Multipliers on modulation spaces

Masaharu Kobayashi

(Received September 26, 2006)

Abstract. The purpose of this paper is to study the multipliers on modulation spaces $M^{p,q}(\mathbf{R}^d)$ for $0 < p,q < \infty$. In particular, it is shown in the case $0 that elements of <math>\mathcal{B}^K$ (K > d/(2p) and $K \in \mathbf{N})$, consisting of all functions $f \in C^K$ whose derivatives $\partial^{\alpha} f \in L^{\infty}$ for any multi-index α such that $|\alpha| \leq K$, are multipliers on $M^{p,q}$.

AMS 2000 Mathematics Subject Classification. 42B15, 42B35.

Key words and phrases. Modulation spaces, multiplier operators.

§1. Introduction

The modulation spaces $M^{p,q}(\mathbf{R}^d)$ for general $0 < p, q \leq \infty$, which coincide with the usual modulation spaces when $1 \leq p, q \leq \infty$, have been constructed and several properties on $M^{p,q}(\mathbf{R}^d)$ have been studied in [5], [6]. The aim of this paper is the study of the boundedness of the operators

$$\sigma(D)f = \int_{\mathbf{R}^d} e^{2\pi i x \cdot \xi} \sigma(\xi) \widehat{f}(\xi) d\xi$$

on $M^{p,q}(\mathbf{R}^d)$ for $0 < p, q < \infty$.

When $1 < p, q < \infty$, it was already studied in Gröchenig and Heil [2], [4] and proved that $\sigma(D)$ has a unique bounded extension on each $M^{p,q}(\mathbf{R}^d)$ if $\sigma \in M^{\infty,1}(\mathbf{R}^d)$. However, as Gröchenig pointed it out in his paper [3], their argument doesn't cover when p or q=1 or ∞ , since they use the facts that $\mathcal{S}(\mathbf{R}^d)$ is dense in $M^{p,q}(\mathbf{R}^d)$ and the dual of $M^{p,q}(\mathbf{R}^d)$ is $M^{p',q'}(\mathbf{R}^d)$ for $1 \leq p, q < \infty$ and $\frac{1}{p} + \frac{1}{p'} = 1 = \frac{1}{q} + \frac{1}{q'}$. So in this paper, we calculate the $M^{p,q}$ -norm of $\sigma(D)f$ directly with our key lemma (Lemma 2.4) without using the duality, and examine what conditions on σ to guarantee the $M^{p,q}$ -boundedness of $\sigma(D)$. In particular, it is shown in the case $0 that elements of <math>\mathcal{B}^K$ (K > d/(2p) and $K \in \mathbf{N})$, consisting of all functions $f \in C^K$ whose derivatives $\partial^{\alpha} f \in L^{\infty}$ for any multi-index α such that $|\alpha| \leq K$, are multipliers on $M^{p,q}$.

§2. Preliminaries

2.1. Basic definition

The following notations will be used throughout this article. Let $\mathcal{S}(\mathbf{R}^d)$ be the Schwartz space of all complex-valued rapidly decreasing infinitely differentiable functions on \mathbf{R}^d and $\mathcal{S}'(\mathbf{R}^d)$ be the topological dual of $\mathcal{S}(\mathbf{R}^d)$. The Fourier transform is $\hat{f}(\omega) = \int f(t)e^{-2\pi i\omega \cdot t}dt$, and the inverse Fourier transform is $\check{f}(t) = \hat{f}(-t)$. We define for 0

$$||f||_{L^p} = \left(\int_{\mathbf{R}^d} |f(t)|^p dt\right)^{\frac{1}{p}}$$

and $||f||_{L^{\infty}} = \text{ess.} \sup_{t \in \mathbf{R}^d} |f(t)|$. We use the pairing $\langle f, g \rangle$ between $f \in \mathcal{S}'(\mathbf{R}^d)$ and $g \in \mathcal{S}(\mathbf{R}^d)$, in a manner consistent with the inner product $\langle f, g \rangle = \int f(t)\overline{g(t)}dt$ on $L^2(\mathbf{R}^d)$. For a function f on \mathbf{R}^d , the translation and the modulation operators are defined by

$$T_x f(t) = f(t-x), \quad and \quad M_{\omega} f(t) = e^{2\pi i \omega \cdot t} f(t) \quad (x, \omega \in \mathbf{R}^d),$$

respectively.

2.2. Modulation spaces and Basic properties

We recall the definition of the modulation spaces.

