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Abstract. Without any assumptions on the space dimension or boundedness
of the region, we prove Lp-spectral independence of generators of C0-semigroups
estimated by the positive C0-semigroup e−t(−�)α

(0 < α ≤ 1). In particular,
if the semigroup is self-adjoint in L2, it is shown that only the estimate by
e−t(−Δ)α

is sufficient for Lp-spectral independence. The proof depends on the

idea of considering the spectra of the operators e−t(−A)β

(0 < β < 1) and
applying the spectral independence result of B.A. Barnes for integral operators,
where A is the generator of the semigroup in question.
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§1. Introduction

Let Ω ⊂ R
N be an open set, and suppose that a C0-semigroup Tp =

(
Tp(t)

)
t≥0

on Lp(Ω) with generator Ap is given for each 1 ≤ p < ∞. Assume further that
Tp’s are consistent in the sense that

Tp(t) = Tq(t) on Lp(Ω) ∩ Lq(Ω)

for all t ≥ 0. Under these assumptions, it is natural to expect Lp-spectral
independence of generators, that is to say,

(1.1) σ(Ap) = σ(A2)

for all 1 ≤ p < ∞. However, W. Arendt [1, Section 3] revealed that this
equality is not necessarily true. Nonetheless, there are important cases where
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Lp-spectral independence (1.1) does hold. In fact, R. Hempel and J. Voigt [5,
Theorem] proved that, for a potential V belonging to a large class including a
Kato class, the spectrum of Schrödinger operator −Δ/2+V acting in Lp(RN )
is independent of p ∈ [1,∞). They used the Feynman–Kac formula to obtain
their result and so their method of proof is peculiar to the perturbation −Δ/2+
V . However, Arendt [1] found that if a C0-semigroup T = (T (t))t≥0 on L2(Ω)
is dominated by the heat semigroup etΔ (for details, see (1.2) below), then
T naturally induces a C0-semigroup Tp on Lp(Ω) for each p ∈ [1,∞) and the
spectrum of the generator Ap of Tp is independent of p provided T (t) is self-
adjoint. Roughly speaking, his proof relies on an subtle argument to obtain
an estimate of the integral kernel of the resolvent of T . He also shows the p-
independence of the connected component of the resolvent set of Ap containing
a right half-plane for non-self-adjoint semigroups. We should note here that
Arendt’s result contains Lp-spectral independence for the case of −Δ/2 + V
with a positive potential V . After the work of Arendt, P.C. Kunstmann [6]
proved that a weaker estimate of the integral kernel of the resolvents implies
Lp-spectral independence of the generators, and he generalized and completed,
in a sense, the work of Arendt.

Arendt’s results were generalized in a different direction in [8] and [9]. To
state in more details, let T = (T (t))t≥0 be a C0-semigroup on L2(Ω) with
generator A and α ∈ (0, 1]. We say that T satisfies a Gaussian estimate of
order α if there exist constants M ≥ 1, ω ∈ R and b > 0 such that

(1.2) |T (t)f | ≤ Meωte−bt(−A)α |f |
for all t ≥ 0 and f ∈ L2(Ω). Here, Δ denotes the usual Laplacian in L2(RN )
with domain H2(RN ), and we identify L2(Ω) with a subspace of L2(RN ) by
considering the elements of L2(Ω) to have value 0 on R

N \ Ω. In the case of
α = 1, (1.2) is equivalent to an upper Gaussian estimate defined by Arendt
[1, Definition 4.1]. If T satisfies the stronger estimate obtained by replacing
e−bt(−Δ)α

in (1.2) with e−bt(I−Δ)α
, then the resolvent of A satisfies an estimate

assumed in [6, Theorem 1.1] and accordingly the spectrum of Ap is independent
of p ∈ [1,∞), where Ap is the generator of a version of T on Lp(Ω) ([10,
Theorem 3.17]). In the case of α = 1, this result coincides with that of
Arendt. On the other hand, as long as we assume only the estimate (1.2), we
could not prove Lp-spectral independence except for the case of bounded Ω or
of space dimension 1 ([9]).

