A semi-parallel fundamental form of maximal rank for a decomposition of a vector bundle with connection

Ryuji Ishii

(Received October 10, 2006)

Abstract. We study a subbundle with semi-parallel fundamental form. In particular, if the rank of the fundamental form is maximal, we can obtain a certain equation which plays an essential role to classify parallel affine immersions into $\mathbb{R}^{n+\frac{1}{2}n(n+1)}$.

AMS 2000 Mathematics Subject Classification. 53A15.

Key words and phrases. Decomposition of vector bundle with connection, affine immersion, semi-parallel fundamental form, maximal rank, Ricci tensor.

§0. Introduction

In Riemannian geometry, many researchers have studied submanifolds with parallel second fundamental form. In particular, Ferus [5] classified submanifolds of the Euclidean space with parallel second fundamental forms. These submanifolds are often called parallel submanifolds. Moreover, semi-parallel submanifolds which is a generalization of parallel submanifolds, have been also studied in [3] and [4], for example. In affine differential geometry, Vrancken [9] classified linearly full affine immersions from an n-dimensional manifold M to an affine space $\mathbb{R}^{n+\frac{1}{2}n(n+1)}$ with parallel affine fundamental form, where the following equation plays an essential role:

$$(0.1) S_Z B_X Y = \frac{1}{n-1} (\operatorname{Ric}(X, Z) Y + \operatorname{Ric}(Y, Z) X + 2\operatorname{Ric}(X, Y) Z),$$

where S is the shape operator, B is the affine fundamental form and Ric is the Ricci tensor of the induced connection.

Our main purpose is to prove equations including (0.1) for the case of a decomposition of a vector bundle with connection, which can be regarded as a

generalization of affine immersions, see [2], [6], for example. Let $V = V_1 \oplus V_2$ be a decomposition with connection ∇ on V, ∇^1 (resp. ∇^2) the induced connection on V_1 (resp. V_2) and B the fundamental form. If $\hat{R}B = 0$, where \hat{R} is the curvature operator defined by ∇^1 , ∇^2 , and a connection D on TM, we say that B is semi-parallel. If the dimension of $\text{Span}\{B_X\eta|X\in T_xM,\eta\in V_{1x}\}$ is maximal for every $x\in M$, B is said to be of maximal rank. Under the condition that the fundamental form B is semi-parallel and of maximal rank, we obtain equations including (0.1). In particular, our proof of (0.1) is relatively shorter than that in [9].

§1. Preliminaries

We assume that all objects are smooth and all vector bundles are real throughout this paper. Let M be an n-dimensional ($n \geq 2$) manifold. Let V, W be vector bundles over M, $\Gamma(V)$ the space of cross-section of V and $\mathfrak{C}(V)$ the set of covariant derivatives of connections on V. Let $\operatorname{Hom}(V, W)$ be the vector bundle of which fiber $\operatorname{Hom}(V, W)_x$ at $x \in M$ is the vector space $\operatorname{Hom}(V_x, W_x)$ of linear maps from V_x to W_x . The space of vector bundle homomorphisms from V to W is denoted by $\operatorname{HOM}(V, W)$. We note that $\operatorname{HOM}(V, W)$ can be canonically identified with the space $\Gamma(\operatorname{Hom}(V, W))$. For non-negative integer V, we denote the space of V-valued V-forms on V by V-valued V-forms on V-forms on V-valued V-forms on V-forms of V-forms on V-forms on V-forms on V-forms on V-forms on V-forms on V-forms of V-forms of V-forms on V-forms of V-forms on V-forms of V-forms of

