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Abstract. We study a subbundle with semi-parallel fundamental form. In
particular, if the rank of the fundamental form is maximal, we can obtain a cer-
tain equation which plays an essential role to classify parallel affine immersions

into R
n+ 1

2 n(n+1).
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§0. Introduction

In Riemannian geometry, many researchers have studied submanifolds with
parallel second fundamental form. In particular, Ferus [5] classified subman-
ifolds of the Euclidean space with parallel second fundamental forms. These
submanifolds are often called parallel submanifolds. Moreover, semi-parallel
submanifolds which is a generalization of parallel submanifolds, have been also
studied in [3] and [4], for example. In affine differential geometry, Vrancken [9]
classified linearly full affine immersions from an n-dimensional manifold M to
an affine space R

n+ 1
2
n(n+1) with parallel affine fundamental form, where the

following equation plays an essential role:

(0.1) SZBXY =
1

n − 1
(Ric(X, Z)Y + Ric(Y, Z)X + 2Ric(X, Y )Z),

where S is the shape operator, B is the affine fundamental form and Ric is
the Ricci tensor of the induced connection.

Our main purpose is to prove equations including (0.1) for the case of a
decomposition of a vector bundle with connection, which can be regarded as a
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generalization of affine immersions, see [2], [6], for example. Let V = V1 ⊕ V2

be a decomposition with connection ∇ on V , ∇1 (resp. ∇2) the induced
connection on V1 (resp. V2) and B the fundamental form. If R̂B = 0, where
R̂ is the curvature operator defined by ∇1, ∇2, and a connection D on TM ,
we say that B is semi-parallel. If the dimension of Span{BXη|X ∈ TxM, η ∈
V1x} is maximal for every x ∈ M , B is said to be of maximal rank. Under
the condition that the fundamental form B is semi-parallel and of maximal
rank, we obtain equations including (0.1). In particular, our proof of (0.1) is
relatively shorter than that in [9].

§1. Preliminaries

We assume that all objects are smooth and all vector bundles are real
throughout this paper. Let M be an n-dimensional (n ≥ 2) manifold. Let
V, W be vector bundles over M , Γ(V ) the space of cross-section of V and
C(V ) the set of covariant derivatives of connections on V . Let Hom(V, W )
be the vector bundle of which fiber Hom(V, W )x at x ∈ M is the vector
space Hom(Vx, Wx) of linear maps from Vx to Wx. The space of vector bun-
dle homomorphisms from V to W is denoted by HOM(V, W ). We note that
HOM(V, W ) can be canonically identified with the space Γ(Hom(V, W )). For
non-negative integer r, we denote the space of V -valued r-forms on M by
Ar(V ) and Ar := Ar(M × R).

Let V1 be a subbundle of V and i : V1 → V the inclusion. If a subbundle V2

of V satisfies V1 ⊕ V2 = V (direct sum), then we say that V2 is the transversal
bundle with respect to V1. Take a transversal bundle V2. We set i2 : V2 → V
the inclusion and pj : V → Vj the projection homomorphism for j = 1, 2. We
note that ip1 + i2p2 = idV . Let ∇ ∈ C(V ) be a connection on V . We set
∇1 := p1∇i, where p1∇i is defined by (p1∇i)X := p1 ◦∇X ◦ i for X ∈ Γ(TM).
Similarly, we set ∇2 := p2∇i2, B := p2∇i and S := −p1∇i2. We call ∇1

the induced connection on V1, ∇2 the transversal connection on V2, B the
fundamental form and S the shape tensor. Since p1i = idV1 , p2i = 0, p2i2 =
idV2 and p1i2 = 0, we have

Lemma 1.1. For ∇1, B,∇2 and S, we obtain

∇1 ∈ C(V1), B ∈ A1(Hom(V1, V2)), ∇2 ∈ C(V2) and S ∈ A1(Hom(V2, V1)).

Let R (resp. R1, R2) be the curvature form of ∇ (resp. ∇1,∇2).

Lemma 1.2. We have the fundamental equations as follows:

Gauss: p1RX,Y i = R1
X,Y − SXBY + SY BX ;

Codazzi for B: p2RX,Y i = BX∇1
Y − BY ∇1

X −∇2
Y BX + ∇2

XBY − B[X,Y ];
Codazzi for S: p1RX,Y i2 = ∇1

Y SX −∇1
XSY − SX∇2

Y + SY ∇2
X + S[X,Y ];
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Ricci: p2RX,Y i2 = R2
X,Y − BXSY + BY SX ,

for X, Y ∈ Γ(TM).

