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Abstract. Without any assumptions on the space dimension or boundedness
of the region, we prove LP-spectral independence of generators of Co-semigroups
estimated by the positive Cp-semigroup et (0 < a <1). In particular,
if the semigroup is self-adjoint in L2, it is shown that only the estimate by
e~ =) ig gufficient for LP-spectral independence. The proof depends on the

. S (=8

idea of considering the spectra of the operators e *(~#4) (0 < 8 <1)and
applying the spectral independence result of B.A. Barnes for integral operators,
where A is the generator of the semigroup in question.
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8§1. Introduction

Let Q ¢ RY be an open set, and suppose that a Cy-semigroup T}, = (Tp(t))t>0
on LP(Q) with generator A, is given for each 1 < p < co. Assume further that
T,’s are consistent in the sense that

T,(t) = T,(t)  on LP(Q) N LI(Q)

for all ¢ > 0. Under these assumptions, it is natural to expect LP-spectral
independence of generators, that is to say,

(1.1) o(4p) = o(42)

for all 1 < p < oco. However, W. Arendt [1, Section 3] revealed that this
equality is not necessarily true. Nonetheless, there are important cases where
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LP-spectral independence (1.1) does hold. In fact, R. Hempel and J. Voigt [5,
Theorem] proved that, for a potential V' belonging to a large class including a
Kato class, the spectrum of Schrodinger operator —A/2+V acting in LP(RY)
is independent of p € [1,00). They used the Feynman—Kac formula to obtain
their result and so their method of proof is peculiar to the perturbation —A /2+
V. However, Arendt [1] found that if a Co-semigroup T = (T(t))i>0 on L%(Q)
is dominated by the heat semigroup e*® (for details, see (1.2) below), then
T naturally induces a Cp-semigroup 7}, on LP(2) for each p € [1,00) and the
spectrum of the generator A, of T}, is independent of p provided T'(t) is self-
adjoint. Roughly speaking, his proof relies on an subtle argument to obtain
an estimate of the integral kernel of the resolvent of T'. He also shows the p-
independence of the connected component of the resolvent set of A, containing
a right half-plane for non-self-adjoint semigroups. We should note here that
Arendt’s result contains LP-spectral independence for the case of —A/2 +V
with a positive potential V. After the work of Arendt, P.C. Kunstmann [6]
proved that a weaker estimate of the integral kernel of the resolvents implies
LP-spectral independence of the generators, and he generalized and completed,
in a sense, the work of Arendt.

Arendt’s results were generalized in a different direction in [8] and [9]. To
state in more details, let T = (T'(t)):>0 be a Co-semigroup on L*() with
generator A and « € (0,1]. We say that T satisfies a Gaussian estimate of
order « if there exist constants M > 1, w € R and b > 0 such that

(1.2) IT(t)f| < Mete P |

for all t > 0 and f € L?(Q2). Here, A denotes the usual Laplacian in L?(R")
with domain H?(R"), and we identify L?(Q) with a subspace of L?(R") by
considering the elements of L%() to have value 0 on R \ Q. In the case of
a =1, (1.2) is equivalent to an upper Gaussian estimate defined by Arendt
[1, Definition 4.1]. If T satisfies the stronger estimate obtained by replacing
e t=2)" in (1.2) with e~ " (I=2)% then the resolvent of A satisfies an estimate
assumed in [6, Theorem 1.1] and accordingly the spectrum of A, is independent
of p € [1,00), where A, is the generator of a version of 7" on LP(£2) ([10,
Theorem 3.17]). In the case of @ = 1, this result coincides with that of
Arendt. On the other hand, as long as we assume only the estimate (1.2), we
could not prove LP-spectral independence except for the case of bounded 2 or
of space dimension 1 ([9]).

