
{1,2,...,(2r + 1)n}, given by

h(uiv?) = g(u'v?)  for u'v’ € E1(G™),
2rn(r+ 1)+ 2r+1)(n+1)
2

h(v!) = — f*(v) forwv e V(Q),

is a supermagic labelling of G™. O
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Note, that C}? is a graph isomorphic to either the M&bius ladder My, for
n odd, or the graph of n-side prism S, for n even. Moreover, for the disjoint
union of graphs G and G2 it holds (G1 U G2)™ = G7* U G5'. According to
Theorem 3.1 and Corollary 2.3 we have

Corollary 3.2. Let k, n and m be positive integers. For k odd the following
graphs are supermagic

(i) kM, when 3 <n =1 (mod 2),

(ii) k(MgU S,) when 6 <n =0 (mod 2),

(iii) k(Sq4U My,) when 5<n=1 (mod 2),

(iv) k(M1pU Sp) when 4 <n =0 (mod 2),

(v) k(Sm U Masy,) when 6 <m =0 (mod 2), n=1 (mod 2), n >m/2+ 2.
Similarly, using Theorem 3.1 and Corollaries 2.5, 2.6 and 2.7 we get

Corollary 3.3. Let G be a 2r-regular graph of odd order n. If G 1is circulant,
Hamiltonian or n < 4r, then G™ is a supermagic graph.

One can see that G™ is isomorphic to the Cartesian product G x Ko when-
ever (G is a bipartite graph. However, a regular bipartite graph of even degree
is never (a,1)-antimagic. So, in the next theorem we describe another con-
struction of supermagic Cartesian products.

Theorem 3.4. Let G be an (a,1)-antimagic graph decomposable into two
edge-disjoint r-factors. Then G x Ky is a supermagic graph.

Proof. Suppose that F', F? are edge-disjoint r-factors which form a decom-
position of G and f : E(G) — {1,2,...,rn}, where n = |V(G)|, is an (a,1)-
antimagic labelling of G.

We can denote the vertices of G x Ky by v;, i € {1,2}, v € V(G), in such a
way that the vertices {v; : v € V(G)} induce a subgraph G; isomorphic to G.
So, G X K3 consists of subgraphs G1, G2 and n edges vivs for all v € V(G).
By F/, i € {1,2}, j € {1,2}, we denote the factor of G; corresponding to FV.

Consider the bijection g : E(G1 UG2) — {1,2,...,2rn} given by

(©) f(e) if e € F} or e € F3,
e) =
g fle)+rn ifee F) orec F2
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For its index-mapping we have

gl)=" Y. guw)= > gow)+ > gloiw)

viu1 EE(G1) viu1 €E(F}) viw1 EE(F?)

= > flw+ Y (flow)+rn)

vu€E(F1) vweE(F?2)

= Z f(uv) +r’n = f*(v) +r’n

vuEE(G)

for every vertex v1 € V(G1). Similarly, g*(v2) = f*(v) + r?n for every vertex
vy € V(Gg). Thus g*(v1) = g*(v2) = f*(v) + r?n for every vertex v € V(G).
As f is an (a,1)-antimagic labelling, the set {f*(v) : v € V(QG)} consists of
consecutive integers.

It means that the bijection h : E(G x K3) — {1,2,...,(2r + 1)n} given
by

h(e) =g(e) for every e € E(G1 UG3),

2rn(r+1)4+ 2r+1)(n+1)

h(Ul’Ug) = 9

— f*(v) for every v € V(G)

is a supermagic labelling of G x Kj. O

As every 4r-regular graph is decomposable into two edge-disjoint 2r-factors,
immediately from Theorem 3.4 and Corollaries 2.5, 2.6 and 2.7 we get

Corollary 3.5. Let G be a 4r-regular graph of odd order n. If G is circulant,
Hamiltonian or n < 8r, then G x Ky is a supermagic graph.

Finally we describe a construction of supermagic joins G@® K. In [18] there
are given some conditions for the existence of such graphs.

Theorem 3.6. Let G be an (a,1)-antimagic r-regular graph of order n. If
(n —r —1) is a divisor of the non-negative integer a +n(1+r — %), then
the join G @ K1 is a supermagic graph.

Proof. Put A\; :=a+n(l+7r)and Ay := % According to the assumption
there is a non-negative integer p such that A\; — Ao = p(n —r — 1) (thus
(r+1)p+ A1 =np+X2). Let f be an (a, 1)-antimagic labelling of G. The join
G @ K is obtained from G by adding the vertex w and the edges wv for all
v e V(G).

Consider the mapping h from F(G @ K1) into positive integers given by

hie) = p+n+ f(e) if e € E(G),
p+n+a— f*(v) if e=wv forve V(G).
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Evidently, {h(wv) : v € V(G)} = {p+1,p+2,....,p+n} and {h(e) : e €
EG)}={p+n+Lp+n+2...,p+n+|EG)|}. Thus, the set {h(e) :
e € E(G® K1)} consists of consecutive positive integers. Moreover, h*(w) =
np+Ag and h*(v) = (r+1)p+X; for all v € V(G). Therefore, h is a supermagic
labelling of G & Kj. O

Using the divisibility it is not difficult to check the assumptions of
Theorem 3.6 for given values n and r. Thus we have

Corollary 3.7. Let n and r be positive integers such that one of the following
conditions is satisfied:

(i) 5<n=1 (mod 2) and r =n— 3,
11<n=1 (mod2) and r=n—171,

8<n=0 (mod4) and r=7%5—1,

3 (mod 8) and r=n-—75,
(v) 12<n =4 (mod 8) and r =n— 3,
(vi) 12<n=4 (mod 8) and r=n-7,
(vii) 13<n =5 (mod 8) and r=n—>.

If G is an (a,1)-antimagic r-regular graph of order n, then the join G ® K is
supermagic.

Immediately from Corollaries 2.7 and 3.7 we get

Corollary 3.8. Let G be any (n — 3)-regular ((n — 7)-regular) graph of odd
order n > 7 (n > 15). Then G @ K1 is a supermagic graph.
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