We apply these notions to affine immersions. Let M̃ be an (n+q)-dimensional
manifold and f : M → M̃ an immersion. We denote the pull-back bundle
through f of TM̃ by T̃ := f#(TM̃), the bundle map by f# : T̃ → TM̃ and
its restriction to the fiber by f#x for x ∈ M . We define a linear mapping
ιx : TxM → T̃x by ιx := (f#x)−1f∗x for each x ∈ M , where f∗x : TxM →
Tf(x)M̃ is the differential of f at x. Thus we define a bundle homomorphism
ι : TM → T̃ by ι|TxM := ιx and obtain the isomorphism ι̃ : TM → ι(TM).
We identify ι(TM) with TM through ι̃. Let N be a subbundle of T̃ such that
T ⊕ N = T̃ , where we set T := TM(= ι(TM)). For D̃ ∈ C(TM̃), there exists
the pull-back connection f#D̃ which is denoted by ∇ ∈ C(T̃ ). Then we have

∇T := p1∇i1 ∈ C(T ), ∇N := p2∇i2 ∈ C(N),
B := p2∇i1 ∈ A1(Hom(T, N)) and S := −p1∇i2 ∈ A1(Hom(N, T )).

We call (f, N) the affine immersion from (M,∇T ) to (M̃, D̃), ∇T the induced
connection, ∇N the transversal connection, B the affine fundamental form
and S the shape tensor.

§2. Semi-parallel fundamental form

From now on, X, Y, Z always denote elements of Γ(TM). Let ∇ ∈ C(V ) be
a connection on V and D ∈ C(TM) a connection on TM . We set

(∇̂XB)Y := ∇2
XBY − BDXY − BY ∇1

X ,

and

(R̂X,Y B)Z := R2
X,Y BZ − BRD

X,Y Z − BZR1
X,Y ,

where RD is the curvature form of D.

Definition 2.1. If ∇̂B = 0 (resp. R̂B = 0), we say that B is parallel (resp.
semi-parallel).

If D is torsion-free, then we obtain the following equations by a straightfor-
ward calculation:

(R̂X,Y B)Z

= ∇2
X(∇̂Y B)Z − (∇̂DXY B)Z − (∇̂Y B)DXZ − (∇̂Y B)Z∇1

X

−∇2
Y (∇̂XB)Z + (∇̂DY XB)Z + (∇̂XB)DY Z + (∇̂XB)Z∇1

Y

= (∇̂X(∇̂Y B))Z − (∇̂Y (∇̂XB))Z − (∇̂[X,Y ]B)Z .

Thus we see that if D is torsion-free and B is parallel, then B is semi-parallel.
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By Ricci equation, we have

Lemma 2.1. If p2Ri2 = 0 and B is semi-parallel, then we have the following:

BXSY BZη − BY SXBZη = BRD
X,Y Zη + BZR1

X,Y η,

where η ∈ Γ(V1).

We denote the Ricci tensor of RD by RicD, i.e.,

RicD(Y, Z) := trace{X �→ RD
X,Y Z}.

By using first Bianchi identity, if D is torsion-free, then we obtain

tr(RD
X,Y ) = RicD(Y, X) − RicD(X, Y ).

We note that there exists a local parallel volume element on V (resp. V1)
if and only if trR = 0 (resp. trR1 = 0). If V1 = TM and ∇1 is torsion-free,
then we see that there exists a local parallel volume element on V1 if and only
if Ric is symmetric, where Ric is the Ricci tensor of R1.

We set m1 := rankV1, m = rankV and m2 := m − m1 = rankV2. Let ImBx

be a subspace of V2x defined by ImBx := Span{BXη|X ∈ TxM, η ∈ V1x} at
x ∈ M . We denote

⋃
x∈M ImBx by ImB.

Definition 2.2. If dim(ImBx) is maximal for every x ∈ M , the fundamental
form B is said to be of maximal rank.

We see that B has maximal rank if and only if rank(ImB) = nm1. In the case
where B is symmetric, that is, V1 = TM and BXY = BY X for X, Y ∈ Γ(TM),

then we see that B has maximal rank if and only if rank(ImB) =
1
2
n(n + 1).

From now on, η always denote an element of Γ(V1). We now formulate our
main result.

Theorem 2.2. If p2Ri2 = 0, B is semi-parallel and of maximal rank, then
we have the following equations:

SXBY η =
1

n − 1
(RicD(X, Y )η + R1

Y,Xη),

SXBY η − SY BXη = −(tr(RD
X,Y )η + nR1

X,Y η).

For n ≥ 3, in addition, if D is torsion-free, then we have

R1
X,Y η =

1
n + 1

(RicD(X, Y ) − RicD(Y, X))η,

SXBY η =
1

n2 − 1
(RicD(Y, X) + nRicD(X, Y ))η.

