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Abstract. A graph G is called supermagic if it admits a labelling of the
edges by pairwise different consecutive integers such that the sum of the labels
of the edges incident with a vertex, the weight of vertex, is independent of the
particular vertex. A graph G is called (a, 1)-antimagic if it admits a labelling
of the edges by the integers {1, . . . , |E(G)|} such that the set of weights of
the vertices consists of different consecutive integers. In this paper we will
deal with the (a, 1)-antimagic graphs and their connection to the supermagic
graphs. We will introduce three constructions of supermagic graphs using some
(a, 1)-antimagic graphs.
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§1. Introduction

We consider finite undirected graphs without loops, multiple edges and isolated
vertices. If G is a graph, then V (G) and E(G) stand for the vertex set and
edge set of G, respectively.

Let a graph G and a mapping f from E(G) into positive integers be given.
The index-mapping of f is the mapping f? from V (G) into positive integers
defined by

f?(v) =
∑

e∈E(G)

η(v, e)f(e) for every v ∈ V (G),

where η(v, e) is equal to 1 when e is an edge incident with a vertex v, and 0
otherwise. An injective mapping f from E(G) into positive integers is called
a magic labelling of G for an index λ if its index-mapping f? satisfies

f?(v) = λ for all v ∈ V (G).
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A magic labelling f of G is called a supermagic labelling of G if the set {f(e) :
e ∈ E(G)} consists of consecutive positive integers. We say that a graph G is
supermagic (magic) if and only if there exists a supermagic (magic) labelling
of G.

The concept of magic graphs was introduced by Sedláček [17]. The regular
magic graphs are characterized in [4]. Two different characterizations of all
magic graphs are given in [14] and [13]. Supermagic graphs were introduced
by Stewart [19]. It is easy to see that the classical concept of a magic square
of n2 boxes corresponds to the fact that the complete bipartite graph Kn,n is
supermagic for every positive integer n 6= 2 (see also [19]). Stewart [20] char-
acterized supermagic complete graphs. In [10] supermagic regular complete
multipartite graphs and supermagic cubes are characterized. In [11] there are
given characterizations of magic line graphs of general graphs and supermagic
line graphs of regular bipartite graphs. In [16] and [1] supermagic labellings of
the Möbius ladders and two special classes of 4-regular graphs are constructed.
Some constructions of supermagic labellings of various classes of regular graphs
are described in [9] and [10]. In [5] there are established some bounds for num-
ber of edges in supermagic graph. More comprehensive information on magic
and supermagic graphs can be found in [8].

Let G be a graph. A bijective mapping f from E(G) into the set of integers
{1, 2, . . . , |E(G)|} is called an antimagic labelling of G if the index-mapping
f? is injective, i.e., it satisfies

f?(v) 6= f?(u) for every u, v ∈ V (G), u 6= v.

The concept of an antimagic labelling was introduced by Hartsfield and
Ringel [9]. Bodendiek and Walther [2] introduced the special case of antimagic
graphs. For positive integers a, d, a graph G is said to be (a, d)-antimagic, if
it admits an antimagic labelling f such that

{f?(v) : v ∈ V (G)} = {a, a + d, . . . , a + (|V (G)| − 1)d}.

Obviously, a = |E(G)|(|E(G)|+1)
|V (G)| − (|V (G)|−1)d

2 in this case.
In this paper we will deal with the (a, 1)-antimagic graphs and their con-

nection to the supermagic graphs. We will introduce three constructions of
supermagic graphs using some (a, 1)-antimagic graphs.

§2. (a, 1)-antimagic graphs

It is known that the cycle Cn and the path Pn on n vertices are (a, 1)-antimagic
if and only if n is odd, see [3]. To find other (a, 1)-antimagic graphs we use
the edge-magic graphs which were introduced by Kotzig and Rosa [15].
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Let G be a graph. A bijection f : E(G) ∪ V (G) −→ {1, 2, . . . , |E(G)| +
|V (G)|} is called an edge-magic total labelling of G if there is a constant σ
such that

f(u) + f(uv) + f(v) = σ,

for every edge uv ∈ E(G). Moreover, if the vertices are labelled with the values
from the set {1, 2, . . . , |V (G)|} we say that G is a super edge-magic graph.

Theorem 2.1. Let G be a 2-regular graph. Then G is super edge-magic if
and only if it is (a, 1)-antimagic.

Proof. Evidently, there is a digraph ~G which we get from G by an orientation
of its edges such that the outdegree of every vertex of ~G is equal to 1. Let
[u, v] denote an arc of ~G.

