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Abstract. The object of the present paper is to study a non-flat quasi-
conformally flat Riemannian manifold whose Ricci tensor S satisfies the condi-
tion S(X,Y) =~T(X)T(Y), where + is the scalar curvature and T is a 1-form
defined by T(X) = g(X, &), £ is a unit vector field.
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§1. Introduction

The notion of a quasi-conformal curvature tensor was given by Yano and
Sawaki [10]. According to them a quasi-conformal curvature tensor C* is
defined by

C*(X,Y)Z = aR(X,Y)Z +b[S(Y,Z2)X — S(X,2)Y + ¢g(Y,Z2)QX
— (X, 2)Q¥] = L[S 4+ Wg(V. 2)X — g(X, 2)Y], (L.1)

nn—

where a and b are constants and R, () and « are the Riemannian curvature
tensor of type (1, 3), the Ricci operator defined by ¢(QX,Y) = S(X,Y) and
the scalar curvature, respectively. If a =1 and b = —ﬁ, then (1.1) takes the
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form

C*(X,Y)Z = R(X,Y)Z —

SISV, 2)X = S(X, 2)Y + (Y, 2)QX

n —

Y
—9(X, 2)QY] + m[g(Y, Z)X —g(X, 2)Y]

=C(X,Y)Z,

where C' is the conformal curvature tensor [4]. Thus the conformal curvature
tensor C' is a particular case of the tensor C*. For this reason C* is called the
quasi-conformal curvature tensor. A manifold (M™, g) (n > 3) shall be called
quasi-conformally flat if C* = 0. It is known [1] that a quasi-conformally flat
manifold is either conformally flat if @ # 0 or Einstein if ¢ = 0 and b # 0.
Since they give no restrictions for manifolds if a = 0 and b = 0, it is essential
for us to consider the case of a # 0 or b # 0.

A Riemannian manifold of quasi-constant curvature was given by B. Y.
Chen and K. Yano [3] as a conformally flat manifold with the curvature tensor
R of type (0, 4) satisfies the condition

R(X,Y,Z,W) = plg(Y, Z)g(X, W) — g(X, Z)g(Y,W)]
+qlg(X, W)T(Y)T(Z) + g(Y, 2)T(X)T (W)
—9(X, Z2)T(Y)T(W) — g(Y,W)T(X)T(Z)], (1.2)

where R(X,Y, Z,W) = g(R(X,Y)Z, W), R is the curvature tensor of type (1,
3), p,q are scalar functions and 7 is a non-zero 1-form defined by

9(X,8) =T(X), (1.3)

where 5 is a unit vector filed. It can be easily seen that if the curvature tensor
R is of the form (1.2), then the manifold is conformally flat. On the other
hand, G. Vranceanu [8] defined the notion of almost constant curvature by the
same expression (1.2). Later A. L. Mocanu [6] pointed out that the manifold
introduced by Chen and Yano and the manifold introduced by Vrénceanu
are the same. Hence a Riemannian manifold is said to be of quasi-constant
curvature if the curvature tensor R satisfies the relation (1.2). If ¢ = 0, then
the manifold reduces to a manifold of constant curvature.

The present paper deals with the quasi-conformally flat manifold (M", g)
(n > 3) whose Ricci tensor S satisfies

S(X,Y) = vT(X)T(Y), (1.4)

where T is a non-zero 1-form defined by ¢(X,¢) = T(X), £ is a unit vector
field. For the scalar curvature v we suppose that v # 0 for each point of
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M. Under the assumption above we know that M is not Einstein. Hence we
consider the case of a # 0 (See §3). We shall prove the following;:

Theorem 1. A quasi-conformally flat manifold satisfying the condition (1.4)
under the assumption of v # 0 is a manifold of quasi-constant curvature.

Theorem 2. In a quasi-conformally flat Riemannian manifold satisfying the
condition (1.4) under the same assumption as Theorem 1, the integral curves
of the vector field & are geodesic.

Theorem 3. In a quasi-conformally flat manifold satisfying (1.4) under the
same assumption as Theorem 1, the vector field & is a proper concircular vector

field (See §4).

Theorem 4. If a quasi-conformally flat manifold satisfies (1.4) under the
same assumption as Theorem 1, then the manifold is a locally product manifold.

Theorem 5. A quasi-conformally flat manifold satisfying (1.4) under the
same assumption as Theorem 1 can be expressed as a locally warped product
I Xea M* where M* is an Finstein manifold (See §4).

