Regularity of a Noetherian local ring with a p-basis

Mamoru Furuya and Takashi Yamaguchi

(Received April 5, 2006)

Abstract. In this note, we shall show the following: Let R be a Noetherian local ring of prime characteristic p. If R has a p-basis over R^p and R is generically reduced, then R is a regular local ring.

AMS 2000 Mathematics Subject Classification. 13H05, 13N05.

Key words and phrases. Regular local ring, p-basis, generically reduced.

§1. Introduction

Let R be a local ring that is essentially of finite type over a field of prime characteristic p. In this situation, in [2, 7.5], E.Kunz gave, among others, the following theorem:

Theorem 1. Let R be a local ring that is essentially of finite type over a field of prime characteristic p. If R has a p-basis over R^p and R is generically reduced, then R is a regular local ring.

In this note we generalize this theorem to an arbitrary Noetherian local ring R of prime characteristic p without the assumption that R is essentially of finite type over a subfield as follows:

Theorem 2. Let R be a Noetherian local ring of prime characteristic p. If R has a p-basis over R^p and R is generically reduced, then R is a regular local ring.

In this result the assumption that R is generically reduced can not be omitted (cf. [2, p.121]). Furthermore the converse is not true in general. That is, there is a regular local ring R such that R/R^p has no p-basis (cf. [3, Example 3.8]).

§2. Preliminaries

All rings in this note are commutative rings with identity element. Let P be a ring and R a P-algebra of prime characteristic p. Let R^p denote the subring $\{x^p \mid x \in R\}$ of R and PR^p the subring of R generated by R^p and the image of P in R. We denote by $\left(\Omega_{R/P}, d_{R/P}\right)$ the module of differentials of R/P (P-algebra R is denoted simply by R/P) (cf. [4, p.182]) (in the notation of [2] it is denoted by $\left(\Omega_{R/P}^1, d_{R/P}\right)$). In case $P = R^p$ we write simply $\left(\Omega_R, d_R\right)$ for $\left(\Omega_{R/P}, d_{R/P}\right)$. A ring R is called generically reduced, if $R_{\mathfrak{q}}$ is a field (or equivalently $\mathfrak{q}R_{\mathfrak{q}} = (0)$) for every minimal prime ideal \mathfrak{q} of R (cf.[2, p.118]). A subset B of R is said to be p-independent (in R) over PR^p if the monomials $b_1^{e_1} \cdots b_m^{e_m}$, where b_1, \ldots, b_m are distinct elements of R and R and R are linearly independent over R and R subset R is called a R-basis of R (or R) is a R-basis of R over R) if it is R-independent over R and R and R and R are R and R and R are R and R and R are R and R are R and R are R and R and R are R and R are

§3. Main result

The main result of this note is the following:

Theorem. Let (R, \mathfrak{m}, L) be a Noetherian local ring of prime characteristic p. If R has a p-basis over R^p and R is generically reduced, then R is a regular local ring.

Proof. Let R have a p-basis over R^p . By [1, 3.2], R/R^p has a p-basis of the form $\{b_1, \ldots, b_r\} \cup \{x_j \mid j \in J\}$ such that $\mathfrak{m} = (b_1, \ldots, b_r)$ $(r := \dim_L(\mathfrak{m}/\mathfrak{m}^2))$ and $\{\overline{x_j} \mid j \in J\}$ is a p-basis of L/L^p , where $\overline{x_j} := x_j + \mathfrak{m}$. Put $X := \{x_j \mid j \in J\}$. Then we see that k[X] is a polynomial ring with variables X over k and moreover that $k[X] \cap \mathfrak{m} = (0)$, where k is the prime field contained in R. Thus R contains the quotient filed K of k[X]. It is easy to see that K is a quasicoefficient field of R and $\{b_1, \ldots, b_r\}$ is a p-basis of R/K, and thus $\Omega_{R/K}$ is a finitely generated free R-module with a basis $\{d_{R/K}(b_1), \ldots, d_{R/K}(b_r)\}$.

Let $\{y_1, \ldots, y_r\}$ be any subset of \mathfrak{m} with $\mathfrak{m} = (y_1, \ldots, y_r)$. Then we have the following canonical exact sequence of L-modules:

$$0 \longrightarrow \mathfrak{m}/\mathfrak{m}^2 \longrightarrow \Omega_{R/K}/\mathfrak{m}\Omega_{R/K} \longrightarrow \Omega_{L/K} \longrightarrow 0.$$

Since K is a quasi-coefficient field of R, we have that $\Omega_{L/K}=(0)$. Thus we see that $\mathfrak{m}/\mathfrak{m}^2\cong\Omega_{R/K}/\mathfrak{m}\Omega_{R/K}$. Therefore from Nakayama's lemma, $\{d_{R/K}(y_1),\ldots,d_{R/K}(y_r)\}$ is a basis of the free R-module $\Omega_{R/K}$.