Let V_1 be a subbundle of V and $i:V_1 \to V$ the inclusion. If a subbundle V_2 of V satisfies $V_1 \oplus V_2 = V$ (direct sum), then we say that V_2 is the transversal bundle with respect to V_1 . Take a transversal bundle V_2 . We set $i_2:V_2 \to V$ the inclusion and $p_j:V \to V_j$ the projection homomorphism for j=1,2. We note that $ip_1+i_2p_2=\mathrm{id}_V$. Let $\nabla \in \mathfrak{C}(V)$ be a connection on V. We set $\nabla^1:=p_1\nabla i$, where $p_1\nabla i$ is defined by $(p_1\nabla i)_X:=p_1\circ \nabla_X\circ i$ for $X\in \Gamma(TM)$. Similarly, we set $\nabla^2:=p_2\nabla i_2$, $B:=p_2\nabla i$ and $S:=-p_1\nabla i_2$. We call ∇^1 the induced connection on V_1 , ∇^2 the transversal connection on V_2 , D the fundamental form and D the shape tensor. Since D if D is D if D is D in D in D is D in D i

Lemma 1.1. For ∇^1 , B, ∇^2 and S, we obtain

$$\nabla^1 \in \mathfrak{C}(V_1), \ B \in A^1(\text{Hom}(V_1, V_2)), \ \nabla^2 \in \mathfrak{C}(V_2) \ \text{and} \ S \in A^1(\text{Hom}(V_2, V_1)).$$

Let R (resp. R^1, R^2) be the curvature form of ∇ (resp. ∇^1, ∇^2).

Lemma 1.2. We have the fundamental equations as follows:

$$\begin{array}{ll} \text{Gauss:} & p_1 R_{X,Y} i = R_{X,Y}^1 - S_X B_Y + S_Y B_X; \\ \text{Codazzi for } B \colon & p_2 R_{X,Y} i = B_X \nabla_Y^1 - B_Y \nabla_X^1 - \nabla_Y^2 B_X + \nabla_X^2 B_Y - B_{[X,Y]}; \\ \text{Codazzi for } S \colon & p_1 R_{X,Y} i_2 = \nabla_Y^1 S_X - \nabla_X^1 S_Y - S_X \nabla_Y^2 + S_Y \nabla_X^2 + S_{[X,Y]}; \\ \end{array}$$

Ricci:
$$p_2 R_{X,Y} i_2 = R_{X,Y}^2 - B_X S_Y + B_Y S_X$$
, for $X, Y \in \Gamma(TM)$.

We apply these notions to affine immersions. Let \tilde{M} be an (n+q)-dimensional manifold and $f: M \to \tilde{M}$ an immersion. We denote the pull-back bundle through f of $T\tilde{M}$ by $\tilde{T}:=f^{\#}(T\tilde{M})$, the bundle map by $f_{\#}:\tilde{T}\to T\tilde{M}$ and its restriction to the fiber by $f_{\#x}$ for $x\in M$. We define a linear mapping $\iota_x:T_xM\to \tilde{T}_x$ by $\iota_x:=(f_{\#x})^{-1}f_{*x}$ for each $x\in M$, where $f_{*x}:T_xM\to T_{f(x)}\tilde{M}$ is the differential of f at x. Thus we define a bundle homomorphism $\iota:TM\to \tilde{T}$ by $\iota|_{T_xM}:=\iota_x$ and obtain the isomorphism $\tilde{\iota}:TM\to\iota(TM)$. We identify $\iota(TM)$ with TM through $\tilde{\iota}$. Let N be a subbundle of \tilde{T} such that $T\oplus N=\tilde{T}$, where we set $T:=TM(=\iota(TM))$. For $\tilde{D}\in\mathfrak{C}(T\tilde{M})$, there exists the pull-back connection $f^{\#}\tilde{D}$ which is denoted by $\nabla\in\mathfrak{C}(\tilde{T})$. Then we have

$$\begin{split} \nabla^T := p_1 \nabla i_1 \in \mathfrak{C}(T), \ \nabla^N := p_2 \nabla i_2 \in \mathfrak{C}(N), \\ B := p_2 \nabla i_1 \in A^1(\mathrm{Hom}(T,N)) \ \text{and} \ S := -p_1 \nabla i_2 \in A^1(\mathrm{Hom}(N,T)). \end{split}$$

We call (f, N) the affine immersion from (M, ∇^T) to $(\tilde{M}, \tilde{D}), \nabla^T$ the induced connection, ∇^N the transversal connection, B the affine fundamental form and S the shape tensor.