Suppose that f is a super edge-magic labelling of G. Then the labelling g,
defined by g(uv) = f(u) for every arc [u, v] of ~G, is (a, 1)-antimagic.

Assume that g is an (a, 1)-antimagic labelling of G. Then the labelling f ,
defined by f(u) = g(uv) for every arc [u, v] of ~G and f(uv) = (5|V (G)| +
3)/2 − f(u) − f(v), is super edge-magic.

According to the previous theorem and a corresponding result for super
edge-magic graphs proved in [12] we have the following statement.

Corollary 2.2. Let kG be a disjoint union of k copies of a graph G. If G is
a 2-regular (a1, 1)-antimagic graph, then kG is (a2, 1)-antimagic for every odd
positive integer k.

Using the previous assertions and results on super edge-magic unions of
two cycles (see [6]) we have

Corollary 2.3. Let k, n and m be positive integers. For k odd each of the
following graphs is (a, 1)-antimagic

(i) kCn if 3 ≤ n ≡ 1 (mod 2),

(ii) k(C3 ∪ Cn) if 6 ≤ n ≡ 0 (mod 2),

(iii) k(C4 ∪ Cn) if 5 ≤ n ≡ 1 (mod 2),

(iv) k(C5 ∪ Cn) if 4 ≤ n ≡ 0 (mod 2),

(v) k(Cm ∪ Cn) if 6 ≤ m ≡ 0 (mod 2), n ≡ 1 (mod 2), n ≥ m/2 + 2.

Graphs G1, G2 form a decomposition of a graph G if V (G1) = V (G2) =
V (G), E(G1) ∩ E(G2) = ∅ and E(G1) ∪ E(G2) = E(G). If G2 is an r-regular
graph then we say that the graph G arose from G1 by adding the r-factor G2.
At IWOGL held in Herl’any 2005 Petr Kovář presented an interesting method
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of construction of vertex-magic and antimagic total labellings of graphs (for
definitions see [7]). However, this idea can be also used for (a, d)-antimagic
graphs.

Theorem 2.4. Let k be a positive integer and let H be a graph which arose
from a graph G by adding an arbitrary 2k-factor. If G is an (a1, 1)-antimagic
graph, then H is also (a2, 1)-antimagic.

Proof. As every 2k-regular graph is decomposable into k edge-disjoint 2–
factors, it is sufficient to consider that H arose from G by adding a 2-factor
F . Let ~F be a digraph which we get from F by an orientation of its edges
such that the outdegree of every vertex of ~F is equal to 1. Let [u, v] denote
an arc of ~F .

The graph G is (a1, 1)-antimagic and so there is its (a1, 1)-antimagic la-
belling f , where a1 = min{f?(v) : v ∈ V (G)}. Consider a mapping h :
E(H) −→ {1, 2, . . . , |E(H)|} defined by

h(e) =

{
f(e) if e ∈ E(G),
a1 + |E(H)| − f?(u) if e = uv ∈ E(F ) and [u, v] is an arc of ~F .

It is easy to see that h is a bijection and h?(v) = a1 + |E(H)| + h(uv),
where [u, v] is an arc of ~F . As {h(e) : e ∈ E(F )} = {|E(G)| + 1, |E(G)| +
2, . . . , |E(H)|}, the labelling h is (a2, 1)-antimagic, where a2 = a1 + |E(H)| +
|E(G)| + 1.

Let n, m and 1 ≤ a1 < · · · < am ≤
⌊

n
2

⌋
be positive integers. A graph

Cn(a1, . . . , am) with the vertex set {v1, . . . , vn} and the edge set {vivi+aj : 1 ≤
i ≤ n, 1 ≤ j ≤ m}, the indices are being taken modulo n, is called a circulant
graph. Clearly, Cn(a1, . . . , am) arose from Cn(am) by adding a 2(m−1)-factor.
Moreover, if n is odd, then Cn(am) is an (a, 1)-antimagic graph because it is
isomorphic to kCr, where k and r are odd. Therefore, we have immediately

Corollary 2.5. Every circulant graph of odd order is (a, 1)-antimagic.

The cycle of odd order is (a, 1)-antimagic and every regular Hamiltonian
graph arose from its Hamilton cycle by adding a factor, so

Corollary 2.6. Every 2r-regular Hamiltonian graph of odd order is (a, 1)-
antimagic.