82. Preliminaries

From (1.1) we obtain
(VwC )X, Y)Z = a(Vw B)(X,Y)Z + b(VS)(Y, 2)X — (VS)(X, Z2)Y
T 90, 2)(Vw@)(X) - (X, Z)(VwQ)(Y)]
S ey )X - (X2 (21)

where V is the covariant differentiation with respect to the Riemannian metric
g. We know that (div R)(X,Y)Z = (Vx9)(Y,Z) — (VyS)(X,Z). Hence
contracting (2.1) we obtain

(div C)(X,Y)Z = (a+B)(Vx8)(Y, 2) — (Vv 8)(X, 7))
1 .(n—4)b a

+ o [PEE (oY, 2)dn(X) - g(X, Z)dr (V). (2.2)

Here we consider quasi-conformally flat manifold i.e., C* = 0. Hence div C* =
0, where 'div’ denotes the divergence. If a + b # 0, then from (2.2) it follows
that

(Vx )Y, Z) = (VyS)(X, Z)
1 a (n—4)b

:n(a+b)[n—1_ 2

1g(Y, Z)dv(X) — g(X, Z)dy(Y)].
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This can be written as
(VxS)(Y,Z) — (VyS)(X, Z2) = alg(Y, Z)dv(X) — g(X, Z)dy(Y)],  (2.3)

1 a (n—4)b
here o = -
where @ n(a+b){n—1 2

| = constant.

§3. Quasi-conformally flat manifold satisfying the condition (1.4)
From (1.1) we get
C*(X,Y, Z,W) = aR(X,Y, Z,W) + b[S(Y, Z)g(X, W) — S(X, Z)g(Y, W)
+S5(X, W)g(Y, Z) = S(Y, W)g(X, Z)]
[ 4 gV, 2)g(X, W) — g(X, Z)g(Y. W) (3.1)

nn—

If the manifold is quasi-conformally flat under the assumption of v # 0, then
we get
v(a+ (n—2)b) =0.

[(n —4)b a 3na

> o1l 2(n—1)(n — 2)
the assumption of v # 0, we know that a + b # 0 and « # 0. Moreover, from
(1.4) we have

Then we note that

. Since a # 0 under

R(X,Y,Z, W)
= S[S(X7 Z)g(Y7 W)_S(Yv Z)Q(X7 W)+S(Yv W)g(X7 Z)_S(X7 W)g(Yv Z)]
[+ 29 Y, Z)g(X, W) — g(X, Z)g(Y. W)] (3.2)

Using (1.4) in (3.2), we obtain

R(X,Y,2,W)

= %b[g(Y, WHT(X)T(Z) — g(X,W)T(Y')T(Z) + g(X, Z)T(Y)T (W)
— (Y, 2)T(X)T(W)]+ L[~

na n —

1 +2b][9(Y, Z)Q(Xv W) —g(X, Z)Q(K W)]v

which implies that the manifold is a manifold of quasi-constant curvature.
Hence we can state that

Theorem 1. A quasi-conformally flat manifold satisfying the condition (1.4)
under the assumption of v # 0 is a manifold of quasi-constant curvature.
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84. The results concerning the product manifold

From (1.4) we have

(Vz9)(X,Y)
= dy(2)T(X)T(Y) +[(VZD)(X)TY) + T(X)(VZT)(Y)].  (41)

Substituting (4.1) in (2.3), we get

(
dy(Z)T(X)T(Y) +y[(VZT)(X)TY) + T(X)(VZT)(Y)]
— dy(X)T(Z)T(Y) = (VxT)Z)T(Y) + T(Z)(VxT)(Y)]

= alg(X,Y)dv(Z) = 9(Z,Y)dy(X)]. (4.2)

Putting Y = Z = ¢; in the above expression where {e;} is an orthonormal basis
of the tangent space at each point of the manifold and taking summation over
1, 1 <1< n, we get

a(l =n)dy(X) = dy(§)T(X) + (VD) (X) +7T(X)(6T) — dy(X), (4.3)
where we put 67 = Zn:(VeZT)(ei). Again putting Y = Z = ¢ in (4.2), it yields
im1
V(VeT)(X) = (o = D[dy(§)T(X) — dy(X)]. (4.4)
Substituting (4.4) in (4.3), we get
a(n — 2)dy(X) — ady(€)T(X) +~0T = 0. (4.5)
Now putting X = ¢ in (4.5), it yields
a(n — 3)dy (&) + 6T = 0. (4.6)
From (4.5) and (4.6) it follows that
ady(X) = ady(§T(X).
Since a # 0, we have
dy(X) = dv(§)T(X). (4.7)
Putting Y = ¢ in (4.2) and using (4.7), we obtain
(VxT)(Z) — (VZT)(X) =0, (4.8)

since v # 0. This means that the 1-form 7' defined by ¢g(X,§) = T(X) is
closed, i.e., dT'(X,Y) = 0. Hence it follows that

9(Vx&Y) =g(Vy&, X) (4.9)
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for all X,Y. Now putting ¥ = ¢ in (4.9), we get

9(Vx§,8) = g(Ve&, X). (4.10)

Since g(Vx&, &) = 0, from (4.10) it follows that g(V¢&, X) = 0 for all X.
Hence V¢ = 0. This means that the integral curves of the vector field  are
geodesic. Therefore we can state the following:

Theorem 2. In a quasi-conformally flat Riemannian manifold satisfying the
condition (1.4) under the assumption of v # 0, the integral curves of the vector
field & are geodesic.