§2. Semi-parallel fundamental form

From now on, X, Y, Z always denote elements of $\Gamma(TM)$. Let $\nabla \in \mathfrak{C}(V)$ be a connection on V and $D \in \mathfrak{C}(TM)$ a connection on TM. We set

$$(\hat{\nabla}_X B)_Y := \nabla_X^2 B_Y - B_{D_X Y} - B_Y \nabla_X^1,$$

and

$$(\hat{R}_{X,Y}B)_Z := R_{X,Y}^2 B_Z - B_{R_{X,Y}^D Z} - B_Z R_{X,Y}^1,$$

where R^D is the curvature form of D.

Definition 2.1. If $\hat{\nabla}B = 0$ (resp. $\hat{R}B = 0$), we say that B is parallel (resp. semi-parallel).

If D is torsion-free, then we obtain the following equations by a straightforward calculation:

$$\begin{split} &(\hat{R}_{X,Y}B)_Z\\ &=\nabla_X^2(\hat{\nabla}_YB)_Z-(\hat{\nabla}_{D_XY}B)_Z-(\hat{\nabla}_YB)_{D_XZ}-(\hat{\nabla}_YB)_Z\nabla_X^1\\ &-\nabla_Y^2(\hat{\nabla}_XB)_Z+(\hat{\nabla}_{D_YX}B)_Z+(\hat{\nabla}_XB)_{D_YZ}+(\hat{\nabla}_XB)_Z\nabla_Y^1\\ &=(\hat{\nabla}_X(\hat{\nabla}_YB))_Z-(\hat{\nabla}_Y(\hat{\nabla}_XB))_Z-(\hat{\nabla}_{[X,Y]}B)_Z. \end{split}$$

Thus we see that if D is torsion-free and B is parallel, then B is semi-parallel.

By Ricci equation, we have

Lemma 2.1. If $p_2Ri_2 = 0$ and B is semi-parallel, then we have the following:

$$B_X S_Y B_Z \eta - B_Y S_X B_Z \eta = B_{R_{X,Y}^D} \eta + B_Z R_{X,Y}^1 \eta,$$

where $\eta \in \Gamma(V_1)$.

We denote the Ricci tensor of R^D by Ric^D , i.e.,

$$\mathrm{Ric}^D(Y,Z) := \mathrm{trace}\{X \mapsto R^D_{X,Y}Z\}.$$

By using first Bianchi identity, if D is torsion-free, then we obtain

$$\operatorname{tr}(R_{X,Y}^D) = \operatorname{Ric}^D(Y,X) - \operatorname{Ric}^D(X,Y).$$

We note that there exists a local parallel volume element on V (resp. V_1) if and only if $\operatorname{tr} R = 0$ (resp. $\operatorname{tr} R^1 = 0$). If $V_1 = TM$ and ∇^1 is torsion-free, then we see that there exists a local parallel volume element on V_1 if and only if Ric is symmetric, where Ric is the Ricci tensor of R^1 .

We set $m_1 := \operatorname{rank} V_1$, $m = \operatorname{rank} V$ and $m_2 := m - m_1 = \operatorname{rank} V_2$. Let $\operatorname{Im} B_x$ be a subspace of V_{2x} defined by $\operatorname{Im} B_x := \operatorname{Span} \{B_X \eta | X \in T_x M, \ \eta \in V_{1x}\}$ at $x \in M$. We denote $\bigcup_{x \in M} \operatorname{Im} B_x$ by $\operatorname{Im} B$.

Definition 2.2. If $\dim(\operatorname{Im} B_x)$ is maximal for every $x \in M$, the fundamental form B is said to be of $maximal\ rank$.