First for $\alpha > 0$ we define $\Phi^{\alpha}(\mathbf{R}^d)$ to be the space of all $g \in \mathcal{S}(\mathbf{R}^d)$ satisfying

supp
$$\widehat{g} \subset \{\xi \mid |\xi| \leq 1\}$$
, and $\sum_{k \in \mathbf{Z}^d} \widehat{g}(\xi - \alpha k) \equiv 1, \ \forall \xi \in \mathbf{R}^d$.

In the following, we choose a sufficiently small $\alpha > 0$ so that the function space $\Phi^{\alpha}(\mathbf{R}^d)$ is not empty. With this, we have defined the modulation spaces as follows:

DEFINITION 2.1. Given a $g \in \Phi^{\alpha}(\mathbf{R}^d)$, and $0 < p, q \leq \infty$, we define the modulation space $M^{p,q}(\mathbf{R}^d)$ to be the space of all tempered distributions $f \in \mathcal{S}'(\mathbf{R}^d)$ such that the quasi-norm

$$||f||_{M^{p,q}} := \left(\int_{\mathbf{R}^d} \left(\int_{\mathbf{R}^d} \left| f * (M_{\omega} g)(x) \right|^p dx \right)^{\frac{q}{p}} d\omega \right)^{\frac{1}{q}}$$

is finite, with obvious modifications if p or $q = \infty$.

We state basic properties of modulation spaces, which will play an important role in this article (see [5]).

Proposition 2.2. Let $0 < p, q \leq \infty$ and $g \in \Phi^{\alpha}(\mathbf{R}^d)$. Then

(a)
$$\left(\sum_{k \in \mathbf{Z}^d} \left(\int_{\mathbf{R}^d} \left| f * \left(M_{\alpha k} g \right) (x) \right|^p dx \right)^{\frac{q}{p}} \right)^{\frac{1}{q}}$$

is an equivalent quasi-norm on $M^{p,q}(\mathbf{R}^d)$ with modifications if p or $q=\infty$.

(b) Different test functions $g_1, g_2 \in \Phi^{\alpha}(\mathbf{R}^d)$ define the same space and equivalent quasi-norms on $M^{p,q}(\mathbf{R}^d)$.

(c) Let $0 < p_0 \leq p_1 \leq \infty$ and $0 < q_0 \leq q_1 \leq \infty$. Then

$$M^{p_0,q_0}(\mathbf{R}^d) \subset M^{p_1,q_1}(\mathbf{R}^d).$$

(d) We have the continuous embeddings

$$\mathcal{S}(\mathbf{R}^d) \subset M^{p,q}(\mathbf{R}^d) \subset \mathcal{S}'(\mathbf{R}^d)$$

for $0 < p, q \leq \infty$.

- (e) $M^{p,q}(\mathbf{R}^d)$ is a quasi-Banach space if $0 < p, q \leq \infty$ (Banach space if $1 \leq p, q \leq \infty$).
- (f) If $0 < p, q < \infty$, then $\mathcal{S}(\mathbf{R}^d)$ is dense in $M^{p,q}(\mathbf{R}^d)$.

These facts have been derived from the following.

Let $0 , and <math>\Gamma$ be a compact subset of \mathbf{R}^d . Then L^p_{Γ} is defined by

$$L_{\Gamma}^p = \{ f \in \mathcal{S}'(\mathbf{R}^d) \mid \exists \xi_0 \in \mathbf{R}^d, \operatorname{supp} \widehat{f} \subset \xi_0 + \Gamma, ||f||_{L^p} < \infty \}.$$

LEMMA 2.3 ([5] Theorem 2.5). Let Γ be a compact subset of \mathbf{R}^d and let 0 . Then there exists a positive constant <math>C (which depends only on the diameter of Γ and p) such that

$$||f||_{L^q} \le C||f||_{L^p}$$

holds for all $f \in L^p_{\Gamma}$.

LEMMA 2.4 ([5] Lemma 2.6). Let $0 and <math>\Gamma, \Gamma'$ be compact subsets of \mathbf{R}^d . Then there exists a positive constant C (which depends only on the diameters of Γ, Γ' and p) such that

$$\left| \left| |f| * |g| \right| \right|_{L^p} \le C ||f||_{L^p} ||g||_{L^p}$$

holds for all $f \in L^p_{\Gamma}$ and all $g \in L^p_{\Gamma'}$.