Any graph of order n with minimum degree at least n/2 is Hamiltonian,
thus we get

Corollary 2.7. Let G be a 2r-regular graph of odd order n. If n < 4r, then
G is (a, 1)-antimagic.
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§3. Supermagic graphs

For any graph G we define a graph G./ by V (G./) =
⋃

v∈V (G){v0, v1} and
E(G./) = E1(G./) ∪ E2(G./), where E1(G./) =

⋃
vu∈E(G){v0u1, v1u0} and

E2(G./) =
⋃

v∈V (G){v0v1}.

Theorem 3.1. Let G be an (a, 1)-antimagic 2r-regular graph. Then G./ is
a supermagic graph.

Proof. Put n := |V (G)|. As G is a 2r-regular graph, every its component
is Eulerian. Therefore, there is a digraph ~G which we get from G by an
orientation of its edges such that the outdegree (and also the indegree) of
every vertex of ~G is equal to r. By [u, v] we denote an arc of ~G and by
N+(v), N−(v) the outneighbourhood, inneighbourhood of a vertex v in ~G,
respectively.

Let f : E(G) −→ {1, 2, . . . , rn} be an (a, 1)-antimagic labelling of G. Con-
sider the bijection g : E1(G./) −→ {1, 2, . . . , 2rn} given by

g(uivj) =

{
f(uv) if i = 0, j = 1,

f(uv) + rn if i = 1, j = 0,

for every arc [u, v] of ~G.
For its index-mapping we have

g?(v0) =
∑

w∈N+(v)

g(v0w1) +
∑

u∈N−(v)

g(u1v0)

=
∑

w∈N+(v)

f(vw) +
∑

u∈N−(v)

(f(uv) + rn) = f?(v) + r2n

for every vertex v0 ∈ V (G./). Similarly, we have g?(v1) = f?(v) + r2n for
every vertex v1 ∈ V (G./). Thus g?(v0) = g?(v1) = f?(v)+r2n for every vertex
v ∈ V (G). As f is an (a, 1)-antimagic labelling, the set {f?(v) : v ∈ V (G)}
consists of consecutive integers. It means that the bijection h : E(G./) −→
{1, 2, . . . , (2r + 1)n}, given by

h(uivj) = g(uivj) for uivj ∈ E1(G./),

h(v0v1) =
2rn(r + 1) + (2r + 1)(n + 1)

2
− f?(v) for v ∈ V (G),

is a supermagic labelling of G./.
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Note, that C./
n is a graph isomorphic to either the Möbius ladder M2n, for

n odd, or the graph of n-side prism Sn, for n even. Moreover, for the disjoint
union of graphs G1 and G2 it holds (G1 ∪ G2)./ = G./

1 ∪ G./
2 . According to

Theorem 3.1 and Corollary 2.3 we have

Corollary 3.2. Let k, n and m be positive integers. For k odd the following
graphs are supermagic

(i) kM2n when 3 ≤ n ≡ 1 (mod 2),

(ii) k(M6 ∪ Sn) when 6 ≤ n ≡ 0 (mod 2),

(iii) k(S4 ∪ M2n) when 5 ≤ n ≡ 1 (mod 2),

(iv) k(M10 ∪ Sn) when 4 ≤ n ≡ 0 (mod 2),

(v) k(Sm ∪ M2n) when 6 ≤ m ≡ 0 (mod 2), n ≡ 1 (mod 2), n ≥ m/2 + 2.

Similarly, using Theorem 3.1 and Corollaries 2.5, 2.6 and 2.7 we get

Corollary 3.3. Let G be a 2r-regular graph of odd order n. If G is circulant,
Hamiltonian or n < 4r, then G./ is a supermagic graph.

One can see that G./ is isomorphic to the Cartesian product G×K2 when-
ever G is a bipartite graph. However, a regular bipartite graph of even degree
is never (a, 1)-antimagic. So, in the next theorem we describe another con-
struction of supermagic Cartesian products.

Theorem 3.4. Let G be an (a, 1)-antimagic graph decomposable into two
edge-disjoint r-factors. Then G × K2 is a supermagic graph.

Proof. Suppose that F 1, F 2 are edge-disjoint r-factors which form a decom-
position of G and f : E(G) −→ {1, 2, . . . , rn}, where n = |V (G)|, is an (a, 1)-
antimagic labelling of G.