We see that B has maximal rank if and only if $\operatorname{rank}(\operatorname{Im} B) = nm_1$. In the case where B is symmetric, that is, $V_1 = TM$ and $B_XY = B_YX$ for $X,Y \in \Gamma(TM)$, then we see that B has maximal rank if and only if $\operatorname{rank}(\operatorname{Im} B) = \frac{1}{2}n(n+1)$. From now on, η always denote an element of $\Gamma(V_1)$. We now formulate our main result.

Theorem 2.2. If $p_2Ri_2 = 0$, B is semi-parallel and of maximal rank, then we have the following equations:

$$S_X B_Y \eta = \frac{1}{n-1} (\text{Ric}^D(X, Y) \eta + R_{Y,X}^1 \eta),$$

$$S_X B_Y \eta - S_Y B_X \eta = -(\text{tr}(R_{X,Y}^D) \eta + n R_{X,Y}^1 \eta).$$

For $n \geq 3$, in addition, if D is torsion-free, then we have

$$R_{X,Y}^{1} \eta = \frac{1}{n+1} (\text{Ric}^{D}(X,Y) - \text{Ric}^{D}(Y,X)) \eta,$$

$$S_{X} B_{Y} \eta = \frac{1}{n^{2}-1} (\text{Ric}^{D}(Y,X) + n \text{Ric}^{D}(X,Y)) \eta.$$

Proof. In this proof, we do not use Einstein's convention. Let X_1, X_2, \dots, X_n (resp. $\eta_1, \eta_2, \dots, \eta_{m_1}$) be a basis of T_xM (resp. V_{1x}) and X^1, X^2, \dots, X^n (resp. $\eta^1, \eta^2, \dots, \eta^{m_1}$) its dual basis. From Lemma 2.1, we have

$$(2.1) B_{X_i} S_{X_j} B_{X_k} \eta_a = B_{X_j} S_{X_i} B_{X_k} \eta_a + B_{R_{X_i, X_i}} X_k \eta_a + B_{X_k} R_{X_i, X_j}^1 \eta_a$$

for $1 \leq i, j, k \leq n, \ 1 \leq a \leq m_1$. Let b be an index, where $1 \leq b \leq m_1$. Comparing the coefficient of $B_{X_i}\eta_b$ in the right hand side with that in the left hand side in (2.1), we have

$$\eta^{b}(S_{X_{j}}B_{X_{k}}\eta_{a}) = X^{i}(X_{j})\eta^{b}(S_{X_{i}}B_{X_{k}}\eta_{a}) + X^{i}(R_{X_{i},X_{j}}^{D}X_{k})\eta^{b}(\eta_{a}) + X^{i}(X_{k})\eta^{b}(R_{X_{i},X_{j}}^{1}\eta_{a}).$$

Hence we obtain

$$S_{X_j} B_{X_k} \eta_a = \delta_j^i S_{X_i} B_{X_k} \eta_a + X^i (R_{X_i, X_j}^D X_k) \eta_a + \delta_k^i R_{X_i, X_j}^1 \eta_a.$$

Summing up the index i, we have

$$nS_{X_j}B_{X_k}\eta_a = S_{X_j}B_{X_k}\eta_a + \operatorname{Ric}^D(X_j, X_k)\eta_a + R^1_{X_k, X_j}\eta_a.$$

Thus we see that

(2.2)
$$S_X B_Y \eta = \frac{1}{n-1} (\operatorname{Ric}^D(X, Y) \eta + R_{Y,X}^1 \eta),$$
$$S_X B_Y \eta - S_Y B_X \eta = \frac{1}{n-1} (\operatorname{Ric}^D(X, Y) \eta - \operatorname{Ric}^D(Y, X) \eta + 2R_{Y,X}^1 \eta).$$

Comparing the coefficient of $B_{X_k}\eta_b$ in the right hand side with that in the left hand side in (2.1), we have

(2.3)
$$S_X B_Y \eta - S_Y B_X \eta = -\text{tr}(R_{XY}^D) \eta - n R_{XY}^1 \eta.$$

Thus we have the first assertion.