In the sequel, we shall not distinguish between equivalent quasi-norms of a given quasi-normed space.

2.3. Multiplier operators and Symbol classes

DEFINITION 2.5. Let $0 < p, q < \infty$ and $\sigma \in \mathcal{S}'(\mathbf{R}^d)$. If the operator $\sigma(D)$, initially defined in $\mathcal{S}(\mathbf{R}^d)$ by the relation

(2.1)
$$\sigma(D)f = (\sigma \cdot \widehat{f})^{\vee},$$

satisfies the inequality

(2.2)
$$||\sigma(D)f||_{M^{p,q}} \le C||f||_{M^{p,q}}, \quad f \in M^{p,q}(\mathbf{R}^d),$$

where C is independent of f, we say that σ is a multiplier on $M^{p,q}$ and $\sigma(D)$ is a multiplier operator on $M^{p,q}$.

DEFINITION 2.6. For $g \in \Phi^{\alpha}(\mathbf{R}^d)$ and 0 , we define <math>S(p) to be the space of all tempered distributions $\sigma \in \mathcal{S}'(\mathbf{R}^d)$ such that

$$(2.3) ||\sigma||_{S(p)} := ||\check{\sigma}||_{M^{p,\infty}} = \sup_{k \in \mathbf{Z}^d} \left(\int_{\mathbf{R}^d} |(\sigma \cdot T_{\alpha k} \widehat{g})^{\vee}(x)|^p dx \right)^{\frac{1}{p}} < \infty.$$

2.4. Main results

We now formulate our results.

- (i) Let $1 \leq p < \infty$, $0 < q < \infty$ and $\sigma \in S(1)$. Then $\sigma(D)$ is a multiplier operator on $M^{p,q}(\mathbf{R}^d)$.
- (ii) Let $0 and <math>\sigma \in S(p)$. Then $\sigma(D)$ is a multiplier operator on $M^{p,q}(\mathbf{R}^d)$.

Precise statements of these results and their proof are stated in §3.

2.5. Examples

THEOREM 2.7. Let $0 and <math>\delta_{x_n}$ be the Dirac measure at a point $x_n \in \mathbf{R}^d$. Then, for a sequence of complex numbers $\{c_n\}_{n=-\infty}^{\infty} \in l^p(\mathbf{Z})$,

$$\sigma = \left(\sum_{n=-\infty}^{\infty} c_n \delta_{x_n}\right)^{\hat{}}$$

belongs to S(p).

PROOF. A direct calculation shows that for each $k \in \mathbf{Z}^d$,

$$\check{\sigma} * M_{\alpha k} g(x) = \sum_{n = -\infty}^{\infty} c_n \langle \delta_{x_n}, \overline{M_{\alpha k} g(x - \cdot)} \rangle = \sum_{n = -\infty}^{\infty} c_n M_{\alpha k} g(x - x_n).$$

Hence it follows that

$$\begin{aligned} ||\check{\sigma} * M_{\alpha k} g(x)||_{L^p}^p &= \int_{\mathbf{R}^d} \left| \sum_{n = -\infty}^{\infty} c_n M_{\alpha k} g(x - x_n) \right|^p dx \\ &\leq \sum_{n = -\infty}^{\infty} |c_n|^p \int |e^{2\pi i \alpha k \cdot (x - x_n)} g(x - x_n)|^p dx \\ &= \sum_{n = -\infty}^{\infty} |c_n|^p ||g||_{L^p}^p < \infty. \end{aligned}$$

By taking $\frac{1}{p}$ -th power and l^{∞} -norm, we see that $\sigma \in S(p)$.

Remark. Oberlin in [7] has proved that every bounded linear operator T on $L^p(\mathbf{R}^d)$ $(0 which commutes with translations is represented by <math>Tf = \sigma(D)f$ with $\sigma = (\sum c_n \delta_{x_n})^{\hat{}}$, where $\{c_n\} \in l^p(\mathbf{Z})$.

Theorem 2.8. Let $1 \leq p < \infty$. Then we have $M^{\infty,p}(\mathbf{R}^d) \subset S(p)$.