It is the purpose of this paper to prove LP-spectral independence without
limitations mentioned above. A crucial tool for this purpose is the result of
B.A. Barnes [3] which gives a sufficient condition for LP-spectral independence
of integral operators by using the theory of Banach algebras. More precisely,
he gave an estimate for a measurable function K : 2 x  — C that guarantees
that K defines a bounded linear operator K, on LP(Q2) for each p € [1,00) and
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the spectrum of K, is independent of p € [1,00) ([3, Theorem 3.8]). Suppose
that a Co-semigroup T = (T'(t))¢>0 on L?(Q2) with generator A satisfies the
estimate (1.2). Then it can be verified that the integral kernel of T'(¢) (¢ > 0)
satisfies the condition of Barnes, while the resolvent of A does not in general.
Therefore, by Barnes’ theorem, we can prove that if a Cp-semigroup T =
(T(t))r>0 = (e!)y>0 on L?() satisfies a Gaussian estimate of order o for an
a € (0,1] and a resolvent of the generator of T' is normal, then the spectrum
of T),(t) is independent of p € [1,00), where T}, is a version of 7" on LP((2).
However, in general, LP-spectral independence of semigroups does not imply
that of their generators. But we can fill this gap by considering simultaneously
the spectrum of the semigroups generated by fractional powers (—A)% (5 €
(0,1)) of the generator A in question (Lemma 2.9). Noting that e~t=A)"
satisfies an Gaussian estimate of order a3 and combining the observations
above, we obtain the desired LP-spectral independence of the generators of T},
(Theorem 2.11).

82. Gaussian estimates of order o and LP-spectral independence

Hereafter Q denotes an open subset of RY. In this section, we treat Cp-
semigroups that satisfy the following estimates.

Definition 2.1. Let T = (T(t))t>0
(0,1]. Then we say that T satisfies a Gaussian estimate of order « if there
exist M > 1,w € R and b > 0 such that

be a Cp-semigroup on L%(Q) and a €

(2.1) IT(t)f] < Me#te 2% f|

holds for all t+ > 0 and f € L?(Q). Here, A denotes the usual Laplacian
in L2(RN) with domain H?(R"), and we identify L?*(Q) with a subspace of
L?(RM) by considering the elements of L?(£2) to have value 0 on RV \ Q.

We collect some basic facts concerning the Cpy-semigroups which satisfy
Gaussian estimates of order a.

Proposition 2.2. Let T = (T(t))t>0 be a Cy-semigroup on L?(€)). Assume
that T satisfies a Gaussian estimate of order a for an a € (0,1]. Then the
following assertions hold.

(i) For allt > 0, there exists a measurable function K;: Q x Q — C such

that for all f € L?(Q),

(T(t) ) (x) = /Q Ky, 9)f(y) dy

for a.e. x € Q).
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(ii) There exists a constant C' > 0 such that the function K in (i) satisfies

the estimate
bt

((bt)a + |z —y[2)2te

|Ki(2,y)] < Ce!

for all t >0 and a.e. (x,y) € Q x Q.
(iii) For each p € [1,00), there exists a unique Co-semigroup T, = (T, (t))

>0
on LP(Q) such that for allt > 0 and f € LP(Q),
T01)() = | Kwn) sy
for a.e. x € Q. (Note that K, is independent of p € [1,00).)
Proof. (i) and (iii) are proved in Proposition 3.5 in [9].
(ii) follows from the estimates (3.5) and (3.4) in [9]. O

In this paper, we use an abstract result by Barnes in [3]. To state his result,
we define some function spaces and weight functions.

Definition 2.3 (cf. [3, pp. 122, 123]). (i) A; is defined as the space consisting
of all measurable functions K: © x 2 — C such that

K[l := max{ess.sup/ K(x,y)\dy,ess.sup/ \K(x,y)\dw} < 00.
€N Q yeN Q

Similarly, Ao is defined as the linear space of all measurable functions K: € x
) — C such that

1 1
| K2 := max{ess.sup(/ \K(x,y)|2 dy) 2,ess.sup(/ |K(a:,y)|2 dx) 2} < .

The space (A1, |||[1) and (Asz,||-||2) are Banach spaces. Moreover, A; is a
Banach x-algebra with the following involution K — K* and multiplication:

K*(z,y) = K(y,x) ((w,y) €0 x Q),

(K« J)(x,y) ::/QK(:L‘,Z)J(Z,y)dz (K, J € Ay).

