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A semi-parallel fundamental form of maximal rank
for a decomposition of a vector bundle
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Abstract. We study a subbundle with semi-parallel fundamental form. In
particular, if the rank of the fundamental form is maximal, we can obtain a cer-

tain equation which plays an essential role to classify parallel affine immersions

into R™+3(n+1)
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80. Introduction

In Riemannian geometry, many researchers have studied submanifolds with
parallel second fundamental form. In particular, Ferus [5] classified subman-
ifolds of the Euclidean space with parallel second fundamental forms. These
submanifolds are often called parallel submanifolds. Moreover, semi-parallel
submanifolds which is a generalization of parallel submanifolds, have been also
studied in [3] and [4], for example. In affine differential geometry, Vrancken [9]
classified linearly full affine immersions from an n-dimensional manifold M to
an affine space Rn+37(4D) with parallel affine fundamental form, where the
following equation plays an essential role:

(0.1)  SzBxY = (Ric(X, Z)Y + Ric(Y, Z)X + 2Ric(X,Y)Z),

n—1
where S is the shape operator, B is the affine fundamental form and Ric is
the Ricci tensor of the induced connection.

Our main purpose is to prove equations including (0.1) for the case of a
decomposition of a vector bundle with connection, which can be regarded as a

327



328 R. ISHII

generalization of affine immersions, see [2], [6], for example. Let V =V, @ V4
be a decomposition with connection V on V, V! (resp. V?) the induced
connection on V; (resp. V) and B the fundamental form. If RB = 0, where
R is the curvature operator defined by V!, V2, and a connection D on TM,
we say that B is semi-parallel. If the dimension of Span{Bxn|X € T, M,n €
Vi.} is maximal for every z € M, B is said to be of maximal rank. Under
the condition that the fundamental form B is semi-parallel and of maximal
rank, we obtain equations including (0.1). In particular, our proof of (0.1) is
relatively shorter than that in [9].

81. Preliminaries

We assume that all objects are smooth and all vector bundles are real
throughout this paper. Let M be an n-dimensional (n > 2) manifold. Let
V,W be vector bundles over M, I'(V) the space of cross-section of V' and
(V) the set of covariant derivatives of connections on V. Let Hom(V, W)
be the vector bundle of which fiber Hom(V, W), at x € M is the vector
space Hom(V,,, W) of linear maps from V, to W,. The space of vector bun-
dle homomorphisms from V to W is denoted by HOM(V, W). We note that
HOM(V, W) can be canonically identified with the space I'(Hom(V, W)). For
non-negative integer r, we denote the space of V-valued r-forms on M by
A"(V) and A" := A"(M x R).

Let Vi be a subbundle of V and 7 : Vi — V the inclusion. If a subbundle V5
of V satisfies V1 ® Vo = V (direct sum), then we say that V5 is the transversal
bundle with respect to V7. Take a transversal bundle V5. We set i9 : Vo — V
the inclusion and p; : V' — V; the projection homomorphism for j = 1,2. We
note that ip; + igpy = idy. Let V € €(V) be a connection on V. We set
V! := p1Vi, where p; Vi is defined by (p1Vi)x := p1oVxoi for X € I'(TM).
Similarly, we set V2 := poViy, B := poVi and S := —pVis. We call V!
the induced connection on Vi, V? the transversal connection on Va, B the
fundamental form and S the shape tensor. Since pii = idy,,p2i = 0,paia =
idy, and pjia = 0, we have

Lemma 1.1. For V!, B,V? and S, we obtain
Ve e(h), Be Al(Hom(Vi,Vs)), V2 e ¢(Vs) and S € A'(Hom(Vz, 17)).
Let R (resp. R!, R?) be the curvature form of V (resp. V!, V?).
Lemma 1.2. We have the fundamental equations as follows:

Gauss: piRxyi = R&—y — SxBy + Sy Bx;
Codazzi for B:  pyRxyi= BxVy — ByVy — V3 Bx + V3 By — Bix y);
Codazzi for S: lexy’iQ = V%/SX — V‘%(Sy — Sszy + SyV?X + S[X7y];
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Ricci: p2lRx yis = R%(,Y — BxSy + By Sk,
for XY e T(T'M).