It is the purpose of this paper to prove Lp-spectral independence without
limitations mentioned above. A crucial tool for this purpose is the result of
B.A. Barnes [3] which gives a sufficient condition for Lp-spectral independence
of integral operators by using the theory of Banach algebras. More precisely,
he gave an estimate for a measurable function K : Ω×Ω → C that guarantees
that K defines a bounded linear operator Kp on Lp(Ω) for each p ∈ [1,∞) and
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the spectrum of Kp is independent of p ∈ [1,∞) ([3, Theorem 3.8]). Suppose
that a C0-semigroup T = (T (t))t≥0 on L2(Ω) with generator A satisfies the
estimate (1.2). Then it can be verified that the integral kernel of T (t) (t > 0)
satisfies the condition of Barnes, while the resolvent of A does not in general.
Therefore, by Barnes’ theorem, we can prove that if a C0-semigroup T =
(T (t))t≥0 = (etA)t≥0 on L2(Ω) satisfies a Gaussian estimate of order α for an
α ∈ (0, 1] and a resolvent of the generator of T is normal, then the spectrum
of Tp(t) is independent of p ∈ [1,∞), where Tp is a version of T on Lp(Ω).
However, in general, Lp-spectral independence of semigroups does not imply
that of their generators. But we can fill this gap by considering simultaneously
the spectrum of the semigroups generated by fractional powers (−A)β (β ∈
(0, 1)) of the generator A in question (Lemma 2.9). Noting that e−t(−A)β

satisfies an Gaussian estimate of order αβ and combining the observations
above, we obtain the desired Lp-spectral independence of the generators of Tp

(Theorem 2.11).

§2. Gaussian estimates of order α and Lp-spectral independence

Hereafter Ω denotes an open subset of R
N . In this section, we treat C0-

semigroups that satisfy the following estimates.

Definition 2.1. Let T =
(
T (t)

)
t≥0

be a C0-semigroup on L2(Ω) and α ∈
(0, 1]. Then we say that T satisfies a Gaussian estimate of order α if there
exist M ≥ 1, ω ∈ R and b > 0 such that

(2.1) |T (t)f | ≤ Meωte−bt(−Δ)α |f |
holds for all t ≥ 0 and f ∈ L2(Ω). Here, Δ denotes the usual Laplacian
in L2(RN ) with domain H2(RN ), and we identify L2(Ω) with a subspace of
L2(RN ) by considering the elements of L2(Ω) to have value 0 on R

N \ Ω.

We collect some basic facts concerning the C0-semigroups which satisfy
Gaussian estimates of order α.

Proposition 2.2. Let T =
(
T (t)

)
t≥0

be a C0-semigroup on L2(Ω). Assume
that T satisfies a Gaussian estimate of order α for an α ∈ (0, 1]. Then the
following assertions hold.

(i) For all t > 0, there exists a measurable function Kt : Ω × Ω → C such
that for all f ∈ L2(Ω),

(
T (t)f

)
(x) =

∫
Ω

Kt(x, y)f(y) dy

for a.e. x ∈ Ω.
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(ii) There exists a constant C > 0 such that the function Kt in (i) satisfies
the estimate

|Kt(x, y)| ≤ Ceωt bt

((bt)
1
α + |x − y|2)N

2
+α

for all t > 0 and a.e. (x, y) ∈ Ω × Ω.
(iii) For each p ∈ [1,∞), there exists a unique C0-semigroup Tp =

(
Tp(t)

)
t≥0

on Lp(Ω) such that for all t > 0 and f ∈ Lp(Ω),

(
Tp(t)f

)
(x) =

∫
Ω

Kt(x, y)f(y) dy

for a.e. x ∈ Ω. (Note that Kt is independent of p ∈ [1,∞).)

Proof. (i) and (iii) are proved in Proposition 3.5 in [9].
(ii) follows from the estimates (3.5) and (3.4) in [9].

In this paper, we use an abstract result by Barnes in [3]. To state his result,
we define some function spaces and weight functions.

Definition 2.3 (cf. [3, pp. 122, 123]). (i) A1 is defined as the space consisting
of all measurable functions K : Ω × Ω → C such that

‖K‖1 := max
{

ess.sup
x∈Ω

∫
Ω
|K(x, y)| dy, ess.sup

y∈Ω

∫
Ω
|K(x, y)| dx

}
< ∞.

Similarly, A2 is defined as the linear space of all measurable functions K : Ω×
Ω → C such that

‖K‖2 := max
{

ess.sup
x∈Ω

(∫
Ω
|K(x, y)|2 dy

) 1
2
, ess.sup

y∈Ω

(∫
Ω
|K(x, y)|2 dx

) 1
2
}

< ∞.