From (4.4), by virtue of (4.7) we get
(VeT)(Z) =0, (4.11)
since v # 0. Now we consider the scalar function

f= LD
gl

We have
Vxf = %[dv(é)T(Vxﬁ)v — dy(X)dy ()] + %d%(g, X), (4.12)

where the Hessian d?v is defined by d?vy(X,Y) = X(Yy) — (VxY)y. On the
other hand, (4.7) implies that

(Y, X) = d*y(&Y)T(X) + dy(€)T(Vy&)T(X) + dy(&)(VyT)(X),
from which we get
d*y(&Y)T(X) = d*y(& X)T(Y), (4.13)

since (VxT)(Y) = (VyT)(X) and d*y(Y, X) = d*y(X,Y). Putting X = ¢ in
(4.13), it follows that

d*y(€,Y) = &y OT(Y),
since T'(§) = 1. Thus
Vi = uT(X), (4.14)

where 1 = %[d%(g,g) - d'g(g)dy(g)] and we used (4.7). Using (4.14), it is

easy to show that N
w(X) = ;dv(ﬁ)T(X) = fT(X)
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is closed. In fact,
dw(X,Y) = 0.

Using (4.7) and (4.8) in (4.2), we get

AMT(Z)(VXT)(Y) — T(X)(VZT)(Y)
— ady(©)[g(Y: 2)T(X) - g(X,Y)T(2)].

Now putting Z = £ in the above expression it yields

—(VxT)(Y) = QC%@[T(X)T(Y) —9(X, Y], (4.15)

by (4.11). Thus (4.15) can be rewritten as follows:
(VxT)(Y) = —f9(X,Y) + w(X)T(Y), (4.16)

where w is closed. But this means that the vector field £ defined by ¢g(X, &) =
T(X) is a proper concircular vector field ([7], [9]). Hence we can state the
following;:

Theorem 3. In a quasi-conformally flat manifold satisfying (1.4) under the
assumption of v # 0, the vector field £ is a proper concircular vector field.

From (4.16) it follows that
Vxé=—fX+w(X),. (4.17)

Let &4 denote the (n — 1)-dimensional distribution in a quasi-conformally flat
manifold orthogonal to &. If X and Y belong to ¢, then

9(X,§) =0 (4.18)

and
g(v,€) = 0. (4.19)

Since (Vxg)(Y,€) = 0, it follows from (4.17) and (4.19) that
9(VxY, &) = g(VxE,Y) = —fg(X,Y).
Similarly, we get
9(Vy X,§) = g(Vy&, X) = —fg(X,Y).

Hence
9(VxY.§) = (Vy X, §). (4.20)
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Now [X,Y] = VxY — Vy X and therefore by (4.20) we obtain
g([X, Y], &) = g(VxY = Vy X, §) =0.

Hence [X, Y] is orthogonal to &. That is, [X, Y] belongs to £-. Thus the distri-
bution &+ is involutive [2]. Hence from Frobenius’ theorem [2] it follows that
&1 is integrable. This implies that if a quasi-conformally flat manifold satis-
fies (1.4), then it is a product manifold. We can therefore state the following
theorem:

Theorem 4. If a quasi-conformally flat manifold satisfies (1.4) under the
assumption of v # 0, then the manifold is a locally product manifold.

If a quasi-conformally flat manifold satisfies (1.4) under the assumption of
~v # 0, then in view of Theorem 3, £ is a concircular vector field. Also, M is a
quasi-constant curvature manifold and satisfies (1.2) and from Theorem 4 we
know that £ is integrable and it holds

9(VxY,§) = =(VxT)(Y)

for the local vector fields X, Y belonging to . Thus from (4.15) the second
fundamental form k for each leaf satisfies

E(X,Y)= —ozdfyy(g)g(X, Y)E.

Hence we know that each leaf is totally umbilic. Therefore each leaf is a
manifold of constant curvature. Hence it must be a warped product I X.¢ M*
where M* is an Einstein manifold. Thus we can state the following result (See

191, [5]):

Theorem 5. A quasi-conformally flat manifold satisfying (1.4) under the
assumption of v # 0 can be expressed as a locally warped product I X.o M*
where M™ is an Einstein manifold.
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