We apply these notions to affine immersions. Let M be an (n+q)-dimensional
manifold and f : M — M an immersion. We denote the pull-back bundle
through f of TM by T := f#(TM), the bundle map by fau T — TM and
its restriction to the fiber by fu, for x € M. We define a linear mapping
Lyt TuM — Ty by 1y = (f#z)*lfm for each z € M, where fu, : T, M —
Tf(m)M is the differential of f at . Thus we define a bundle homomorphism
v : TM — T by t|r,n := tz and obtain the isomorphism 7 : TM — (T M).
We identify +(TM) with TM through i. Let N be a subbundle of T such that
T @® N =T, where we set T := TM(= o(T'M)). For D € ¢(TM), there exists
the pull-back connection f# D which is denoted by V € €(T). Then we have

VT = p1Vip € T), VN := paVig € C(N),
B := pyViy € A'(Hom(T, N)) and S := —p1Viy € A'(Hom(N, T)).

We call (f, N) the affine immersion from (M,V7T) to (M, D), VT the induced
connection, VY the transversal connection, B the affine fundamental form
and S the shape tensor.

§2. Semi-parallel fundamental form

From now on, X,Y, Z always denote elements of I'(T'M). Let V € €(V) be
a connection on V' and D € €(T'M) a connection on T'M. We set

(VxB)y := V4By — Bpyy — ByVk,
and
(RxyB)z == R} yBz - Bpo 7~ BzRyy,
where RP is the curvature form of D.

Definition 2.1. If VB =0 (resp. RB = 0), we say that B is parallel (resp.
semi-parallel).

If D is torsion-free, then we obtain the following equations by a straightfor-
ward calculation:

(RX,YB)ZA ) A A
= V% (VyB)z = (VpxyB)z — (VyB)pyz — (VyB)zVk
—V3(VxB)z + (VpyxB)z + (VxB)pyz + (VxB)zVy

= (Vx(VyB))z — (Vy(VxB))z — (Vixy)B)z-

Thus we see that if D is torsion-free and B is parallel, then B is semi-parallel.
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By Ricci equation, we have

Lemma 2.1. IfpyRis = 0 and B is semi-parallel, then we have the following:
Bx Sy Bzn — By SxBzn = Bpp g0+ BzRx yn,

where n € T'(V1).

We denote the Ricci tensor of RP by Ric?, i.e.,

RicP(Y, Z) := trace{X — R)%YZ}.
By using first Bianchi identity, if D is torsion-free, then we obtain
tr(R¥ ) = Ric” (¥, X) — Ric”(X,Y).

We note that there exists a local parallel volume element on V' (resp. Vi)
if and only if trR = 0 (resp. trR' = 0). If V; = TM and V! is torsion-free,
then we see that there exists a local parallel volume element on Vi if and only
if Ric is symmetric, where Ric is the Ricci tensor of R'.

We set my := rankV;, m = rankV and msy := m — m; = rankVs. Let ImB,
be a subspace of Vs, defined by ImB, := Span{Bxn|X € T, M, n € V1,} at
x € M. We denote | J,¢,, ImB, by ImB.

Definition 2.2. If dim(ImB,) is maximal for every = € M, the fundamental
form B is said to be of maximal rank.

We see that B has maximal rank if and only if rank(ImB) = nm;. In the case
where B is symmetric, that is, V; = TM and BxY = By X for X, Y € I'(T'M),

then we see that B has maximal rank if and only if rank(ImB) = in(n +1).

From now on, n always denote an element of I'(V;). We now formulate our
main result.

Theorem 2.2. If paRis = 0, B is semi-parallel and of mazximal rank, then
we have the following equations:

1 .
SxByn = m(Rch(X, Y)n+ Ry xn),
SxByn — Sy Bxn = —(tr(RR y)n + nRX y1n).
For n > 3, in addition, if D is torsion-free, then we have
1
1 _ - D _ RisD
Ry yn= T 1(R1c (X,Y) — Ric” (Y, X))n,

(Ric? (Y, X) 4+ nRic” (X, Y))n.

