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Abstract. The purpose of this paper is to study the multipliers on modulation
spaces Mp’q(Rd) for 0 < p,q < oo. In particular, it is shown in the case
0 < p < 1 that elements of BX (K > d/(2p) and K € N), consisting of all
functions f € C¥ whose derivatives 0% f € L™ for any multi-index o such that
|| £ K, are multipliers on MP9.
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81. Introduction

The modulation spaces MP4(R?) for general 0 < p,q < oo, which coincide
with the usual modulation spaces when 1 < p, g < 0o, have been constructed
and several properties on MP(R?) have been studied in [5], [6]. The aim of
this paper is the study of the boundedness of the operators

o(D)f = [ ol fleas

on MP4(R?) for 0 < p,q < co.

When 1 < p,q < oo, it was already studied in Grochenig and Heil [2],
[4] and proved that o(D) has a unique bounded extension on each MP9(R%)
if o € M°'(R%). However, as Grochenig pointed it out in his paper [3],
their argument doesn’t cover when p or ¢ = 1 or oo, since they use the facts
that S(R?) is dense in M™4(R%) and the dual of MP?(R%) is M7 (R?) for
1< p,q<ooand %—I— 1% =1=14 %. So in this paper, we calculate the MP9-
norm of o(D)f directly with our key lemma (Lemma 2.4) without using the
duality, and examine what conditions on ¢ to guarantee the MP-?-boundedness
of (D). In particular, it is shown in the case 0 < p < 1 that elements of BX
(K > d/(2p) and K € N), consisting of all functions f € C* whose derivatives
0% f € L™ for any multi-index « such that |« < K, are multipliers on MP:4.
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82. Preliminaries
2.1. Basic definition

The following notations will be used throughout this article. Let S(R?) be the
Schwartz space of all complex-valued rapidly decreasing infinitely differentiable
functions on RY and S’(R%) be the topological dual of S(R?). The Fourier
transform is f = [ f(t)e ?™dt, and the inverse Fourier transform is

f(t) = f(—1). We define for 0<p<oo

1

1Al = ([ 1roprae)?

and || f||p~ = ess.sup,cga |f(t)|. We use the pairing (f, g) between f € S'(R%)
and g 6 S(RY), in a manner consistent with the inner product (f,g) =
[ f(t)g(t)dt on L?2(RY). For a function f on R? the translation and the
modulatlon operators are defined by

T.f(t) = f(t—z), and Myf(t)=e*™*f(t) (r,weR?),

respectively.

2.2. Modulation spaces and Basic properties

We recall the definition of the modulation spaces.
First for o > 0 we define ®*(R?) to be the space of all g € S(R?) satisfying

supp g C {¢ | [£] = 1}, andz £ —ak)=1, V¢ e R4
kezd

In the following, we choose a sufficiently small @ > 0 so that the function
space ®*(R%) is not empty. With this, we have defined the modulation spaces
as follows:

DEFINITION 2.1. Given a g € ®*(R%), and 0 < p,q < oo, we define the
modulation space MP4(R?) to be the space of all tempered distributions f €
S'(R%) such that the quasi-norm

q 1

lana = ([ ([ 185 Otog) (@) Pde) " o)
R4 Rd

is finite, with obvious modifications if p or ¢ = oo

We state basic properties of modulation spaces, which will play an impor-
tant role in this article (see [5]).
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PROPOSITION 2.2. Let 0 < p,q < 0o and g € ®*(R?). Then

q

@ (3 ([ 15+ (g ) )’

keZd

is an equivalent quasi-norm on MP4(R®) with modifications if p or q¢ = co.
(b) Different test functions g1, go € ®*(R?) define the same space and equiva-
lent quasi-norms on MP9(R%).

(c) Let 0 <pg<p1 S oo and 0 < g < q1 < 0o. Then

MPo:90 (Rd) C MPLa (Rd)
(d) We have the continuous embeddings
S(RY c MPY(RY) c &'(RY)

for 0 < p,q < oc.
(e) MP4(RY) is a quasi-Banach space if 0 < p,q < oo (Banach space if 1 <

p,q = 00).
(f) If 0 < p,q < oo, then S(R?) is dense in MP4(RY).

These facts have been derived from the following.
Let 0 < p < 00, and T be a compact subset of R?. Then LY is defined by

I ={f e SR | 3¢ € R, suppf C &+ T, ||f|lr < oo}

LEMMA 2.3 ([5] Theorem 2.5). Let T' be a compact subset of R? and let 0 <
p < q < oo. Then there exists a positive constant C' (which depends only on
the diameter of I' and p) such that

1 fllza = ClIf|zw
holds for all f € LY.

LEMMA 2.4 ([5] Lemma 2.6). Let 0 < p < 1 and I',T' be compact subsets

of R®. Then there exists a positive constant C' (which depends only on the
diameters of T, T and p) such that

1711gl]| < Clfllusllgller

holds for all f € LY. and all g € LY.

In the sequel, we shall not distinguish between equivalent quasi-norms of a
given quasi-normed space.
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2.3. Multiplier operators and Symbol classes

DEFINITION 2.5. Let 0 < p,q < co and ¢ € S&'(RY). If the operator o(D),
initially defined in S(R?) by the relation

~

(2.1) o(D)f = (o-f)",
satisfies the inequality
(2.2) lo (D) fllara < Cll fllarra,  f € MPURT),

where C' is independent of f, we say that o is a multiplier on MP? and o(D)
is a multiplier operator on MP:?,

DEFINITION 2.6. For g € ®*(R%) and 0 < p < oo, we define S(p) to be the
space of all tempered distributions o € S'(R?) such that

1
(2.3)  |lollsg) == ll6llame = sup (/ (0 Tuk)“ (@) Pd ) " < oo.
kezd *JR4

2.4. Main results

We now formulate our results.