Proof. In this proof, we do not use Einstein’s convention. Let X1, X2, · · · , Xn

(resp. η1, η2, · · · , ηm1) be a basis of TxM (resp. V1x) and X1, X2, · · · , Xn

(resp. η1, η2, · · · , ηm1) its dual basis. From Lemma 2.1, we have
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(2.1) BXiSXjBXk
ηa = BXjSXiBXk

ηa + BRD
Xi,Xj

Xk
ηa + BXk

R1
Xi,Xj

ηa

for 1 ≤ i, j, k ≤ n, 1 ≤ a ≤ m1. Let b be an index, where 1 ≤ b ≤ m1.
Comparing the coefficient of BXiηb in the right hand side with that in the left
hand side in (2.1), we have

ηb(SXjBXk
ηa)

= Xi(Xj)ηb(SXiBXk
ηa) + Xi(RD

Xi,Xj
Xk)ηb(ηa) + Xi(Xk)ηb(R1

Xi,Xj
ηa).

Hence we obtain

SXjBXk
ηa = δi

jSXiBXk
ηa + Xi(RD

Xi,Xj
Xk)ηa + δi

kR
1
Xi,Xj

ηa.

Summing up the index i, we have

nSXjBXk
ηa = SXjBXk

ηa + RicD(Xj , Xk)ηa + R1
Xk,Xj

ηa.

Thus we see that

(2.2) SXBY η =
1

n − 1
(RicD(X, Y )η + R1

Y,Xη),

SXBY η − SY BXη =
1

n − 1
(RicD(X, Y )η − RicD(Y, X)η + 2R1

Y,Xη).

Comparing the coefficient of BXk
ηb in the right hand side with that in the left

hand side in (2.1), we have

(2.3) SXBY η − SY BXη = −tr(RD
X,Y )η − nR1

X,Y η.

Thus we have the first assertion.
If n = 2, then we have RicD(Y, X) − RicD(X, Y ) = trRD

X,Y . Combining
(2.2) with (2.3) for n ≥ 3, we have

− 1
n − 1

(RicD(X, Y )η − RicD(Y, X)η + 2R1
Y,Xη) = tr(RD

X,Y )η + nR1
X,Y η.

If D is torsion-free, then we have

(n + 1)R1
X,Y η = RicD(X, Y )η − RicD(Y, X)η.

Hence we see that

SXBY η =
1

n2 − 1
(RicD(Y, X) + nRicD(X, Y ))η.

�

Corollary 2.3. If p2Ri2 = 0, B is semi-parallel, of maximal rank and in
addition, p1Ri = 0, then we have

R1
X,Y η =

1
n + 1

(RicD(X, Y ) − RicD(Y, X))η,

SXBY η =
1

n2 − 1
(RicD(Y, X) + nRicD(X, Y ))η.

Proof. From Gauss equation and (2.2), we see that
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R1
X,Y η = SXBY η − SY BXη

=
1

n − 1
(RicD(X, Y )η − RicD(Y, X)η + 2R1

Y,Xη).
�

In the case where V1 = TM , we set

(R̂X,Y B)Z := R2
X,Y BZ − BR1

X,Y Z − BZR1
X,Y .

If R̂B = 0, we say that B is semi-parallel. The following theorem specializes
to Theorem 2.2 if B is symmetric.

Theorem 2.4. We assume that B is symmetric. If p2Ri2 = 0, B is semi-
parallel and of maximal rank, then we have the following equations:

nSXBY Z

= tr(S·BY Z)X + Ric(X, Y )Z + R1
Z,XY + Ric(X, Z)Y + R1

Y,XZ,
SXBY Z + tr(SXB·Z)Y

= SY BXZ + tr(SY B·Z)X + tr(R1
Y,X)Z + (n + 2)R1

Y,XZ,

where tr(S·BY Z) = trace{X �→ SXBY Z}, tr(SY B·Z) = trace{X �→ SY BXZ}.
For n ≥ 3, in addition, if ∇1 is torsion-free, then we have

Ric is symmetric,

R1
X,Y Z =

1
n − 1

(Ric(Y, Z)X − Ric(X, Z)Y ).