SXBYT/: n2 1

Proof. In this proof, we do not use Einstein’s convention. Let X1, X5, -+, X,
(resp. M1,7M2," - ,Mm,) be a basis of T,M (resp. Vi) and X' X2 ... X"
(resp. n',n?%,---,n™) its dual basis. From Lemma 2.1, we have
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(21) BXZSXJBana == BXJSXZBX]CTIQ + BR)’%ZV’XijnG + BXkR}(i,Xjna

for 1 < 4,5,k <n, 1 <a < my. Let b be an index, where 1 < b < mjy.
Comparing the coefficient of Bx,n, in the right hand side with that in the left
hand side in (2.1), we have

ﬁb(SXjBana) ‘ A
= X' (X;)n"(Sx, Bx,a) + X' (RR, x, Xi)n"(na) + X' (Xp)n" (R, x,7a).

Hence we obtain
Sx; Bx,la = 0:5x,Bx,na + X' (RY, x, Xi)1a + 6, R, x,a-
Summing up the index ¢, we have
nSx,Bx,na = Sx,Bx,na + Ric? (X;, Xp)na + RX, x,"la-
Thus we see that
(2.2) SxByn = %(RiCD(Xa Y)n + R%CXW)’
SxByn — Sy B = —— (RieP (X, )y = Ric” (¥, X)5 + 2R}, 7).

Comparing the coefficient of Bx, n;, in the right hand side with that in the left
hand side in (2.1), we have
(2.3) SxByn— SyBxn = —tr(R)%Y)n — anYn.
Thus we have the first assertion.

If n = 2, then we have Ric”(Y,X) — Ric”(X,Y) = trRY . Combining
(2.2) with (2.3) for n > 3, we have

1
——— Ric”(X,Y)n = Ric” (Y, X)n + 2Ry, x) = tr(RY y )0 + nR yn.
n —_— b b b
If D is torsion-free, then we have
(n+1)RX yn = Ric” (X, Y)n — Ric” (Y, X)n.

Hence we see that

(RicP(Y, X) 4+ nRic? (X,Y))n.

SxByn =
xXDyn n2_1 5

Corollary 2.3. If poRio = 0, B is semi-parallel, of mazimal rank and in
addition, p1Ri = 0, then we have

1 ) .
R}Qyﬂ = m(RICD(X, Y) — RicP (Y, X)),

(RicP (Y, X) 4+ nRic? (X,Y))n.

SXBYT/: TL2 1

Proof. From Gauss equation and (2.2), we see that
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Rk yn = SxByn — Sy Bx1
1
= m(RiCD(Xa Y)n — Ric”(Y, X)n + 2R}, xn).

In the case where V3 = T'M, we set
(RxyB)z == R} yBz - Bpy 7~ BzRk .

If RB = 0, we say that B is semi-parallel. The following theorem specializes
to Theorem 2.2 if B is symmetric.

Theorem 2.4. We assume that B is symmetric. If paRis = 0, B is semi-
parallel and of maximal rank, then we have the following equations:
nSXByZ
=tr(S.ByZ)X + Ric(X,Y)Z + R1Z7XY + Ric(X, 2)Y + R;XZ,
SxByZ + tl“(SxB.Z)Y
= Sy BxZ + tr(Sy BZ)X +tr(Ry, x)Z + (n + 2)Ry x Z,
where tr(S.By Z) = trace{X +— Sx By Z}, tr(Sy B.Z) = trace{X — SyBxZ}.
For n > 3, in addition, if V! is torsion-free, then we have
Ric is symmetric,
1 . .
RxyZ = m(Rlc(y, Z)X — Ric(X,Z)Y).
Proof. We can now proceed analogously to the proof of Theorem 2.2. Let

X1,Xs, -+, X, be a basis of T,M and X! X2 ... X" its dual basis. From
Lemma 2.1, we have