The space (A1, ‖·‖1) and (A2, ‖·‖2) are Banach spaces. Moreover, A1 is a
Banach ∗-algebra with the following involution K �→ K∗ and multiplication:

K∗(x, y) := K(y, x)
(
(x, y) ∈ Ω × Ω

)
,

(K ∗ J)(x, y) :=
∫

Ω
K(x, z)J(z, y) dz (K, J ∈ A1).

(ii) The weight function wδ is defined by

wδ(x, y) := (1 + |x − y|)δ
(
(x, y) ∈ R

N × R
N

)
for each δ ∈ (0, 1]. Let Awδ

be the linear space of all measurable functions
K : Ω×Ω → C such that Kwδ ∈ A1 and ‖·‖wδ

be defined by ‖K‖wδ
:= ‖Kwδ‖1

for each δ ∈ (0, 1], where Kwδ denotes the pointwise product of K and wδ.
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Then, Awδ
is a ∗-subalgebra of A1 and (Awδ

, ‖·‖wδ
) is a Banach ∗-algebra

(cf. [3, Note 4.3]).
(iii) Let Γ[m] be the set

Γ[m] :=
{
(x, y) ∈ Ω × Ω

∣∣ |x − y| ≤ m
}

for each m ∈ N and χ(Γ) be the characteristic function of Γ ⊂ R
N . A0

1 is
defined as the linear subspace of all K ∈ A1 such that

lim
m→∞ ‖χ(Γ[m]c)K‖1 = 0.

A0
1 is a closed ∗-subalgebra of A1. In addition, A0

2 and A0
wδ

are defined as
subspaces of A2 and Awδ

by replacing ‖·‖1 with ‖·‖2 and ‖·‖wδ
, respectively

in the definition of A0
1.

(iv) Let Awδ ,2 := Awδ
∩ A2, A0,0

wδ ,2 := A0
wδ

∩ A0
2 for each δ ∈ (0, 1] and

‖K‖wδ ,2 := max
{‖K‖wδ

, ‖K‖2

}
. Then, (Awδ ,2, ‖·‖wδ,2) is a Banach ∗-algebra

(cf. [3, Lemma 4.4]) and A0,0
wδ,2 is a closed ∗-subalgebra of Awδ

.

Remark 2.4. As is stated in [3, p. 122], any K ∈ A1 defines the bounded linear
operator Kp on Lp(Ω) by

(
Kpf

)
(x) :=

∫
Ω

K(x, y)f(y) dy
(
f ∈ Lp(Ω), x ∈ Ω

)
for each p ∈ [1,∞].

Now, we introduce a result by Barnes in [3]. For the reason described in
Remark 2.6 below, we state it in a form where its “assumption part” is a little
strengthened.

Theorem 2.5 (Barnes, cf. [3, Theorem 4.8]). Assume that K is in A0,0
wδ ,2 for

some δ ∈ (0, 1]. Then the following assertions hold:
(i) σwδ ,2(K) = σ(Kp) for all p ∈ [1,∞] when K is normal (i.e., K∗ ∗ K =

K ∗ K∗).
(ii) σwδ,2(K) = σ(Kp) ∪ σ

(
(K∗)p

)
for all p ∈ [1,∞] in general.

In these assertions, σwδ,2(K) denotes the spectrum of K in Awδ ,2 and Kp

is as in Remark 2.4.

Remark 2.6. Let A0
wδ,2 := A0

wδ
∩ A2. Theorem 4.8 in [3] states that the same

conclusions (i), (ii) in Theorem 2.5 hold for all K ∈ A0
wδ ,2. Moreover, in the

proof of Theorem 4.8 in [3], it is claimed that if K = K∗ ∈ A0
wδ ,2, then we

have
‖χ(Γ[m])K − K‖wδ,2 → 0
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as m → ∞, in other words, K ∈ A0,0
wδ ,2. However, let K be defined by

K(x, y) :=

{√
y (y ≥ 2, 2y ≤ x ≤ 2y + 1/y)

0 (otherwise).

Then, K +K∗ is hermitian and belongs to A0
wδ ,2 for each δ ∈ (0, 1/2) but does

not belong to A0,0
wδ ,2 for any δ ∈ (0, 1/2). We will give a detailed proof of this

fact in Section 3. For this reason, we replaced A0
wδ,2 in Theorem 4.8 in [3] with

A0,0
wδ ,2. Once this replacement is made, Theorem 2.5 can be proved in exactly

the same way as in [3] except for the part concerning the assertion K ∈ A0,0
wδ,2.