(ii) The weight function w;s is defined by
ws(z,y) = (L+ ]z —y))° ((z,9) € RV xRY)

for each § € (0,1]. Let Ay, be the linear space of all measurable functions
K: QxQ — Csuch that Kws € Ay and |||/, be defined by || K||w; := || Kws||1
for each ¢ € (0,1], where Kws denotes the pointwise product of K and ws.
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Then, A, is a *-subalgebra of A; and (A, ||-|lws) is a Banach x-algebra
(cf. [3, Note 4.3]).
(iii) Let I'[m] be the set

Lm]:={(z,y) €2 x Q| |z —y| <m}

for each m € N and x(T') be the characteristic function of ' C RY. A{ is
defined as the linear subspace of all K € Ay such that

Jim_[x(Tfm])K [ = 0.

AY is a closed *-subalgebra of A;. In addition, A9 and AIO,U5 are defined as
subspaces of A; and A, by replacing |[|-||; with |||z and |||, respectively
in the definition of AY.

(iv) Let Ay;2 = Ay, N Ag, A?U’SQ = AJ) N A for each § € (0,1] and
|1 K [|us,2 := max{|| K ||ws, | K|l2}. Then, (Aw; 2, ||[lws,2) is a Banach *-algebra

(cf. [3, Lemma 4.4]) and A?U’RQ is a closed *-subalgebra of A,,.

Remark 2.4. As is stated in [3, p. 122], any K € A; defines the bounded linear
operator K, on LP(Q) by

(Kpf)(x) := /QK(:uy)f(y) dy (feLlP(Q),z€Q)

for each p € [1, o).

Now, we introduce a result by Barnes in [3]. For the reason described in
Remark 2.6 below, we state it in a form where its “assumption part” is a little
strengthened.

Theorem 2.5 (Barnes, cf. [3, Theorem 4.8]). Assume that K is in A?J?,z for
some § € (0,1]. Then the following assertions hold:

(1) ows,2(K) = 0(Kp) for all p € [1,00] when K is normal (i.e., K* « K =

(ii) ows,2(K) = o(Kp) Uo ((K*)p) for all p € [1,00] in general.

In these assertions, oy, 2(K) denotes the spectrum of K in Ay, and K
is as in Remark 2.4.

Remark 2.6. Let A, := A N Ay. Theorem 4.8 in [3] states that the same
conclusions (i), (ii) in Theorem 2.5 hold for all K € AY 5.2+ Moreover, in the
proof of Theorem 4.8 in [3], it is claimed that if K = K* € A?U&Q, then we
have

XD K = K gz — 0
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as m — 00, in other words, K € A?J?,z' However, let K be defined by

K(z,y) = VI (y>22y<a<2y+1/y)
0 (otherwise).

Then, K + K* is hermitian and belongs to AY,_, for each § € (0,1/2) but does
not belong to Ag}?@ for any ¢ € (0,1/2). We will give a detailed proof of this
fact in Section 3. For this reason, we replaced Aj, , in Theorem 4.8 in [3] with
400

ws,2- Once this replacement is made, Theorem 2.5 can be proved in exactly

the same way as in [3] except for the part concerning the assertion K € A%O

we,2°
Remark 2.7. Tt is easy to see that for all K € Ay,

(K")) f=EKyf (feLP(Q)

for each p € [1,00), where ((K*)p)/ is the conjugate operator of (K*), and p’
is the conjugate exponent of p. Hence, it follows from assertion (ii) that

Ows2(K) = o(Kp) Uo(Ky)

holds for each p € [1, c0).

Here we would like to note the following relation between a Cy-semigroup T’
on L?() satisfying a Gaussian estimate of order a and the Banach -algebra

A?l;02 in Barnes’ theorem.
5

Lemma 2.8. Let T = (T(t)),, be a Co-semigroup on L*(Q) and o € (0, 1]
and suppose that T satisfies a Gaussian estimate of order a. Moreover, let
K;: Q x Q — C be the integral kernel of T(t) for each t > 0 as in Proposi-
tion 2.2. Then, K; € A?U’g2 holds for each ¢ € (0,2c).

Proof. This assertion readily follows from Proposition 2.2 (ii). O

Now, let T' = (T(t))t>0 be a Cyp-semigroup on L?(2) satisfying a Gaussian
estimate of order a for an a € (0,1]. Lemma 2.8 and Barnes’ theorem im-
ply that if 7" is normal, the spectrum of T),(¢) is independent of p € [1, 00).
However, it is not evident that the spectrum of the generator A, of T}, is in-
dependent of p € [1,00). The next lemma connects LP-spectral independence
of T,’s to that of A,’s, which is the key in this paper. The lemma depends
heavily on the theory of fractional powers of a generator of a Cp-semigroup
and the spectral mapping theorem.