PROOF. Since $(\sigma \cdot T_{\omega} \widehat{g})^{\vee}(x) = e^{2\pi i \omega \cdot x} \sigma * (M_{-x} \mathcal{I} \widehat{g})(\omega)$, where $\mathcal{I} \widehat{g}(\xi) = \widehat{g}(-\xi)$ and $M^{\infty,p}(\mathbf{R}^d)$ $(1 \leq p < \infty)$ is independent of the choice of a window $g \in \mathcal{S}(\mathbf{R}^d) \setminus \{0\}$ (see [2] Proposition 11.3.2), it follows that

$$||\sigma||_{S(p)} \leq c \sup_{\omega \in \mathbf{R}^d} \left(\int_{\mathbf{R}^d} \left| \left(\sigma \cdot T_{\omega} \widehat{g} \right)^{\vee} (x) \right|^p dx \right)^{\frac{1}{p}}$$

$$\leq c \left(\int_{\mathbf{R}^d} \left(\sup_{\omega \in \mathbf{R}^d} \left| \sigma * \left(M_{-x} \mathcal{I} \widehat{g} \right) (\omega) \right| \right)^p dx \right)^{\frac{1}{p}} \leq c' ||\sigma||_{M^{\infty,p}}.$$

Theorem 2.9. Let 0 and <math>K be a positive integer. If $K > \frac{d}{2p}$ then

$$\mathcal{B}^K := \left\{ f \in C^K(\mathbf{R}^d) \mid \sum_{|\alpha| \le K} ||\partial^{\alpha} f||_{L^{\infty}} < \infty \right\}$$

belongs to S(p).

PROOF. Let $f \in \mathcal{B}^K$ and denote $\Delta_{\xi} = \sum_{j=1}^d (\partial^2/\partial \xi_j^2)$. Then we have

$$(1 + 4\pi^{2}|x|^{2})^{K}|(f \cdot T_{\alpha k}\widehat{g})^{\vee}(x)|$$

$$= (1 + 4\pi^{2}|x|^{2})^{K}|\int_{\mathbf{R}^{d}} f(\xi)\widehat{g}(\xi - \alpha k)e^{2\pi ix \cdot \xi}d\xi|$$

$$= \left|\int_{\mathbf{R}^{d}} f(\xi)\widehat{g}(\xi - \alpha k)(1 - \Delta_{\xi})^{K}e^{2\pi ix \cdot \xi}d\xi\right|$$

$$= \left|\int_{\mathbf{R}^{d}} \sum_{|\alpha + \beta| \leq 2K} C_{\alpha,\beta}\partial^{\alpha}f(\xi)\partial^{\beta}\widehat{g}(\xi - \alpha k)e^{2\pi ix \cdot \xi}d\xi\right|$$

$$\leq \sum_{|\alpha + \beta| \leq 2K} C_{\alpha,\beta}||\partial^{\alpha}f||_{L^{\infty}} \int_{\mathbf{R}^{d}} |\partial^{\beta}\widehat{g}(\xi)|d\xi.$$

Since $K > \frac{d}{2p}$, we have

$$||f||_{S(p)} \le C \sum_{|\alpha| \le 2K} ||\partial^{\alpha} f||_{L^{\infty}}.$$

§3. Proof of the main results

We now consider the behavior of $\sigma(D)$ on $M^{p,q}(\mathbf{R}^d)$. Throughout this section, g denotes a function in $\Phi^{\alpha}(\mathbf{R}^d)$.

3.1. The case $1 \leq p < \infty$

THEOREM 3.1. Let $1 \leq p < \infty$, $0 < q < \infty$ and $\sigma \in S(1)$. Then the linear operator $\sigma(D)$, initially defined in the dense subspace $\mathcal{S}(\mathbf{R}^d)$ of $M^{p,q}(\mathbf{R}^d)$, has a unique bounded extension on $M^{p,q}(\mathbf{R}^d)$ and satisfies

$$(3.1) ||\sigma(D)f||_{M^{p,q}} \le c||\sigma||_{S(1)}||f||_{M^{p,q}}.$$

PROOF. First note that there exists a constant N (depending only on the size of supp \widehat{g} , $\alpha > 0$ and dimension d) such that $T_{\alpha k}\widehat{g} = \sum_{|r| \le N} T_{\alpha(k+r)}\widehat{g} \cdot T_{\alpha k}\widehat{g}$ for

all $k \in \mathbf{Z}^d$. Then for $f \in \mathcal{S}(\mathbf{R}^d)$, we have

$$(\sigma \cdot \widehat{f})^{\vee} * (M_{\alpha k} g)(x) = (\sigma \cdot \widehat{f} \cdot T_{\alpha k} \widehat{g})^{\vee}(x) = \sum_{|r| \leq N} (\sigma \cdot T_{\alpha k} \widehat{g} \cdot \widehat{f} \cdot T_{\alpha (k+r)} \widehat{g})^{\vee}(x)$$
$$= \sum_{|r| \leq N} (\sigma \cdot T_{\alpha k} \widehat{g})^{\vee} * (\widehat{f} \cdot T_{\alpha (k+r)} \widehat{g})^{\vee}(x)$$