Next we shall show that $\mathfrak{m}^2 \supset \mathfrak{q}$ for every minimal prime ideal \mathfrak{q} of R. If there exists an element c of \mathfrak{q} with $c \notin \mathfrak{m}^2$, then $c + \mathfrak{m}^2 \neq 0$ in $\mathfrak{m}/\mathfrak{m}^2$. Thus

there are elements c_2,\ldots,c_r of $\mathfrak m$ such that $\mathfrak m=(c,c_2,\ldots,c_r)$. Therefore $\Omega_{R/K}$ has a basis $\left\{d_{R/K}(c),d_{R/K}(c_2),\ldots,d_{R/K}(c_r)\right\}$, and thus $\left\{d(c/1),d(c_2/1),\ldots,d(c_r/1)\right\}$ is a basis of the free $R_{\mathfrak q}$ -module $\Omega_{R_{\mathfrak q}/K}=R_{\mathfrak q}\otimes_R\Omega_{R/K}$, where $d:=d_{R_{\mathfrak q}/K}$. On the other hand, since R is generically reduced, c/1=0 in $R_{\mathfrak q}$ and thus d(c/1)=0. This is a contradiction. Thus we have that $\mathfrak m^2\supset\mathfrak q$.

Choose a minimal prime ideal \mathfrak{q} of R with dim $R = \dim R/\mathfrak{q}$. Put $R_1 := R/\mathfrak{q}$ and $\mathfrak{m}_1 := \mathfrak{m}/q$. Then (R_1, \mathfrak{m}_1, L) is a Notherian local domain and $\mathfrak{m}_1/\mathfrak{m}_1^2 = \mathfrak{m}/(\mathfrak{m}^2 + \mathfrak{q}) = \mathfrak{m}/\mathfrak{m}^2$.

Let $A:=\{a_i\mid i\in I\}$ be any p-basis of R/R^p . Then it is known that Ω_R is a free R-module with a basis $\{d_R(a_i)\mid i\in I\}$. Now we shall show that $d(x)\in\mathfrak{q}\Omega_R$ for every $x\in\mathfrak{q}$. For any $x\in\mathfrak{q}$, x/1=0 in $R_\mathfrak{q}$. Thus there exists $y\in R$ - \mathfrak{q} such that xy=0 in R. Hence $d_R(x)y+xd_R(y)=0$ and thus $yd_R(x)\in\mathfrak{q}\Omega_R$. Since Ω_R is the free R-module with a basis $\{d_R(a_i)\mid i\in I\}$, we can write $d_R(x)=\sum_i w_id_R(a_i)$ ($w_i\in R$). Thus $yd_R(x)=\sum_i yw_id_R(a_i)\in\mathfrak{q}\Omega_R$.

Therefore $yw_i \in \mathfrak{q}$ and $w_i \in \mathfrak{q}$. Hence $d_R(x) \in \mathfrak{q}\Omega_R$. Since $\Omega_{R_1} = \Omega_R/(\mathfrak{q}\Omega_R + Rd_R(\mathfrak{q})) = \Omega_R/\mathfrak{q}\Omega_R = R_1 \otimes_R \Omega_R$, Ω_{R_1} is the free R_1 -module with a basis $\{d_{R_1}(\overline{a_i}) \mid i \in I\}$, where $\overline{a_i} := a_i + \mathfrak{q}$. Furthermore $R_1 = R_1^p[\overline{A}]$, where $\overline{A} := \{\overline{a_i} \mid i \in I\}$. Thus \overline{A} is a p-basis of R_1/R_1^p by [2, 5.6]. Therefore R_1 is a domain that is flat over R_1^p . Hence R_1 is regular by

Kunz's theorem (cf.[4, Theorem107]). Thus dim $R = \dim R_1 = \dim_L \mathfrak{m}_1/\mathfrak{m}_1^2 = \dim_L \mathfrak{m}/\mathfrak{m}^2$, and thus R is regular.

We remark that we can further generalize Theorem 2 as follows:

Corollary. Let R be a Noetherian ring of prime characteristic p. If R has locally p-bases over R^p and R is generically reduced, then R is a regular ring.

Acknowledgment

The authors thank the referee for careful reading and useful comments.

References

- [1] M. Furuya and H. Niitsuma, Regularity criterion of Noetherian local rings of prime characteristic, J. Algebra, 247 (2002), 219-230.
- [2] E. Kunz, Kähler Differentials, Vieweg, Braunschweig/Wiesbaden, 1986.
- [3] T. Kimura and H. Niitsuma, Regular local ring of characteristic p and p-basis, J. Math. Soc. Japan, 32 (1980), 363-371.
- [4] H. Matsumura, Commutative Algebra, (2nd ed., Benjamin, New York), 1980.

Mamoru Furuya Department of Mathematics, Meijo University Shiogamaguchi, Tenpaku-ku, Nagoya, 468-8502, Japan E-mail: furuya@ccmfs.meijo-u.ac.jp

Takashi Yamaguchi Department of Mathematics, Meijo University Shiogamaguchi, Tenpaku-ku, Nagoya, 468-8502, Japan