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Abstract. We study the LP” mapping properties of a class of singular integral
operators Tp o 5 related to polynomial mappings. We prove that this class of
singular operators and some of its related maximal operators are bounded on
L? when the kernel function Q in L(log L) (8"~ ') for some o > 0 and the
radial function h(|z|) satisfies a mild integrability condition.
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§1. Introduction

Throughout this paper, let R", n > 2, be the n-dimensional Euclidean space
and S™~! be the unit sphere in R" equipped with the normalized Lebesgue
measure do. Also, we let ¢’ denote £/ || for £ € R™\{0} and p’ denote the
exponent conjugate to p, that is 1/p +1/p’ = 1.

Let L(log L)"(S"1) (for & > 0) denote the space of all those measurable
functions € on S™~! which satisfy

|Mh®yy@ng=/' y)|log” (2 + 12y)]) do(y) < .

Sn—1

The function spaces [°°(L7) (R4) are defined as follows. If 1 < v < oo,

2i o 1/~
vy
P Re) = b Wl =sup ([ m@1 G ) <
JEZ 2i—1 t
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If v = oo, I®(L*®)(Ry) = L*®(R4). Also, for v > 1 define H_ (Ry)
to be the set of all measurable functions h on R, satisfying the condi-
L/
tion [1All o (r, arry) = (fR+ |h(r)|”dr/r) < 1 and define H_(R,) =
L> (R4, dt/t).
It is easy to verify that the following inclusions hold and are proper:

(L) (Ry) CI®(LY) (Ry) CIP(LY) (Ry) CI%(LY) (Ry)
for 1 < g <y < oo, and
Hoo(Ry) =17°(L7) (R4), and H, (Ry) CI(L7) (Ry)

for 1 < v < o0.

Let P = (Pi,...,Py) be a mapping from R"™ into R™ with P; being poly-
nomials on R™ for 1 < 5 < m. To P we associate a singular integral operator
Tpon and its related maximal operators Tp ¢, 5, Mp o and %g )Q defined
initially for C§° functions on R™ by

L) Teanf@) =pv. [ Fo=P ) Ko () du
(12)  Tpou (@) =sw /| [ (@ =P (w) Ko (u) du,

(3 Mpoaf@ =swp [ 1P @)I[0 ()] () do
(1.4) S f(2) = B I Tponf (@),

where h is a measurable function on Ry, Kqp (-) is a singular kernel of
Calderén-Zygmund type given by Ko p(y) = Q') |y " h(ly|), and Q €
L' (S™ 1) and satisfies

(1.5) /Snl Q(u) do (u) = 0.

When m = n and P (y) = y, we shall denote T'p o n by Ton, Tp o, by To

and S5, by S5, Also, if & = 1, denote Tq, by To and Tg, by Tg.

The operators Tp o by T q 5, defined in (1.1)—(1.2) have their roots in the
classical Calderén-Zygmund operators T and 7. In their pioneering work on
the theory of singular integrals ([9]), Calderén and Zygmund proved that the
operators T and T¢; are bounded on LP for 1 <p < oo if 2 € LlogL (S”_l).
It turns out that their result is the best possible in the sense that the space
Llog L (S”_l) cannot be replaced by any other Orlicz space L? (S”_l) with
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a ¢ which is increasing and satisfies lim;_ % =0 (e.g., ¢(t) =t (logt)' "¢,
0<e<1l).

The study of the LP boundedness of the generalized Calderén-Zygmund
operators T, o and T o, was began by R. Fefferman ([18]) and subsequently
by many others under various conditions on € and h (see for example, [10],
21), (14], [16], [5), [6]).

Our point of departure is the following LP boundedness result from [16].

Theorem A. Suppose that 2 € H'(S" ') (the 1-Hardy space on S"~! (see
[12])) and h € I*°(LY)(Ry) for some v > 1. Then Tpqy is bounded on
LP(R™) for |1/p—1/2| < min{1/2,1/4'} with bounds on 1Tp.0pnll,, may
depend onn, m, h(-) and deg (P;), but they are independent of the coefficients
of {Fj}.

We point out that the range for p in Theorem A is the full range (1, 00)
whenever v > 2 and it becomes a tiny open interval around 2 as v approaches
1. To improve the range of p in Theorem A, Fan and Pan in [16] showed that,
if (2 satisfies the stronger condition 2 € L9(S"~!) and P is an odd polynomial
mapping, the LP boundedness of T o, can be preserved for the full range
1 < p < oo, regardless how close v is to 1. More precisely, they proved the
following.