If n=2, then we have $\operatorname{Ric}^D(Y,X)-\operatorname{Ric}^D(X,Y)=\operatorname{tr} R_{X,Y}^D$. Combining (2.2) with (2.3) for $n \geq 3$, we have

$$-\frac{1}{n-1}(\operatorname{Ric}^D(X,Y)\eta-\operatorname{Ric}^D(Y,X)\eta+2R_{Y,X}^1\eta)=\operatorname{tr}(R_{X,Y}^D)\eta+nR_{X,Y}^1\eta.$$

If D is torsion-free, then we have

$$(n+1)R_{X,Y}^1\eta=\mathrm{Ric}^D(X,Y)\eta-\mathrm{Ric}^D(Y,X)\eta.$$

Hence we see that

$$S_X B_Y \eta = \frac{1}{n^2 - 1} (\operatorname{Ric}^D(Y, X) + n \operatorname{Ric}^D(X, Y)) \eta.$$

Corollary 2.3. If $p_2Ri_2 = 0$, B is semi-parallel, of maximal rank and in addition, $p_1Ri = 0$, then we have

$$R_{X,Y}^1 \eta = \frac{1}{n+1} (\operatorname{Ric}^D(X,Y) - \operatorname{Ric}^D(Y,X)) \eta,$$

$$S_X B_Y \eta = \frac{1}{n^2 - 1} (\operatorname{Ric}^D(Y,X) + n \operatorname{Ric}^D(X,Y)) \eta.$$

From Gauss equation and (2.2), we see that

$$R_{X,Y}^1 \eta = S_X B_Y \eta - S_Y B_X \eta$$

$$= \frac{1}{n-1} (\operatorname{Ric}^D(X,Y) \eta - \operatorname{Ric}^D(Y,X) \eta + 2R_{Y,X}^1 \eta).$$

In the case where $V_1 = TM$, we set

$$(\hat{R}_{X,Y}B)_Z := R_{X,Y}^2 B_Z - B_{R_{X,Y}^1 Z} - B_Z R_{X,Y}^1.$$

If $\hat{R}B = 0$, we say that B is semi-parallel. The following theorem specializes to Theorem 2.2 if B is symmetric.

Theorem 2.4. We assume that B is symmetric. If $p_2Ri_2 = 0$, B is semi-parallel and of maximal rank, then we have the following equations:

$$\begin{split} nS_X B_Y Z &= \operatorname{tr}(S.B_Y Z) X + \operatorname{Ric}(X,Y) Z + R_{Z,X}^1 Y + \operatorname{Ric}(X,Z) Y + R_{Y,X}^1 Z, \\ S_X B_Y Z + \operatorname{tr}(S_X B.Z) Y &= S_Y B_X Z + \operatorname{tr}(S_Y B.Z) X + \operatorname{tr}(R_{Y,X}^1) Z + (n+2) R_{Y,X}^1 Z, \end{split}$$

where $\operatorname{tr}(S.B_YZ) = \operatorname{trace}\{X \mapsto S_XB_YZ\}$, $\operatorname{tr}(S_YB.Z) = \operatorname{trace}\{X \mapsto S_YB_XZ\}$. For $n \geq 3$, in addition, if ∇^1 is torsion-free, then we have

$$R_{X,Y}^{1}Z = \frac{1}{n-1}(\operatorname{Ric}(Y,Z)X - \operatorname{Ric}(X,Z)Y).$$