From this and Young's inequality, we have

$$||(\sigma \cdot \widehat{f})^{\vee} * M_{\alpha k} g(x)||_{L^{p}} \leq \sum_{|r| \leq N} ||(\sigma \cdot T_{\alpha k} \widehat{g})^{\vee}(x)||_{L^{1}} ||(\widehat{f} \cdot T_{\alpha(k+r)} \widehat{g})^{\vee}(x)||_{L^{p}}.$$

Taking the l^q -norm on both sides, we obtain

$$||\sigma(D)f||_{M^{p,q}} \leq c \sup_{k \in \mathbf{Z}^d} ||(\sigma \cdot T_{\alpha k}\widehat{g})^{\vee}||_{L^1}||f||_{M^{p,q}}$$

Then, since $\mathcal{S}(\mathbf{R}^d)$ is dense and $M^{p,q}(\mathbf{R}^d)$ is a quasi-Banach space, we have the desired result.

3.2. The case 0

THEOREM 3.2. Let $0 , <math>0 < q < \infty$ and $\sigma \in S(p)$. Then the linear operator $\sigma(D)$, initially defined in the dense subspace $\mathcal{S}(\mathbf{R}^d)$ of $M^{p,q}(\mathbf{R}^d)$, has a unique bounded extension on $M^{p,q}(\mathbf{R}^d)$ and satisfies

$$(3.2) ||\sigma(D)f||_{M^{p,q}} \le C||\sigma||_{S(p)}||f||_{M^{p,q}}.$$

PROOF. Let $f \in \mathcal{S}(\mathbf{R}^d)$. Then we have

$$(\sigma \cdot \widehat{f})^{\vee} * (M_{\alpha k} g)(x) = \sum_{|r| \leq N} (\sigma \cdot T_{\alpha k} \widehat{g})^{\vee} * (\widehat{f} \cdot T_{\alpha (k+r)} \widehat{g})^{\vee}(x).$$

From this and Lemma 2.4, we have

$$||(\sigma \cdot \widehat{f})^{\vee} * M_{\alpha k} g(x)||_{L^{p}} \leq C \sum_{|r| \leq N} ||(\sigma \cdot T_{\alpha k} \widehat{g})^{\vee}(x)||_{L^{p}} ||(\widehat{f} \cdot T_{\alpha(k+r)} \widehat{g})^{\vee}(x)||_{L^{p}}.$$

Taking the l^q -norm on both sides, we obtain

$$||\sigma(D)f||_{M^{p,q}} \leq C' \sup_{k \in \mathbf{Z}^d} ||(\sigma \cdot T_{\alpha k}\widehat{g})^{\vee}||_{L^p}||f||_{M^{p,q}}.$$

Then, since $\mathcal{S}(\mathbf{R}^d)$ is dense and $M^{p,q}(\mathbf{R}^d)$ is a quasi-Banach space, we have the desired result.

Acknowledgements

I am grateful to the referee for valuable advice and suggestions. Statement of Theorem 2.8 is due to him.

References

- [1] H. G. Feichtinger, A new class of function spaces, in Proc. Conf. "Constructive Function Theory", Kiew 1983, (1984).
- [2] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, 2001.
- [3] K. Gröchenig, A Pedestrian Approach to Pseudodifferential Operators, preprint.
- [4] K. Gröchenig and C. Heil, Modulation spaces and pseudodifferential operators, Integral Equations Operator Theory, 34(4):439-457,1999.
- [5] M. Kobayashi, Modulation spaces $M^{p,q}$ for $0 < p, q \le \infty$, J. Function Spaces Appl. 4(3) (2006) 329-341.
- [6] M. Kobayashi, Dual of Modulation spaces, to appear in J. Function Spaces Appl.
- [7] D. M. Oberlin, Translation-invariant operators on $L^p(G)$, Canad. J. Math. 29(3) (1977), 119–122.
- [8] H. Triebel, Theory of Function Spaces, Birkhäuser, Boston, 1983.

Masaharu Kobayashi Department of Mathematics, Tokyo University of Science Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan E-mail: kobayashi@jan.rikadai.jp