(i) Let 1 £ p < 00,0 < g < ooand o e S(1). Then o(D) is a multiplier
operator on MP4(R4).

(ii) Let 0 < p < 1,0 < g < o0 and o € S(p). Then o(D) is a multiplier
operator on MP4(R4).

Precise statements of these results and their proof are stated in §3.

2.5. Examples

THEOREM 2.7. Let 0 < p < 1 and d,, be the Dirac measure at a point x,, € R,

Then, for a sequence of complex numbers {cy,}o> _ . € IP(Z),

o0

a:( Z cnéxn)A

belongs to S(p).

PROOF. A direct calculation shows that for each k € Z¢,

[e.9]

o * MakQ(-r) = Z Cn<5rnaMakg(x - )> - Z CnMakg(x - xn)

n=—oo n=—oo
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Hence it follows that

o+ Masg@l = [ || 3 eadtangte — o)t

n=—oo
I DR L, 7
n=—oo
= Z len[Pllgll7e < oo
n=—o0
By taking f—th power and [*°-norm, we see that o € S(p). O

Remark. Oberlin in [7] has proved that every bounded linear operator T
on LP(RY) (0 < p < 1) which commutes with translations is represented by
Tf=o0(D)f with o = ()  ¢nda,)”, where {c,} € IP(Z).

THEOREM 2.8. Let 1 < p < co. Then we have M>P(RY) C S(p).

PROOF. Since (0 - T,,g) " (x) = 2™ %q « (M_,Z§)(w), where Zg(€) = §(—£)
and M>P(R%) (1 £ p < co) is independent of the choice of a window g €
S(RY) \ {0} (see [2] Proposition 11.3.2), it follows that

1
lo]l5) < ¢ sup (/Rd (o 7.5)" (@) dz)”

weRd

C</Rd ( sup }0* (M_,79) (w )Dpdx); < d||o||areewr-

weR4

A

THEOREM 2.9. Let 0 < p < oo and K be a positive integer. If K > % then

={feC*®RY) | Y [|0°fllL~ < oo}

la|SK

belongs to S(p).
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PROOF. Let f € BX and denote A = 2?21(82/85]2). Then we have
(1+ 4722 5| (f - Tord) ' ()]

— (1—|-47[-2|x’2)K‘ / f(g)/g\(é._ak)e%—m{dd
Rd
= | [ #€rats — amy - agFemecag

Z\/Rd > Capd®f(©O7G(E — k)™= Edy]

la+B|S2K

< S Cagllofll / 1095(€)|de.

d
ot AI2K R

Since K > %, we have

1fllsy S C > 110°fllpee.

la]<2K

83. Proof of the main results

We now consider the behavior of o(D) on MP4(R%). Throughout this section,
g denotes a function in ®*(R%).

3.1. Thecasel1<p< oo

THEOREM 3.1. Let 1 S p < 00, 0 < ¢ < 0o and o € S(1). Then the linear
operator o(D), initially defined in the dense subspace S(RY) of MP4(R?), has
a unique bounded extension on MP4(R?) and satisfies

(3.1) o (D) fllura < cllol[sq)llfllarpa.

PROOF. First note that there exists a constant N (depending only on the size

of supp g, « > 0 and dimension d) such that T,,g = Z Totk+r)9 - Targ for
Ir|=N
all k € Z%. Then for f € S(R?), we have

(0 )Y * (Marg) (@) = (0 T - Tuxd) (@) = 3. (0 To - - Tagesnd)” (@)
[r|EN

= S (0 Tud) * (F - Tarind)” ()
Ir|<N
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From this and Young’s inequality, we have

(0 - )Y % Marg()|| e < > (0 - Tar®)" (@) 22 [|(F - Ty ) (@) o
Ir| <N

Taking the [?-norm on both sides, we obtain

[lo(D)fllagrs = e sup [(o- Tord) " |11 11 f1|area
keZ

Then, since S(R?) is dense and MP4(R?) is a quasi-Banach space, we have
the desired result. O

3.2. Thecase0<p<1

THEOREM 3.2. Let 0 < p < 1,0 < ¢ < o0 and o € S(p). Then the linear
operator o(D), initially defined in the dense subspace S(RY) of MP4(R?), has
a unique bounded extension on MP4(R?) and satisfies

(3-2) o (D) fllnra = Cllol] sl fllarea

PrOOF. Let f € S(R?). Then we have
(U : ]?)v * (Makg) (aj) = Z (U : Tak/g\)v * (f Ta(k-l—?")/g\)v(x)‘
Ir|SN

From this and Lemma 2.4, we have

(o - )Y * Marg(@)l|r £ C D (0 Tard)” (@) 221 (f - Tagesn )" ()]
Ir| SN

Taking the [9-norm on both sides, we obtain

lo(D)fllarea < € sup (0« Tard) 1ol f 1] azp.a-
keZ

Then, since S(R?) is dense and MP9(R?) is a quasi-Banach space, we have
the desired result. O
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