Lemma 2.9. Let T, = (Tp(t)),, be a bounded Co-semigroup on LP(Q) with
generator A, for each p € [1, o0). Then the following assertions hold.
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(i) Assume that there exists a to > 0 such that for all € (0,1) the spec-
trum of e~to(=4)" g independent of p € [1,00). Then the spectrum of Ay is
independent of p € [1,00).

(ii) Assume that there exists a to > 0 such that for all 5 € (0,1), the union
U(e*to( »)? ) U U( _to(_AP’)B) is independent of p € (1,00). Then o(Ap) U
o(Ay) is independent of p € (1,00).

Proof. (i) As is well-known, for each p € [1,00) and € (0,1), the fractional
power —(—Ap)ﬁ generates a bounded analytic semigroup with angle 7(1—3)/
2. Hence, o((—Ap)?) is included in the sector {\ € C ‘ larg A| < m3/2}.
Keeping this in mind, let p and ¢ be in [1,00) and A € 0(A4,). We use the
spectral mapping theorem

o((=4,)%) = [o(-4)] (= {(-N7 | A e 0(4,)})

by Theorem 3.1 in [2] or Theorem 5.3.1 in [7], where (3 is an arbitrary number
n (0,1) and (—=\)? denotes the principal value of e?1°8(=) for \ # 0 and
denotes 0 for A = 0. This equality means that in the case of 0 € 0(4,), we
have 0 € 0((—Ap)ﬁ ) The spectral mapping theorem implies that

e—t0(=N° ¢ o—too((—4p)P)

for all 5 € (0,1). In addition, since e~to(=40)" ig a bounded analytic semigroup
as stated above, the spectral mapping theorem

(2.2) e too((=4p)") _ U(e—to(—Ap)ﬁ) \ {0}
holds for all 5 € (0,1) (cf. Corollary 3.12 in [4]). Thus, we have
e to(=NF o o p)ﬁ) \ {0}

for all 3 € (0,1). Since o(e~f0 P)B) \ {0} = o(etol= ) \ {0} by the
assumption and (2.2) holds also in the case where p is replaced with ¢,

o0 (=N ¢ o—too((—Ag)”)

for all g € (0,1).
Hence for all g € (0, 1) there exists an ng € Z such that

2ngmi

(NP + € o((—4y)°).

to

In the case of A = 0, ng # 0 implies (—\)?+2ng7i/ty € iR\{0}, hence (—\)?+
2ngmifty & o((—Ag)?). Therefore ng = 0 and hence (—A)° € o((—A4y)")
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holds in this case. So let A # 0 in what follows. Suppose that 5 € (0,1) is
sufficiently small so that

Re (—)\)ﬁtan<gﬁ) < %.

If ng # 0, then

T 2ngm T
Z )3 L) ‘ Z
5 > \arg(( N Rl
hence, (—A)? + 2ngmi/ty & o((—Aq)P). Therefore ng = 0 and ()Y €
o((—Aq)?), hence A € o(A4,) by Theorem 3.1 in [2)].

(ii) This assertion is proved in a similar way as in the proof of (i). O

We need the next proposition to use Lemma 2.9.

Proposition 2.10. Let T = (T(t))t>0 be a Cy-semigroup on L*(Q) with gen-
erator A and suppose that T satisfies a Gaussian estimate of order o for an
€ (0,1] with w =0 in (2.1). Then the following assertions hold.

(i) For all B € (0,1), the Cy-semigroup et satisfies o Gaussian es-
timate of order af. In addition, for all 3 € (0,1) and t > 0, e~t=A)" g
an integral operator and its kernel K, g(x,y) satisfies the following estimate:
There exists a constant Cg > 0 such that for allt > 0

Vit
(2.3) [Kip(z,y)| < C
’ ? (bwt 4o — yf2) b o8

for a.e. (x,y) € Q x Q, where b is as in (2.1).
(ii) For all B € (0,1) and p € [1,00), there exists a Cp- semz’group Ts,p =
T 7P(t))t>o on LP(Q) such that Ty, is consistent with e (= A)? (i.e., Tgp(t) =

e = A) on LP(Q) N L%(Q) for all t > 0). Moreover, Tp,(t) coincides with
e~ or a € t>0 an € |1,0), where 1s the generator o
T} in Proposition 2.2.