Remark 2.7. It is easy to see that for all K ∈ A1,(
(K∗)p

)′
f = Kp′f

(
f ∈ Lp(Ω)

)
for each p ∈ [1,∞), where

(
(K∗)p

)′ is the conjugate operator of (K∗)p and p′

is the conjugate exponent of p. Hence, it follows from assertion (ii) that

σwδ,2(K) = σ(Kp) ∪ σ(Kp′)

holds for each p ∈ [1,∞).

Here we would like to note the following relation between a C0-semigroup T
on L2(Ω) satisfying a Gaussian estimate of order α and the Banach ∗-algebra
A0,0

wδ ,2 in Barnes’ theorem.

Lemma 2.8. Let T =
(
T (t)

)
t≥0

be a C0-semigroup on L2(Ω) and α ∈ (0, 1]
and suppose that T satisfies a Gaussian estimate of order α. Moreover, let
Kt : Ω × Ω → C be the integral kernel of T (t) for each t > 0 as in Proposi-
tion 2.2. Then, Kt ∈ A0,0

wδ ,2 holds for each δ ∈ (0, 2α).

Proof. This assertion readily follows from Proposition 2.2 (ii).

Now, let T =
(
T (t)

)
t≥0

be a C0-semigroup on L2(Ω) satisfying a Gaussian
estimate of order α for an α ∈ (0, 1]. Lemma 2.8 and Barnes’ theorem im-
ply that if T is normal, the spectrum of Tp(t) is independent of p ∈ [1,∞).
However, it is not evident that the spectrum of the generator Ap of Tp is in-
dependent of p ∈ [1,∞). The next lemma connects Lp-spectral independence
of Tp’s to that of Ap’s, which is the key in this paper. The lemma depends
heavily on the theory of fractional powers of a generator of a C0-semigroup
and the spectral mapping theorem.

Lemma 2.9. Let Tp =
(
Tp(t)

)
t≥0

be a bounded C0-semigroup on Lp(Ω) with
generator Ap for each p ∈ [1,∞). Then the following assertions hold.
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(i) Assume that there exists a t0 > 0 such that for all β ∈ (0, 1) the spec-
trum of e−t0(−Ap)β

is independent of p ∈ [1,∞). Then the spectrum of Ap is
independent of p ∈ [1,∞).

(ii) Assume that there exists a t0 > 0 such that for all β ∈ (0, 1), the union
σ
(
e−t0(−Ap)β) ∪ σ

(
e−t0(−Ap′ )β)

is independent of p ∈ (1,∞). Then σ(Ap) ∪
σ(Ap′) is independent of p ∈ (1,∞).

Proof. (i) As is well-known, for each p ∈ [1,∞) and β ∈ (0, 1), the fractional
power −(−Ap)β generates a bounded analytic semigroup with angle π(1−β)/
2. Hence, σ

(
(−Ap)β

)
is included in the sector

{
λ ∈ C

∣∣ | arg λ| < πβ/2
}
.

Keeping this in mind, let p and q be in [1,∞) and λ ∈ σ(Ap). We use the
spectral mapping theorem

σ
(
(−Ap)β

)
=

[
σ(−Ap)

]β(
=

{
(−λ)β

∣∣ λ ∈ σ(Ap)
})

by Theorem 3.1 in [2] or Theorem 5.3.1 in [7], where β is an arbitrary number
in (0, 1) and (−λ)β denotes the principal value of eβ log(−λ) for λ �= 0 and
denotes 0 for λ = 0. This equality means that in the case of 0 ∈ σ(Ap), we
have 0 ∈ σ

(
(−Ap)β

)
. The spectral mapping theorem implies that

e−t0(−λ)β ∈ e−t0σ((−Ap)β)

for all β ∈ (0, 1). In addition, since e−t0(−Ap)β
is a bounded analytic semigroup

as stated above, the spectral mapping theorem

(2.2) e−t0σ((−Ap)β) = σ
(
e−t0(−Ap)β) \ {0}

holds for all β ∈ (0, 1) (cf. Corollary 3.12 in [4]). Thus, we have

e−t0(−λ)β ∈ σ
(
e−t0(−Ap)β) \ {0}

for all β ∈ (0, 1). Since σ
(
e−t0(−Ap)β) \ {0} = σ

(
e−t0(−Aq)β) \ {0} by the

assumption and (2.2) holds also in the case where p is replaced with q,

e−t0(−λ)β ∈ e−t0σ((−Aq)β)

for all β ∈ (0, 1).
Hence for all β ∈ (0, 1) there exists an nβ ∈ Z such that

(−λ)β +
2nβπi

t0
∈ σ

(
(−Aq)β

)
.