Proof. We can now proceed analogously to the proof of Theorem 2.2. Let X_1, X_2, \dots, X_n be a basis of T_xM and X^1, X^2, \dots, X^n its dual basis. From Lemma 2.1, we have

$$(2.4) \quad B_{X_i} S_{X_j} B_{X_k} X_l = B_{X_j} S_{X_i} B_{X_k} X_l + (B_{R_{X_i,X_i}^1 X_k} X_l + B_{X_k} R_{X_i,X_j}^1 X_l)$$

for $1 \leq i, j, k, l \leq n$. Let s be an index, where $1 \leq s \leq n$. Comparing the coefficient of $B_{X_i}X_s$ in the right hand side with that in the left hand side in (2.4), we have

$$\begin{split} X^s(S_{X_j}B_{X_k}X_l) + X^s(X_i)X^i(S_{X_j}B_{X_k}X_l) \\ &= X^i(X_j)X^s(S_{X_i}B_{X_k}X_l) + X^s(X_j)X^i(S_{X_i}B_{X_k}X_l) + X^i(R^1_{X_i,X_j}X_k)X^s(X_l) \\ &+ X^s(R^1_{X_i,X_j}X_k)X^i(X_l) + X^i(R^1_{X_i,X_j}X_l)X^s(X_k) + X^s(R^1_{X_i,X_j}X_l)X^i(X_k). \end{split}$$

Hence we obtain

$$\begin{split} S_{X_j} B_{X_k} X_l \\ &= -X^i (S_{X_j} B_{X_k} X_l) X_i + \delta^i_j S_{X_i} B_{X_k} X_l + X^i (S_{X_i} B_{X_k} X_l) X_j \\ &+ X^i (R^1_{X_i, X_i} X_k) X_l + \delta^i_l R^1_{X_i, X_i} X_k + X^i (R^1_{X_i, X_i} X_l) X_k + \delta^i_k R^1_{X_i, X_i} X_l. \end{split}$$

Summing up the index i, we have

$$nS_{X_i}B_{X_k}X_l$$

$$= \operatorname{tr}(S.B_{X_k}X_l)X_j + \operatorname{Ric}(X_j, X_k)X_l + R_{X_l, X_j}^1 X_k + \operatorname{Ric}(X_j, X_l)X_k + R_{X_k, X_j}^1 X_l.$$

Thus we have

(2.5)
$$nS_X B_Y Z$$

= $\operatorname{tr}(S.B_Y Z)X + \operatorname{Ric}(X, Y)Z + R_{Z,X}^1 Y + \operatorname{Ric}(X, Z)Y + R_{Y,X}^1 Z.$

Comparing the coefficient of $B_{X_k}X_s$ in the right hand side with that in the left hand side in (2.4), we have

(2.6)
$$S_X B_Y Z + \operatorname{tr}(S_X B. Z) Y$$

= $S_Y B_X Z + \operatorname{tr}(S_Y B. Z) X + \operatorname{tr}(R_{YX}^1) Z + (n+2) R_{YX}^1 Z$.

Thus we have the first assertion.

The trace of (2.6) by X (resp. Z) are the following:

(2.7)
$$\operatorname{tr}(S.B_YZ) = n\operatorname{tr}(S_YB.Z) - (n+3)\operatorname{Ric}(Y,Z) + \operatorname{Ric}(Z,Y), \\ \operatorname{tr}(S_XB_Y\cdot) = \operatorname{tr}(S_YB_X\cdot) + (n+1)\operatorname{tr}(R_{YX}^1).$$

Now we assume that ∇^1 is torsion-free. Since $S.B_YZ = S.B_ZY$, we have

$$n(\operatorname{tr}(S_Y B.Z) - \operatorname{tr}(S_Z B.Y)) = -(n+4)(\operatorname{Ric}(Z,Y) - \operatorname{Ric}(Y,Z))$$

= $-n(n+1)\operatorname{tr}(R^1_{YZ}) = -n(n+1)(\operatorname{Ric}(Z,Y) - \operatorname{Ric}(Y,Z)).$