Theorem B ([16]). Suppose that P(—z) = —P(z), Q@ € L1(S"') and
h € 1°°(L7) (Ry) for some ¢ > 1 and v > 1. Then Tpgay and Tp g, are
bounded on LP(R™) for 1 < p < oo with bounds on || Tp.qon and HT;;,QJL‘

independent of the coefficients of {P;}.

p.p p,p

In [6], Al-Salman and Pan were able to show that the result in Theorem B
continues to hold if the condition Q € L(S™ 1) for some ¢ > 1 is replaced by
the weaker condition Q € Llog L(S™!) as described in the following theorem.

Theorem C. Suppose that P (—xz) = —P(z) and h € [*°(L") (R4) for some
v > 1. If Q € Llog L(S™™!), the operators Tp o and Tp . are bounded on

LP(R™) for 1 < p < oo with bounds on ||Tpapull,, and HT;;Q}LH indepen-
’ T lpp
dent of the coefficients of {P;}.

In a recent paper [3], H. Al-Qassem investigated the LP boundedness of the
special class of operators Tq , if h satisfies the stronger condition h € H_(R)
for some v > 1 and showed that this class of operators behaves completely
different from the class of Calderén-Zygmund operators T = 71 . In fact,
Al-Qassem proved the following:

Theorem D ([3]). Suppose that h € H_ (Ry) for some 1 < v < oo and
Q € Llog L)Y/ (S""1). Then Tj.q is bounded on LP(R™) for 1 < p < oco.
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Note that the singular integral operator Tqj; is bounded on LP if Q €
L(log L)Y/ (S"1) and h € M. (R4) for some v > 1, while the classical
Calderén-Zygmund singular integral operator T = T is bounded on L”
if O € L(log L)(S™1). It is also worth mentioning that a proof of Theorem
D cannot be obtained by a simple application of existing arguments on sin-
gular integrals. Even though, there is a more restricted condition on h, if we
try to apply previously known arguments then we can prove Theorem D only
for p satisfying [1/p — 1/2| < min{1/4’,1/2}. To get around this difficulty,
Al-Qassem in [3] employed an argument where one of its key ideas is based
on the maximal operator %g’ ) (see also [19]). Historically, the study of the L?

boundedness of the related maximal operator %8 ) began by L. K. Chen and
H. Lin in [11] and subsequently by many other authors [1], [3], [13] and [19].
L. K. Chen and H. Lin in [11] proved the following:

Theorem E. Assume n > 2,1 < v < 2 and Q € C(S"'). Then %8) is
bounded on LP(R™) for (yn)" < p < oco. Moreover, the range of p is the best
possible.

In [1], Al-Qassem improved the result in Theorem E as described in the
following:

Theorem F. Letn>2 and 1 <~y <2. Then

(a) If Q € L(log L)Y (S" Yand satisfies (1.5), then %g’)is bounded on
LP(R™) for v" <p < oo;

(b) There exists an Q which lies in L(log L)Y/?>~¢(S™ 1) for all ¢ > 0 and
satisfies (1.5) such that %g) is not bounded on L%(R™).

One of the main purposes of this paper is to investigate the L? boundedness
of the operators Tp o and T, if h € H_(R4) for some 1 < v < oo and
Q € L(log L)Y/7(S"1). Also, we seck a solution to the following problem
which was left unresolved in [3]: Whether there are some results concerning
the L” boundedness of the operators T 5 and T¢, , if h € H_ (Ry) for vy =17
We shall obtain a positive answer to this problem. The actual statements of
our results will be given in the next section.

§2. Main theorems

()

We shall start with the following result concerning the maximal operator S5 ¢,
which gives the LP boundedness of %g’ )Q whenever (2 is allowed to be very rough
on the unit sphere.
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Theorem 2.1. Suppose Q € L(log L)l/“/(S”_l) for 1 <~ < 2. Then %g)g
is bounded on LP(R™) for v/ <p < oo and 1 <~ < 2; and %g)g is bounded
on L>*(R™) for v = 1. The bounds on ‘ %g)QH may depend on n, m, v and
deg (Pj), but they are independent of the coeﬂiz’ipents of {P;}.