In the case of λ = 0, nβ �= 0 implies (−λ)β+2nβπi/t0 ∈ iR\{0}, hence (−λ)β+
2nβπi/t0 �∈ σ

(
(−Aq)β

)
. Therefore nβ = 0 and hence (−λ)β ∈ σ

(
(−Aq)β

)
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holds in this case. So let λ �= 0 in what follows. Suppose that β ∈ (0, 1) is
sufficiently small so that

Re (−λ)β tan
(π

2
β
)

<
π

t0
.

If nβ �= 0, then
π

2
>

∣∣∣arg
(
(−λ)β +

2nβπi

t0

)∣∣∣ >
π

2
β,

hence, (−λ)β + 2nβπi/t0 �∈ σ
(
(−Aq)β

)
. Therefore nβ = 0 and (−λ)β ∈

σ
(
(−Aq)β

)
, hence λ ∈ σ(Aq) by Theorem 3.1 in [2].

(ii) This assertion is proved in a similar way as in the proof of (i).

We need the next proposition to use Lemma 2.9.

Proposition 2.10. Let T =
(
T (t)

)
t≥0

be a C0-semigroup on L2(Ω) with gen-
erator A and suppose that T satisfies a Gaussian estimate of order α for an
α ∈ (0, 1] with ω = 0 in (2.1). Then the following assertions hold.

(i) For all β ∈ (0, 1), the C0-semigroup e−t(−A)β
satisfies a Gaussian es-

timate of order αβ. In addition, for all β ∈ (0, 1) and t > 0, e−t(−A)β
is

an integral operator and its kernel Kt,β(x, y) satisfies the following estimate:
There exists a constant Cβ > 0 such that for all t > 0

(2.3) |Kt,β(x, y)| ≤ Cβ
bβt

(b
1
α t

1
αβ + |x − y|2)N

2
+αβ

for a.e. (x, y) ∈ Ω × Ω, where b is as in (2.1).
(ii) For all β ∈ (0, 1) and p ∈ [1,∞), there exists a C0-semigroup Tβ,p =(

Tβ,p(t)
)
t≥0

on Lp(Ω) such that Tβ,p is consistent with e−t(−A)β
(i.e., Tβ,p(t) =

e−t(−A)β
on Lp(Ω) ∩ L2(Ω) for all t ≥ 0). Moreover, Tβ,p(t) coincides with

e−t(−Ap)β
for all β ∈ (0, 1), t ≥ 0 and p ∈ [1,∞), where Ap is the generator of

Tp in Proposition 2.2.

Proof. By the formula (2) in [11, Chapter IX, Section 11], for all β ∈ (0, 1), t >
0 and f ∈ L2(Ω),

∣∣e−t(−A)β
f
∣∣ =

∣∣∣∫ ∞

0
ft,β(s)esAf ds

∣∣∣
≤ M

∫ ∞

0
ft,β(s)e−bs(−Δ)α |f | ds

= Me−bβt((−Δ)α)β |f |
= Me−bβt(−Δ)αβ |f |.
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(The function ft,β ≥ 0 is defined in [11, Chapter IX, Section 11 (1)].) Thus,
e−t(−A)β

satisfies a Gaussian estimate of order αβ with ω = 0.
The latter assertion of (i) readily follows from Proposition 2.2.
Now we prove (ii). By assertion (i) and Proposition 2.2, there exists a C0-

semigroup Tβ,p =
(
Tβ,p(t)

)
t≥0

such that Tβ,p is consistent with e−t(−A)β
. On

the other hand, since etAp is consistent with etA, the formula in [11, Chap-
ter IX, Section 11] implies that e−t(−Ap)β

is consistent with e−t(−A)β
. Since

the C0-semigroup on Lp(Ω) that is consistent with e−t(−A)β
is unique, we have

e−t(−Ap)β
= Tβ,p(t). Thus the proof is completed.

Now we are in a position to prove our main result. The authors would
like to emphasize that the following Theorem 2.11 considerably improves our
former results (Theorem 3.18, 3.19 and 3.20 in [9]).