Proof. We can now proceed analogously to the proof of Theorem 2.2. Let
X1, X2, · · · , Xn be a basis of TxM and X1, X2, · · · , Xn its dual basis. From
Lemma 2.1, we have

(2.4) BXiSXjBXk
Xl = BXjSXiBXk

Xl + (BR1
Xi,Xj

Xk
Xl + BXk

R1
Xi,Xj

Xl)

for 1 ≤ i, j, k, l ≤ n. Let s be an index, where 1 ≤ s ≤ n. Comparing the
coefficient of BXiXs in the right hand side with that in the left hand side in
(2.4), we have

Xs(SXjBXk
Xl) + Xs(Xi)Xi(SXjBXk

Xl)
= Xi(Xj)Xs(SXiBXk

Xl)+Xs(Xj)Xi(SXiBXk
Xl)+Xi(R1

Xi,Xj
Xk)Xs(Xl)

+Xs(R1
Xi,Xj

Xk)Xi(Xl)+Xi(R1
Xi,Xj

Xl)Xs(Xk)+Xs(R1
Xi,Xj

Xl)Xi(Xk).

Hence we obtain

SXjBXk
Xl

= −Xi(SXjBXk
Xl)Xi + δi

jSXiBXk
Xl + Xi(SXiBXk

Xl)Xj

+Xi(R1
Xi,Xj

Xk)Xl + δi
lR

1
Xi,Xj

Xk + Xi(R1
Xi,Xj

Xl)Xk + δi
kR

1
Xi,Xj

Xl.

Summing up the index i, we have

nSXjBXk
Xl
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= tr(S·BXk
Xl)Xj + Ric(Xj , Xk)Xl + R1

Xl,Xj
Xk + Ric(Xj , Xl)Xk

+R1
Xk,Xj

Xl.

Thus we have

(2.5) nSXBY Z
= tr(S·BY Z)X + Ric(X, Y )Z + R1

Z,XY + Ric(X, Z)Y + R1
Y,XZ.

Comparing the coefficient of BXk
Xs in the right hand side with that in the

left hand side in (2.4), we have

(2.6) SXBY Z + tr(SXB·Z)Y
= SY BXZ + tr(SY B·Z)X + tr(R1

Y,X)Z + (n + 2)R1
Y,XZ.

Thus we have the first assertion.
The trace of (2.6) by X (resp. Z) are the following:

(2.7) tr(S·BY Z) = ntr(SY B·Z) − (n + 3)Ric(Y, Z) + Ric(Z, Y ),
tr(SXBY ·) = tr(SY BX ·) + (n + 1)tr(R1

Y,X).

Now we assume that ∇1 is torsion-free. Since S·BY Z = S·BZY , we have

n(tr(SY B·Z) − tr(SZB·Y )) = −(n + 4)(Ric(Z, Y ) − Ric(Y, Z))
= −n(n + 1)tr(R1

Y,Z) = −n(n + 1)(Ric(Z, Y ) − Ric(Y, Z)).

If n = 2, then the previous equation is trivial. If n ≥ 3, then we see that
Ric is symmetric. We consider the case n ≥ 3. By using (2.5)–(2.7) and first
Bianchi identity, we have the following equations:

n(SXBY Z − SY BXZ)
= (tr(S·BY Z) − Ric(Y, Z))X − (tr(S·BXZ) − Ric(X, Z))Y + 3R1

Y,XZ
= (ntr(SY B·Z)−(n+3)Ric(Y, Z))X−(ntr(SXB·Z)−(n+3)Ric(X, Z))Y
+3R1

Y,XZ

= n(tr(SY B·Z)X − tr(SXB·Z)Y + (n + 2)R1
Y,XZ).

Thus we have

Ric(Y, Z)X − Ric(X, Z)Y = (n − 1)R1
X,Y Z.

�

We can now state the analogue of (0.1).

Corollary 2.5. We assume that B is symmetric. For n ≥ 3, if p2Ri2 = 0, B
is semi-parallel, of maximal rank, ∇1 is torsion-free and in addition, p1Ri = 0,
then we have

SXBY Z =
1

n − 1
(Ric(X, Y )Z + Ric(X, Z)Y + 2Ric(Y, Z)X).

Proof. From Gauss equation and (2.5), we have

nR1
X,Y Z = n(SXBY Z − SY BXZ)
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= (tr(S·BY Z) − Ric(Y, Z))X − (tr(S·BXZ) − Ric(X, Z))Y + 3R1
Y,XZ.

By these equations and Theorem 2.4, we have

(n + 3)R1
Y,XZ =

n + 3
n − 1

(Ric(X, Z)Y − Ric(Y, Z)X)

= (−tr(S·BY Z) + Ric(Y, Z))X − (−tr(S·BXZ) + Ric(X, Z))Y .

Hence we obtain

tr(S·BY Z) =
2(n + 1)
n − 1

Ric(Y, Z).

Substituting this equation to (2.5), we have the assertion. �
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