Here and in the sequel, we mean by the condition Q € L(log L)Y/ (S"~1)
for v = 1 is that Q € LY(S"~1).

Theorem 2.2. Suppose that h € H_(Ry) for some 1 < v < oo and Q2 €
L(log L)/ (S™1). Then

(a) Tpan is bounded on LP(R™) for 1 <p < oo if 1 <~ < oo; and
(b) Tp.q,n is bounded on LP(R™) for 1 <p < oo if y=1.

The bounds on \|Tp,g7h||pp may depend on n, m,y and deg (P;), but it is
independent of the coefficients of {P;}.

Theorem 2.3. Suppose that h € H_(Ry) for some 1 < v < 0o and Q2 €
L(log L)Y (S"1). Then Tp o and Mp q ) are bounded on LP(R™) for v <
p < oo. The bound of the operator norms HTI;’Q’thp and HM7)7Q’th7p may
depend on the degrees of the polynomials Py, ..., Py, but it is independent of

their coefficients.

Theorem 2.4. Suppose that h € H_(Ry) for some 1 < v < 0o and Q2 €
L(log L)Y (8™ 1. If P(—x) = —P(x), then T% o n and Mpqp are bounded
on LP(R™) for any p € (1,00). The bounds of the operator norms HT;’QJLH
and ”M’pilh”p’p may depend on the degrees of the polynomials Py, ..., Pf:j
but they are independent of their coefficients.

Remark 1. Note that

) LY(S"Y)(g > 1) C Llog L)(S"™") ¢ HY(S"™1) C LY(S"7Y),
) L(log L)’ (S™1) ¢ L(log L)* (S" 1) if 0 < o < 3,
) L(log L)" (S™') ¢ HY(S™™!) for all a > 1, while
)

(2.1
(2.2
(2.3
(2.4)  L(logL)" (8™ Y ¢ HY(S" 1) ¢ Log L)" (8" 1) for all 0 < v < 1,

and all inclusions are proper. Thus, we notice the following: (i) Theorem 2.1
represents an improvement and extension over the result in Theorem E and it
is an extension over Theorem F, (ii) Theorem 2.2 represents an improvement

in the range of p over Theorem A in the case h € H. (R ) for some 1 < v < o0
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and Q € L(log L) ("1, (iii) since Llog L(S" ) ¢ L{log L)"" (8" 1) for
any v > 1, Theorem 2.4 represents an improvement over Theorem B in the
case h € Hy(R4) for some 1 <y < 0.

Remark 2. For the case h € L*°(R ), the authors in [7] showed that there is
a function f € LP such that the maximal operator acting on f (i.e. %goo)(f))
yields an identically infinite function. It is still an open question whether the
LP boundedness of %g’ ) holds for 2 < v < oco. We notice that the singular
integral operator Tp 1, is bounded on LP(R™) for all 1 < v < oc.

Remark 3. As we mentioned previously that the class of operators T ;, when
h € H,(R;) behaves completely different from the classical class of Calderén-
Zygmund operators T. Also, it may be interesting to point out that Theorem
2.2 implies that the operators Tq, , when h € H; (R ) are bounded on L' (R™)
and L*°(R™), while the classical Calderén-Zygmund operators Tq are not.
Furthermore, we notice that the operators Tq ;, when h € H;(R4) are bounded
on LP if Q € LY(S™ 1), while it is well-known that the classical Calderén-
Zygmund operator Tq is not bounded on LP for any p if Q € L*(S"!) unless
Q) is an odd function on 8" 1, i.e., Q(z) = —Q(z) for z € S1.

Remark 4. The proof of our results will mainly be a consequence of two
general lemmas stated in Section 4. The main tools used in this paper come
from [1], [3], [4], [19], [14] and [16], among others.

Throughout the rest of the paper the letter C' denotes a positive whose
value may be different at appearance.