Theorem 2.11. Let T =
(
T (t)

)
t≥0

be a C0-semigroup on L2(Ω) with gener-
ator A and suppose that T satisfies a Gaussian estimate of order α for some
α ∈ (0, 1]. Moreover, let Tp =

(
Tp(t)

)
t≥0

be the C0-semigroup naturally de-
fined by T on Lp(Ω) for each p ∈ [1,∞) as in Proposition 2.2. Then, for the
generator Ap of Tp, the following assertions hold.

(i) Let ω be as in (2.1). Assume that there exists a λ ∈ C with Re λ > ω
such that (λ − A)−1 is normal. Then σ(Ap) is independent of p ∈ [1,∞).

(ii) σ(Ap) ∪ σ(Ap′) is independent of p ∈ (1,∞) in general.

Proof. (i) We may assume ω = 0 in (2.1) (if necessary, consider A − ω).
We first show that e−t(−A)β

is normal for each β ∈ (0, 1). In fact, by the
assumption, there exists a λ ∈ ρ(A) = ρ(A∗) with Re λ > 0, where A∗ is the
adjoint operator of A, such that (λ − A)−1 and

(
(λ − A)−1

)∗(= (λ − A∗)−1
)

are commutative. (Note that λ with Re λ > 0 belongings to ρ(A) since etA

is a bounded C0-semigroup.) If |μ − λ| and |ν − λ| are sufficiently small,
then (μ − A)−1 and (ν − A∗)−1 can be expanded into the infinite series at λ
and λ, respectively. Hence, for such μ and ν, (μ − A)−1 and (ν − A∗)−1 are
commutative:

(2.4) (μ − A)−1(ν − A∗)−1 = (ν − A∗)−1(μ − A)−1.

Since both sides of this equality are holomorphic in μ ∈ ρ(A) for each ν ∈
ρ(A∗), by unique continuation, (2.4) holds for each μ ∈ ρ∞(A) and ν in a
neighborhood of λ, where ρ∞(A) is the connected component of ρ(A) including
the right half-plane {λ ∈ C | Re λ > 0}. Accordingly since both sides of (2.4)
are holomorphic in ν ∈ ρ(A∗) for each μ ∈ ρ∞(A), by unique continuation,
(2.4) holds for each μ ∈ ρ∞(A) and ν ∈ ρ∞(A∗). In particular, (μ − A)−1

and (ν − A∗)−1 are commutative for each μ, ν > 0. By using the well-known
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formula

(
λ1 + (−A)β

)−1 =
sin(πβ)

π

∫ ∞

0

μβ(μ − A)−1

μ2β + 2λ1μβ cos(πβ) + λ2
1

dμ

for all λ1 > 0 (cf. [7, (5.24)]) and the resulting equality

[(
λ2 + (−A)β

)−1]∗ =
sin(πβ)

π

[∫ ∞

0

νβ(ν − A)−1

ν2β + 2λ2νβ cos(πβ) + λ2
2

dν
]∗

=
sin(πβ)

π

∫ ∞

0

νβ(ν − A∗)−1

ν2β + 2λ2νβ cos(πβ) + λ2
2

dν

for all λ2 > 0, we obtain that
(
λ1 + (−A)β

)−1 and
[(

λ2 + (−A)β
)−1]∗ are

commutative for all λ1, λ2 > 0. Since
(

n
t

(
n
t + (−A)β

)−1)n strongly converges
to e−t(−A)β

as n → ∞ and
[(

m
t

(
m
t + (−A)β

)−1)m]∗ strongly converges to(
e−t(−A)β)∗ as m → ∞, we conclude that e−t(−A)β

and
(
e−t(−A)β)∗ are com-

mutative. i.e., e−t(−A)β
is normal.

Next fix an arbitrary t0 > 0. Let β ∈ (0, 1) and p ∈ [1,∞). Then, by
Proposition 2.10, there exists a C0-semigroup Tβ,p =

(
Tβ,p(t)

)
t≥0

on Lp(Ω)

such that Tβ,p is consistent with e−t(−A)β
. In addition, Tβ,p(t0) is an integral

operator, and its kernel Kt0,β is independent of p ∈ [1,∞) and Kt0,β ∈ A0,0
wδ ,2

for each δ ∈ (0, 2αβ) by Lemma 2.8. Since e−t0(−A)β
is normal and so is

Kt0,β , by applying Barnes’ theorem, σ
(
Tβ,p(t0)

)
is proved to be independent

of p ∈ [1,∞). Hence, σ
(
e−t0(−Ap)β)

is independent of p ∈ [1,∞) (cf. Proposi-
tion 2.10 (ii)). By Lemma 2.9 (i), σ(Ap) in independent of p ∈ [1,∞).