Proof. By the formula (2) in [11, Chapter IX, Section 11], for all 8 € (0,1),¢ >
0 and f € L%(Q),

‘e—t(—A)Bf‘ _ ‘/ ft,ﬂ(s)eSAf ds
0
<M / ft,ﬁ(S)e_bS(_A)a!f!ds

_pB

= Me VHERD7 p)
_bBt(—A)B

= MePH=R 1),
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(The function f; g > 0 is defined in [11, Chapter IX, Section 11 (1)].) Thus,
—t(=4)” gatisfies a Gaussian estimate of order af with w = 0.
The latter assertion of (i) readily follows from Proposition 2.2.

Now we prove (ii). By assertion (i) and Proposition 2.2, there exists a Cp-

(&

semigroup T3, = (Tﬂvp(t))tzo such that T, is consistent with et On

the other hand, since e*4» is consistent with e*4, the formula in [11, Chap-

_t(_A)B

ter IX, Section 11] implies that e~1=40)" is consistent with e . Since

the Cp-semigroup on LP(2) that is consistent with et i unique, we have

et =4)" = T3 p(t). Thus the proof is completed. O

Now we are in a position to prove our main result. The authors would
like to emphasize that the following Theorem 2.11 considerably improves our
former results (Theorem 3.18, 3.19 and 3.20 in [9]).

Theorem 2.11. Let T = (T(t))t>0 be a Cy-semigroup on L2(S) with gener-
ator A and suppose that T satisfies a Gaussian estimate of order o for some
a € (0,1]. Moreover, let T, = (Tp(t))t>O be the Cy-semigroup naturally de-
fined by T on LP(Q) for each p € [1,00) as in Proposition 2.2. Then, for the
generator A, of T, the following assertions hold.

(i) Let w be as in (2.1). Assume that there exists a A € C with Re A > w
such that (A — A)~! is normal. Then o(A,) is independent of p € [1,00).

(ii) o(Ap) Ua(Ay) is independent of p € (1,00) in general.

Proof. (i) We may assume w = 0 in (2.1) (if necessary, consider A — w).
We first show that e~*(—4)” is normal for each 8 € (0,1). In fact, by the
assumption, there exists a A € p(A) = p(A*) with Re X > 0, where A* is the
adjoint operator of A, such that (A — A)~! and ((A — AN (=0 - AN
are commutative. (Note that A\ with ReA > 0 belongings to p(A) since e*?
is a bounded Cp-semigroup.) If |z — A| and |v — A| are sufficiently small,
then (1 — A)~! and (v — A*)~! can be expanded into the infinite series at \

and ), respectively. Hence, for such p and v, (u — A)~! and (v — A*)~! are
commutative:

(2.4) (= A =AY = (= A - A

Since both sides of this equality are holomorphic in pu € p(A) for each v €
p(A*), by unique continuation, (2.4) holds for each p € py(A) and v in a
neighborhood of A, where ps,(A) is the connected component of p(A) including
the right half-plane {A € C | Re A > 0}. Accordingly since both sides of (2.4)
are holomorphic in v € p(A*) for each p € poo(A), by unique continuation,
(2.4) holds for each 1 € poo(A) and v € poo(A*). In particular, (u — A)~!
and (v — A*)~! are commutative for each u,v > 0. By using the well-known
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formula