83. Some definitions and lemmas

We start this section by introducing some notation. For w € N U {0} and
k€ Z, let p, = 2@t For a positive integer d, we let L(R",R%) denote
the space of linear transformations from R™ into R%, Vj; denote the space of
real-valued homogeneous polynomials of degree d on R™ with 6; = dim(V})
and A, be the class of polynomials of n variables with real coefficients. For
P = (P, ..., Py) € (A,)% we shall use deg(P) to denote max;<i<qdeg(Py)
and for P(y) = 3,14 aay® € Va, we set [|P|| =32, 4 laal. If d is an even,
positive integer, then we have |z|* = (22 + 23 + --- + 22)%2 € V. We now
choose a basis {n1, ..., ng,} for the space Vg such that 7, (x) = |z| for z € R™.
It is clear that there are constants C; and Cy such that C; (Efdz 1 |cj\) <

P[] < Co (E?d:l \cj|> for every P = E?d:l cjn; € Vq. We define the linear
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transformation Yy : V; — Vy by Yy(P) = Zfd 5 cyn; for P = E] 1¢inj. Also,

define the linear transformation 27 : V; — V; by

n idg, if dis odd
Zq = P
Yy if d is even.

The following result follows from Lemmas 3.3-3.4, 3.7 and Remark 3.6 in [16].

Lemma 3.1. Let d € N. Then there exists a positive constant A, such that

(3.1) wp/ P(y) — A" do(y) < Ag. | Z3(P)]
AeR JSn—1

for every P € Vg, and ¢ € [0,e(d)), where e(d) = m If U is a
subspace of Vg satisfying |x| ¢ U, then there exists a constant A, _ such that

E

(32) sup [ |P() = A doly) < Ay 1P

AR

holds for e € [0,e(d)) and all P € U. The constant A, _ may depend on the
subspace U if d is even, but it is independent of U if d is odd.

Lemma 3.2. Let w € NU{0} and Q_(-) be a function on S™~1 satisfying
the following conditions: (i) ||, || f2(gn-1y < p?, and (ii) 1201 gn-1y < 1.
Suppose that F': R™ — R is a function given by

!
(3.3) = Pi(x)+ W (|zl),
7=0
where Pj(-) is a homogeneous polynomial of degree j, 0 < j <1 and W(.) is
an arbitrary function. Then there exist a positive constant C' independent of
k, and w such that

(3.4)

(U

If U is a subspace of V; satisfying \:L‘|l ¢ U, then there exists a constant C'
such that

(3.5)

A

holds for k € Z and F € U given by (3.3) with P, € U. The constant C' may
depend on the subspace U if l is even, but it is independent of U if | is odd.

/ Q. (2)e= ) dor ()
Sn—l

2 ap\ * ~ S
—ﬁ < Clw+D)Y2 ok lzml) T

/ Q_ (2)e ) 4o (z)
Sn—1

2 d 1/2
7) < O+ )2 (o RY) T
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Proof. By a change of variable, we have

(L
< (/f

k+1
w

1/2
2@/
t
1/2
2£/
- )

/ Q, (z)e T 4o (z)
Sn—1

/ Q, (:E)e_iF(pim)da(x)
Sn—l

By writing

2

/ Q_(z)eF(Et) g ()
Sn—1
- | 0, ()0, ) (P F L) dg () do (y)
Sn—lXSn—l
and using Van der Corput’s lemma we get

/fw G (ol te)—F (o ty)) %' < C'min {(w 1), | ) - Pz(y))‘_%}

_1
1

< Clw+1)|ol(Pi @) - PG|

Therefore, by Holder’s inequality and (3.1) we get
Pkt

[/

< Cw+ Y29, )l 2ggns) (P 12PN

/ Q, (z)e ) 4o (z)
Sn—1

By condition (i) on €2, we get

i

By interpolating between the preceding estimate and the trivial estimate

(/;

we obtain (3.4). The proof of the inequality (3.5) follows by the same argument
as proving (3.4) except we need to apply (3.2) instead of (3.1). This completes
the proof of the lemma. O

k1 2 g 1/2 1
w T
-ﬁ <Cw+1)"702 (1 zr)l) ™

/ Q_(z)e 1) g ()
Snfl

k+1
w

/ Q_ (2)e ) 4o (z)
Sn—1

th 1/2
7) S C((A)"‘ 1)1/2
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Lemma 3.3. Letw € NU{0}, h € H_(R) for some 1 <y < oo and Q(-) be
a function on S™~1 satisfying the following conditions: (i) 12, | 2(gn-1y < P2,
and (i) ||, |1 gn-1) < 1. Let F' be given as (3.3). Then there exist a positive
constant C independent of k, and w such that

(3.6)

k+1

/ h
ok

If U is a subspace of V; satisfying |z|' ¢ U, then there exists a constant C'
such that