(ii) is proved by using Lemma 2.9 (ii) instead of Lemma 2.9 (i) in the proof
of assertion (i).

Now, we give a corollary to Theorem 2.11, which partly improves Theo-
rem 4.2 in [10]. For each α ∈ (0, 1], Hα and Uα(t) denotes (−Δ)α and e−tHα ,
respectively, and let V : R

N → R be a bounded non-negative measurable func-
tion. We verify Lp-spectral independence of a version Hα + V in Lp(RN ),
where we used the same symbol for the function V and also for the associated
maximal multiplication operator in Lp(RN ) defined by V .

Corollary 2.12. The operator sum −(Hα + V ) generates a C0-semigroup
Uα,V =

(
Uα,V (t)

)
t≥0

on L2(RN ) and there exists a C0-semigroup Uα,V,p =(
Uα,V,p(t)

)
t≥0

on Lp(RN ) such that Uα,V,p is consistent with Uα,V for each
p ∈ [1,∞). The generator −Hα,V,p of Uα,V,p coincides with −(Hα,p + V ) for
each p ∈ [1,∞), where −Hα,p is the generator of the C0-semigroup naturally
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defined by Uα on Lp(RN ) for each p ∈ [1,∞) as in Proposition 2.2. Moreover,
the spectrum

σ(Hα,p + V )

is independent of p ∈ [1,∞).

Proof. It is clear that −(Hα + V ) generates a positive C0-semigroup Uα,V =(
Uα,V (t)

)
t≥0

on L2(RN ) and Uα,V satisfies a Gaussian estimate of order α.
More precisely,

0 ≤ Uα,V (t) ≤ Uα(t)

is obtained for all t ≥ 0 by using Trotter product formula. Hence, by Propo-
sition 2.2, there exists a C0-semigroup Uα,V,p =

(
Uα,V,p(t)

)
t≥0

on Lp(RN )
such that Uα,V,p is consistent with Uα,V for each p ∈ [1,∞). Since Trotter
product formula implies that the C0-semigroup exp(−(Hα,p + V )) is consis-
tent with Uα,V , we have Uα,V,p coincides with exp(−(Hα, p + V )). Hence,
Hα,V,p = Hα,p + V , where Hα,V,p is the generator of Uα,V,p.

Since the generator of Uα,V is self-adjoint, Theorem 2.11 implies that the
spectrum of Hα,V,p is independent of p ∈ [1,∞). Thus, the proof is completed.

§3. Appendix

We prove the statement in Remark 2.6. We first recall what we should prove.

Proposition 3.1. Let K be defined by

K(x, y) :=

{√
y (y ≥ 2, 2y ≤ x ≤ 2y + 1/y)

0 (otherwise).

Then, K +K∗ is hermitian and belongs to A0
wδ ,2 for each δ ∈ (0, 1/2) but does

not belong to A0,0
wδ ,2 for any δ ∈ (0, 1/2).

Proof. Let δ ∈ (0, 1/2). We prove that K ∈ A0
wδ,2 and K �∈ A0,0

wδ,2, from
which the assertion of this proposition follows. In fact, since (wδK)∗ = wδK

∗,(
χ(Γ[m])K

)∗ = χ(Γ[m])K∗ and the involution is isometric in each of the norms
of A1, Awδ

and A2, we obtain that K∗ hence K +K∗ belongs to A0
wδ ,2. On the

other hand, since supp K∩supp K∗ = ∅, the inequality ‖χ(Γ[m]c)(K+K∗)‖2 ≥
‖χ(Γ[m]c)K‖2 holds for all m ∈ N. Hence, by K �∈ A0

2, ‖χ(Γ[m]c)(K + K∗)‖2

does not converge to 0 as m → ∞. i.e., K + K∗ �∈ A0
2. Since it is clear that

K + K∗ is hermitian, we see that the desired assertion concerning K leads to
the assertion of this proposition.
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Now, we prove that K ∈ A0
wδ ,2. We first estimate wδ(x, y) for all (x, y) ∈

supp K. Since each (x, y) ∈ supp K satisfies the estimate 2y ≤ x ≤ 2y + 1/2,
we have

(3.1) |x − y| ≤ y +
1
2
≤ 1

2
(x + 1).