_apy-1_sin(@B) [ po(p— A
(M +(=4)7) " = - /O 128 1 201 118 cos(m3) + A2 an

for all A\; > 0 (cf. [7, (5.24)]) and the resulting equality

i Sin(’ffﬁ) [e%s) I/ﬁ(V—A)fl *
(e + (=) == [/0 y2ﬂ+2A2uﬁcos(wﬁ)+A%dV}

_ sin(m3) /‘X’ V(v — AT iy
7r o V2P 4+ 2208 cos(mB) + A

for all Ay > 0, we obtain that (A1 + (—A)~) " and [(A2 + (—A)ﬁ)_l]* are

commutative for all A1, Ao > 0. Since (2(Z + (—A)B)_l)n strongly converges

t %
(=A% 2o n — oo and [(2(2 + (—A)B)_l)m]* strongly converges to

(e‘t(—A)ﬁ)* as m — oo, we conclude that e*-4” and (e_t(_A)ﬁ)* are com-
t(—A)B

to e

mutative. i.e., e~ is normal.
Next fix an arbitrary ¢ > 0. Let § € (0,1) and p € [1,00). Then, by
Proposition 2.10, there exists a Cp-semigroup T, = (Tg,p(t))po on LP(Q)

such that T}, is consistent with e t=A7 n addition, T3 p(to) is an integral
operator, and its kernel Ky, 5 is independent of p € [1,00) and Ky, g € A?J,?,Q
for each § € (0,203) by Lemma 2.8. Since e (4" is normal and so is
K, 3, by applying Barnes’ theorem, O'(T@p(to)) is proved to be independent
of p € [1,00). Hence, a(e_to(_Ap)ﬁ) is independent of p € [1,00) (cf. Proposi-
tion 2.10 (ii)). By Lemma 2.9 (i), 0(A,) in independent of p € [1, 00).

(ii) is proved by using Lemma 2.9 (ii) instead of Lemma 2.9 (i) in the proof
of assertion (i). O

Now, we give a corollary to Theorem 2.11, which partly improves Theo-
rem 4.2 in [10]. For each a € (0,1], H, and U,(t) denotes (—A)® and e~ o,
respectively, and let V: RV — R be a bounded non-negative measurable func-
tion. We verify LP-spectral independence of a version H, + V in LP(RY),
where we used the same symbol for the function V and also for the associated
maximal multiplication operator in LP(R™) defined by V.

Corollary 2.12. The operator sum —(H, + V') generates a Cy-semigroup
Usyv = (UQ’V(t))tzo on L2(RYN) and there erists a Co-semigroup Usvp =
(Ua7v7p(t))t>0 on LP(RYN) such that U,y is consistent with U,y for each
p € [1,00). The generator —H, v, of Uay,p coincides with —(Hyp, + V) for
each p € [1,00), where —H,  is the generator of the Cy-semigroup naturally
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defined by U, on LP(RN) for each p € [1,00) as in Proposition 2.2. Moreover,
the spectrum
o(Hap+V)

is independent of p € [1,00).

Proof. 1t is clear that —(H, + V') generates a positive Cp-semigroup U,y =
(Ua,v(t)),5 on L*(RY) and U,y satisfies a Gaussian estimate of order a.
More precisely,

0< Ua,V(t) < Ua(t)

is obtained for all ¢ > 0 by using Trotter product formula. Hence, by Propo-
sition 2.2, there exists a Cp-semigroup U,v, = (Uoc,V7p(t))t>0 on LP(RM)
such that U, v, is consistent with U,y for each p € [1,00).7Since Trotter
product formula implies that the Cop-semigroup exp(—(Hqp + V') is consis-
tent with Uy,y, we have U, v, coincides with exp(—(Ha,p + V). Hence,
H,vp=Hap+V, where H, v, is the generator of U, vp.

Since the generator of U,y is self-adjoint, Theorem 2.11 implies that the

spectrum of H, v, is independent of p € [1,00). Thus, the proof is completed.
O

§3. Appendix

We prove the statement in Remark 2.6. We first recall what we should prove.

Proposition 3.1. Let K be defined by

Klr.y) = VY w222 <e<2y+1/y)
o 0 (otherwise).

Then, K + K* is hermitian and belongs to A?Da,? for each ¢ € (0,1/2) but does
not belong to A?L;?Q for any ¢ € (0,1/2).