(2.4) BXiSXjBXle = BXjSXiBXle + (BRﬁ(i,XijXl + BXkRﬁfi,Xle)

for 1 < 14,5,k,1 < n. Let s be an index, where 1 < s < n. Comparing the
coefficient of Bx, X, in the right hand side with that in the left hand side in
(2.4), we have
XS(SXjBXle) +X5(Xi)Xi(SXjBXkXZ) ]
= X"(X;)X*(Sx, Bx, Xi)+X*(X;) X" (Sx, Bx, X0) + X' (R, x, Xi)X*(X1)
+XS(R§(i7Xij)Xi(XZ)+Xi(R}(i’X]_Xl)XS(Xk)+XS(R§Q7XJ_X1)XZ'(X;€).
Hence we obtain
Sx; Bxi X | |
= —XZ(SXjBXle)XZ’ + 5;'SX,~BXle + XZ(SXiBXle)Xj
+X'(RY, x, Xp) X1+ 0[RY, x, Xk + X'(RY, x, X)) Xp + 0} Ry, v, X1.
Summing up the index ¢, we have

nSX].BXle
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= tI‘(S.BXle)Xj + RiC(Xj, Xk)Xl + R%(l,Xij + RiC(Xj, Xl)Xk
—I—R%(IWXJ_XZ.

Thus we have
(2.5) nSxByZ

=tr(S.ByZ)X + Ric(X,Y)Z + R127XY + Ric(X, 2)Y + R;XZ.
Comparing the coefficient of Bx, X, in the right hand side with that in the
left hand side in (2.4), we have
(2.6) SxByZ+tr(SxB.Z2)Y

= Sy BxZ + tr(Sy BZ)X +tr(Ry, x)Z + (n+ 2)Ry x Z.
Thus we have the first assertion.

The trace of (2.6) by X (resp. Z) are the following:
(2.7) tr(S.By Z) = ntr(SyB.Z) — (n + 3)Ric(Y, Z) + Ric(Z,Y),
tl"(S)(By~) = tI‘(SyBx-) + (n + 1)tr(R%/’X).
Now we assume that V! is torsion-free. Since S.ByZ = S.B;Y, we have
n(tr(SyB.Z) —tr(SzB.Y)) = —(n + 4)(Ric(Z,Y) — Ric(Y, Z))
= —n(n+ 1)tr(Ry, ;) = —n(n + 1)(Ric(Z,Y) — Ric(Y, Z)).
If n = 2, then the previous equation is trivial. If n > 3, then we see that
Ric is symmetric. We consider the case n > 3. By using (2.5)—(2.7) and first
Bianchi identity, we have the following equations:
n(SxByZ — SyBXz)
= (tr(S.ByZ) — Ric(Y, Z))X — (tr(S.BxZ) — Ric(X, 2))Y + SR%/XZ
= (ntr(SyB.Z)— (n+3)Ric(Y, 2)) X — (ntr(Sx B.Z) — (n+3)Ric(X, Z))Y
+3Ry x 7

=n(tr(Sy B.Z2)X — tr(SxB.Z)Y + (n+2)Ry x Z).

Thus we have

Ric(Y, Z)X — Ric(X,Z)Y = (n— 1)RY  Z.

We can now state the analogue of (0.1).

Corollary 2.5. We assume that B is symmetric. Forn > 3, ifpaRis =0, B
is semi-parallel, of maximal rank, V' is torsion-free and in addition, p1Ri = 0,
then we have

SxByZ = (Ric(X,Y)Z + Ric(X, Z)Y + 2Ric(Y, Z)X).

n—1
Proof. From Gauss equation and (2.5), we have

nRxyZ =n(SxByZ — Sy BxZ)
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= (tr(S.By Z) — Ric(Y, Z))X — (tx(S.Bx Z) — Ric(X, 2))Y + 3R, y Z.

By these equations and Theorem 2.4, we have

(n+3)Rb 7 = Z J_r ‘Z’(Ric(X, 2)Y — Ric(Y, Z)X)

= (=tx(S.By Z) + Ric(Y, Z))X — (—tx(S.Bx Z) + Ric(X, 2))Y..

Hence we obtain

2(n+1)

tr(S. By Z) = Ric(Y, Z).

Substituting this equation to (2.5), we have the assertion. a
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