Hence, wδ(x, y) ≤ (3/2+y)δ and wδ(x, y) ≤ 2−δ(3+x)δ for all (x, y) ∈ supp K.
Next, we estimate the integrals

∫
R

K(x, y) dx and
∫

R
K(x, y) dy. It is easy

to see that ∫
R

K(x, y) dx =

⎧⎨
⎩

0 (y < 2)
1√
y

(y ≥ 2),

and there exists a constant C > 0 such that∫
R

K(x, y) dy

{
= 0 (x < 4)
≤ C (4 ≤ x ≤ 9/2).

In the case of x > 9/2, we have by using the trivial inequality
√

x2 − 8 < x∫
R

K(x, y) dy =
∫ x/2

(x+
√

x2−8)/4

√
y dy

=
2
3

{(x

2

) 3
2 −

(x +
√

x2 − 8
4

) 3
2
}

=
2
3

{(x

2

) 1
2 −

(x +
√

x2 − 8
4

) 1
2
}

×
{x

2
+

(x

2

) 1
2
(x +

√
x2 − 8
4

) 1
2 +

x +
√

x2 − 8
4

}

<
2
3
· x −√

x2 − 8

2
(√

2x + (x +
√

x2 − 8)
1
2

) · 3x

2

<

√
x

2
√

2
(x −

√
x2 − 8)

=
√

x

2
√

2
· 8
x +

√
x2 − 8

<
2
√

2√
x

.

Hence, K ∈ Awδ
is shown for each δ ∈ (0, 1/2) by the following estimate:

ess.sup
y∈R

∫
R

wδ(x, y)K(x, y) dx ≤ ess.sup
y≥2

(3
2

+ y
)δ · 1√

y
< ∞,

ess.sup
x≤9/2

∫
R

wδ(x, y)K(x, y) dy ≤ 2−δC ess.sup
4≤x≤9/2

(3 + x)δ =
(15

4

)δ
C < ∞,

ess.sup
x>9/2

∫
R

wδ(x, y)K(x, y) dy ≤ 2−δ ess.sup
x>9/2

(3 + x)δ · 2
√

2√
x

< ∞.
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By a similar manner, we can prove that K ∈ A0
wδ

for each δ ∈ (0, 1/2). In
fact, if (x, y) ∈ supp K satisfies |x − y| > m for an m ∈ N, then y ≥ m − 1/2
and x ≥ 2m − 1 by (3.1). Hence, we have for m ≥ 3,

ess.sup
y∈R

∫
R

χ(Γ[m]c)(x, y)wδ(x, y)K(x, y) dx

≤ ess.sup
y≥m−1/2

∫
R

wδ(x, y)K(x, y) dx

≤ ess.sup
y≥m−1/2

(3
2

+ y
)δ · 1√

y
,

ess.sup
x∈R

∫
R

χ(Γ[m]c)(x, y)wδ(x, y)K(x, y) dy

≤ ess.sup
x≥2m−1

∫
R

wδ(x, y)K(x, y) dy

≤ 2−δ ess.sup
x≥2m−1

(3 + x)δ · 2
√

2√
x

.

Since the rightmost side of each inequality above converges to 0 as m → ∞,
the norm ‖χ(Γ[m]c)K‖wδ

converges to 0 as m → ∞. i.e., K ∈ A0
wδ

.
Next, we verify that K ∈ A2 for the completeness of the proof. It is easy

to see that ∫
R

K(x, y)2 dx =

{
0 (y < 2),
1 (y ≥ 2),

and there exists a constant C > 0 such that

∫
R

K(x, y)2 dy

{
= 0 (x < 4),
≤ C (4 ≤ x ≤ 9/2).

In the case of x > 9/2, we have

∫
R

K(x, y)2 dy =
∫ x/2

(x+
√

x2−8)/4
y dy

=
1
32

{4x2 − (x +
√

x2 − 8)2}

=
1
32

(x −
√

x2 − 8)(3x +
√

x2 − 8)

≤ x

8
· 8
x +

√
x2 − 8

≤ 1.

Thus, ‖K‖2 ≤ max{1,
√

C}, hence, K ∈ A2.
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The remaining assertion is that K �∈ A0
2. To prove this assertion, note that

if (x, y) ∈ supp K satisfies y > m, then x − y ≥ y > m, i.e., (x, y) �∈ Γ[m].
Hence, we have

ess.sup
y∈R

∫
R

χ(Γ[m]c)K(x, y)2 dx ≥ ess.sup
y≥m+1

∫
R

K(x, y)2 dx = 1

for all m ∈ N. Thus, we conclude K �∈ A0
2.
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