Proof. Let § € (0,1/2). We prove that K € A) , and K ¢ A?U’?Q, from
which the assertion of this proposition follows. In fact, since (wsK)* = wsK*,
(x(I'm])K)* = x(I'[m])K* and the involution is isometric in each of the norms
of Ay, Ay, and Ag, we obtain that K* hence K + K* belongs to A?U&Q. On the
other hand, since supp K Nsupp K* = 0, the inequality || x(T'[m]) (K+K*)||2 >
lx(C[m])K||2 holds for all m € N. Hence, by K ¢ AY, ||x(T[m]°)(K + K*)|2
does not converge to 0 as m — oo. i.e., K + K* ¢ AJ. Since it is clear that
K + K™ is hermitian, we see that the desired assertion concerning K leads to
the assertion of this proposition.
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Now, we prove that K € A?%Q. We first estimate ws(x,y) for all (z,y) €
supp K. Since each (z,y) € supp K satisfies the estimate 2y < x < 2y + 1/2,
we have

1
(3.1) e -yl <y+5 =5+l

1

-2
Hence, ws(z,y) < (3/2+7%)° and ws(z,y) < 27°(3+2)° for all (x,7) € supp K.
Next, we estimate the integrals [ K (x,y)dz and [p K(z,y)dy. It is easy

to see that
0 (y<2)

| K = ;y (v>2),

and there exists a constant C' > 0 such that

=0 (z<4)
/RK(x’y)dy{< C (4<z<9/2).

In the case of x > 9/2, we have by using the trivial inequality va? — 8 < x

z/2
/K(:v,y)dyz/ Vydy
R (z+Vz%2-8)/4

4G (Y

3 L\2 4
T\ 3 z+VaZ —8\3
-G -7
x T\s /T+Vr2—8\3s x4+ V22—
X{§+<§) ( . 4 8) + 5 4 8}
2 VP8 m
3 2(\/ﬂ+(x+\/a:27—8)%) 2
<2\f/5§(:v— %2 —8)
NG 8 2v/2

. < .
22 x4+ V22 -8 VT

Hence, K € A, is shown for each ¢ € (0,1/2) by the following estimate:

3 51
eSS-SuP/ ws(z, y) K (z,y) dv < eSS-Sup(* + y) - — < 00,
yeR  JR y>2 N2 VY

15\9
ess.sup/ ws (2, y)K (2, y) dy < 27°C ess.sup (3 + z)° = (—) C < 0,
2<9/2 JR 4<2<9/2 4
2v/2
ess.sup/ wg(x, ) K (z,y) dy < 270 ess.sup(3 + x)° - i < 00.
z>9/2 JR 2>9/2 VT
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By a similar manner, we can prove that K ¢ Aowé for each § € (0,1/2). In
fact, if (x,y) € supp K satisfies |z — y| > m for an m € N, then y > m — 1/2
and z > 2m — 1 by (3.1). Hence, we have for m > 3,

%mw/xwmmmwwwMK@ww
yeR R

< ess.sup /wa(ﬂf,y)K(fCay) dx
y>m—1/2JR

< esow (5 +0)
< esssup |- +y) -—,
y>m—1/2 2 VY

essisup. | XD, y) o ) K (2. ) dy
z€R R

< ess-sup/ws(x,y)K(w,y) dy
R

x>2m—1
2v/2
< 20 ess.sup(3 + 0. 2V 2
x22m71< ) VT

Since the rightmost side of each inequality above converges to 0 as m — oo,
the norm ||x(I'[m]€) K[|, converges to 0 as m — oc. ie., K € AJ .
Next, we verify that K € Ay for the completeness of the proof. It is easy

to see that
0 <2
/ K(.I‘,y)Q dr = (y )7
R 1 (y>2),

and there exists a constant C' > 0 such that

=0 (x<4),
/RK(x’y)2dy{g C (4<zx<9/2).

In the case of x > 9/2, we have

/2
/K(w,y)Qdy—/ y dy
R (z+V22-8)/4
_ 3%{4952 (Va2 8)?)
! (x — Va2 —8)(3z + Va2 —38)

T 32
x 8

< - < 1.
8 r+Vaz-8"

Thus, ||K |2 < max{1,v/C}, hence, K € As.
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The remaining assertion is that K & AJ. To prove this assertion, note that
if (x,y) € supp K satisfies y > m, then x —y > y > m, ie., (z,y) € I'[m].
Hence, we have

ess.sup/ x(D[m)%) K (z,y)? dz > ess.sup/ K(z,y)?dr =1
yeR R y>m+1 JR

for all m € N. Thus, we conclude K ¢ AY. O]
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