If n=2, then the previous equation is trivial. If $n\geq 3$, then we see that Ric is symmetric. We consider the case $n\geq 3$. By using (2.5)–(2.7) and first Bianchi identity, we have the following equations:

$$n(S_X B_Y Z - S_Y B_X Z)$$
= $(\text{tr}(S.B_Y Z) - \text{Ric}(Y, Z))X - (\text{tr}(S.B_X Z) - \text{Ric}(X, Z))Y + 3R_{Y,X}^1 Z$
= $(\text{ntr}(S_Y B.Z) - (n+3)\text{Ric}(Y, Z))X - (\text{ntr}(S_X B.Z) - (n+3)\text{Ric}(X, Z))Y$
 $+3R_{Y,X}^1 Z$
= $n(\text{tr}(S_Y B.Z)X - \text{tr}(S_X B.Z)Y + (n+2)R_{Y,X}^1 Z)$.

Thus we have

$$\operatorname{Ric}(Y, Z)X - \operatorname{Ric}(X, Z)Y = (n-1)R_{X,Y}^1 Z.$$

We can now state the analogue of (0.1).

Corollary 2.5. We assume that B is symmetric. For $n \geq 3$, if $p_2Ri_2 = 0$, B is semi-parallel, of maximal rank, ∇^1 is torsion-free and in addition, $p_1Ri = 0$, then we have

$$S_X B_Y Z = \frac{1}{n-1} (\operatorname{Ric}(X, Y) Z + \operatorname{Ric}(X, Z) Y + 2\operatorname{Ric}(Y, Z) X).$$

Proof. From Gauss equation and (2.5), we have

$$nR_{X,Y}^1 Z = n(S_X B_Y Z - S_Y B_X Z)$$

$$= (\operatorname{tr}(S.B_Y Z) - \operatorname{Ric}(Y, Z))X - (\operatorname{tr}(S.B_X Z) - \operatorname{Ric}(X, Z))Y + 3R_{YX}^1 Z.$$

By these equations and Theorem 2.4, we have

$$(n+3)R_{Y,X}^{1}Z = \frac{n+3}{n-1}(\text{Ric}(X,Z)Y - \text{Ric}(Y,Z)X)$$

= $(-\text{tr}(S.B_{Y}Z) + \text{Ric}(Y,Z))X - (-\text{tr}(S.B_{X}Z) + \text{Ric}(X,Z))Y.$

Hence we obtain

$$\operatorname{tr}(S.B_Y Z) = \frac{2(n+1)}{n-1} \operatorname{Ric}(Y, Z).$$

Substituting this equation to (2.5), we have the assertion.

References

- [1] Abe, N., Geometry of certain first order differential operators and its applications to general connections, Kodai Math. J. 8(1985), 322-329.
- [2] Abe, N. and Kurosu, S., A decomposition of a holomorphic vector bundle with connection and its applications to complex affine immersions, Results in Math. 44(2003), 3-24.
- [3] Deprez, J., Semi-parallel surfaces in Euclidean space, J. Geom. 25(1985), 192-200.
- [4] Dillen, F., Semi-parallel hypersurfaces of a real space form, Israel J. Math. 75(1991), 193-202.
- [5] Ferus, D., Immersions with parallel second fundamental form, Math. Z. 140(1974), 87-93.
- [6] Hasegawa, K., Splitting of vector bundles with connection and its applications to affine differential geometry, Thesis. Tokyo University of Science (2001).
- [7] Nomizu, K. and Pinkall, U., On the geometry of affine immersions, Math. Z. 195(1987), 165-178.
- [8] Nomizu, K. and Sasaki, T., Affine differential geometry, Cambridge University Press, Cambridge, 1994.
- [9] Vrancken, L., Parallel affine immersions with maximal codimension, Tohoku Math. J. 53(2001), 511-531.

Ryuji Ishii

Department of Mathematics, Faculty of Science, Tokyo University of Science 26 Wakamiya-cho, Shinjuku-ku Tokyo 162-0827, Japan