We can denote the vertices of G×K2 by vi, i ∈ {1, 2}, v ∈ V (G), in such a
way that the vertices {vi : v ∈ V (G)} induce a subgraph Gi isomorphic to G.
So, G × K2 consists of subgraphs G1, G2 and n edges v1v2 for all v ∈ V (G).
By F j

i , i ∈ {1, 2}, j ∈ {1, 2}, we denote the factor of Gi corresponding to F j .
Consider the bijection g : E(G1 ∪ G2) −→ {1, 2, . . . , 2rn} given by

g(e) =

{
f(e) if e ∈ F 1

1 or e ∈ F 2
2 ,

f(e) + rn if e ∈ F 1
2 or e ∈ F 2

1 .
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For its index-mapping we have

g?(v1) =
∑

v1u1∈E(G1)

g(v1u1) =
∑

v1u1∈E(F 1
1 )

g(v1u1) +
∑

v1w1∈E(F 2
1 )

g(v1w1)

=
∑

vu∈E(F 1)

f(vu) +
∑

vw∈E(F 2)

(f(vw) + rn)

=
∑

vu∈E(G)

f(uv) + r2n = f?(v) + r2n

for every vertex v1 ∈ V (G1). Similarly, g?(v2) = f?(v) + r2n for every vertex
v2 ∈ V (G2). Thus g?(v1) = g?(v2) = f?(v) + r2n for every vertex v ∈ V (G).
As f is an (a, 1)-antimagic labelling, the set {f?(v) : v ∈ V (G)} consists of
consecutive integers.

It means that the bijection h : E(G × K2) −→ {1, 2, . . . , (2r + 1)n} given
by

h(e) = g(e) for every e ∈ E(G1 ∪ G2),

h(v1v2) =
2rn(r + 1) + (2r + 1)(n + 1)

2
− f?(v) for every v ∈ V (G)

is a supermagic labelling of G × K2.

As every 4r-regular graph is decomposable into two edge-disjoint 2r-factors,
immediately from Theorem 3.4 and Corollaries 2.5, 2.6 and 2.7 we get

Corollary 3.5. Let G be a 4r-regular graph of odd order n. If G is circulant,
Hamiltonian or n < 8r, then G × K2 is a supermagic graph.

Finally we describe a construction of supermagic joins G⊕K1. In [18] there
are given some conditions for the existence of such graphs.

Theorem 3.6. Let G be an (a, 1)-antimagic r-regular graph of order n. If
(n − r − 1) is a divisor of the non-negative integer a + n(1 + r − n+1

2 ), then
the join G ⊕ K1 is a supermagic graph.

Proof. Put λ1 := a + n(1 + r) and λ2 := n(n+1)
2 . According to the assumption

there is a non-negative integer p such that λ1 − λ2 = p(n − r − 1) (thus
(r +1)p+λ1 = np+λ2). Let f be an (a, 1)-antimagic labelling of G. The join
G ⊕ K1 is obtained from G by adding the vertex w and the edges wv for all
v ∈ V (G).

Consider the mapping h from E(G ⊕ K1) into positive integers given by

h(e) =

{
p + n + f(e) if e ∈ E(G),
p + n + a − f?(v) if e = wv for v ∈ V (G).
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Evidently, {h(wv) : v ∈ V (G)} = {p + 1, p + 2, . . . , p + n} and {h(e) : e ∈
E(G)} = {p + n + 1, p + n + 2, . . . , p + n + |E(G)|}. Thus, the set {h(e) :
e ∈ E(G ⊕ K1)} consists of consecutive positive integers. Moreover, h?(w) =
np+λ2 and h?(v) = (r+1)p+λ1 for all v ∈ V (G). Therefore, h is a supermagic
labelling of G ⊕ K1.

Using the divisibility it is not difficult to check the assumptions of
Theorem 3.6 for given values n and r. Thus we have

Corollary 3.7. Let n and r be positive integers such that one of the following
conditions is satisfied:

(i) 5 ≤ n ≡ 1 (mod 2) and r = n − 3,

(ii) 11 ≤ n ≡ 1 (mod 2) and r = n − 7,

(iii) 8 ≤ n ≡ 0 (mod 4) and r = n
2 − 1,

(iv) 11 ≤ n ≡ 3 (mod 8) and r = n − 5,

(v) 12 ≤ n ≡ 4 (mod 8) and r = n − 3,

(vi) 12 ≤ n ≡ 4 (mod 8) and r = n − 7,

(vii) 13 ≤ n ≡ 5 (mod 8) and r = n − 5.

If G is an (a, 1)-antimagic r-regular graph of order n, then the join G⊕K1 is
supermagic.

Immediately from Corollaries 2.7 and 3.7 we get

Corollary 3.8. Let G be any (n − 3)-regular ((n − 7)-regular) graph of odd
order n ≥ 7 (n ≥ 15). Then G ⊕ K1 is a supermagic graph.
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186 J. IVANČO AND A. SEMANIČOVÁ
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