(3.7)
phtt
A

holds for k € Z and F € U given by (3.3) with P, € U. The constant C' may
depend on the subspace U if l is even, but it is independent of U if | is odd.

h(t) %

/ Q_(2)e 1) g ()
Snfl

< o1} (o 1P T

1
MO T | < w7 (o ) T

/ Q. (2)e= ) dor ()
Sn—l

t

Proof. Let us first prove (3.6). By Holder’s inequality we have

k+1

Pl }

/ / Q_ (e F ) dor ()
pL’f} Sn—1

pht1 pht1 ' dt 1/4
([ worg) ( ‘)

[

00 1/ ‘ ~ i 1/4

< ( / |h(t) ) / Q_ (x)e T 4o (z) —

0 p Sn—1
phtl S 1/
(/ )"
( ok, t
CASE 1. v € (1,2]. Since | [g.—1 €2, (x)e*iF(m)da(xﬂ < 1 we get immediately

Now, we need to consider two cases:
’ h(t
/ Qw(x)e_ZF(m)da(x)"i—)’dt
Sn—l

1/
Qﬂ /v
t

dt

ht) T

Q, (2)e ) 4o (z)

Snl

/ Q. (2)e= ) dor ()
Sn—l

k+1

/ A
ok
ph+l
S /
ok

which in turn leads to (3.6) by invoking Lemma 3.2.

/ Q_ (2)e ) 4o (2)
Sn—1
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CASE 2. v € (2,00]. By Hélder’s inequality we get

’ 1/+"
Vﬂ /v
t

/ Q_ (2)e~ P9 g ()
Snfl

/ Q. (2)e= ) dor ()
Sn—l

k+1
k+1

/ pw
ok
oL

9 1/2
< Ow+ 1)1/ =1/2) (/ ﬂ)
ok ¢

which easily implies (3.6) by applying Lemma 3.2 and thus the proof of (3.6)
is complete. The proof of (3.7) is similar. O

Definition 3.4. For suitable mappings ® : R® — R™ and € : S"~! — R,
we define the measures {A\p .+ :t € Ry} on R™ by

| e [ @00 @)

Also, we define the measures {0¢ 0k : k € Z} and the maximal operator
030, on R™ by

fdogp. — / F(® () Ko, (u) du,
RrRm™ k <|u\<p’“+1

and

b0 (f) = sup flowul + I,
€

where |0 k| is defined in the same way as og i, but with Qh replaced by
|Qh|.

Let Q(t) = (Q1(t), ..., Qm (t)) be a mapping defined on R with Q; € A;
for 1 <5 <m. Let
Mof @) =sup & [ 1 (e - Q)] dt.
r>0 R
[t|<R

We shall need the following LP boundedness result due to Stein and Wainger
in [26].

Lemma 3.5. For every 1 < p < oo, there exists a positive constant C)p such
that

(3-8) Mo fll, < Cpllfll,

for f € LP(R™). The constant C,, may depend on the degrees of the polyno-
mials {Q;}, but it is independent of the coefficients of {Q;}.
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Lemma 3.6. Let h € H_(Ry) for some v > 1 and Let P = (Py, ..., Py)
be a polynomial mapping from R™ into R™. Let Q, be a function on S"~!
satisfying ||, || 1 gn-1y < 1. Then for v/ < p < oo and f € LP (R™), there
exists a positive constant C, which is independent of w such that

(3.9) o5 (N, < Colw + DY |11, -

Proof. By Holder’s inequality we have

k+1

1/~
P ~d '\ /Y ' N\ 1/
b (f) < ( [ f) (mzasr) " <o ()
Py
where
ME(f) = sup / f@—P@)R, W) |y dy
kE€Z | J pk <|y|<pk+l

We notice the proof of this lemma is completed if we can show that

(3.10) MG (Dl omy < Cp(w + 1) [Lf [l Lo remy

for 1 < p < oo and for some constant ), > 0 independent of w, and the
coefficients of Py, ..., P,,. However, (3.10) follows as a simple consequence of
(3.8). O

Lemma 3.7. Let h € H_(Ry) for some v > 1 and Let P = (P1, ..., Py)
be a polynomial mapping from R™ into R™. Let Q_ be a function on S™!
satisfying ||, || p1gn-1y < 1. Then for v < p < oo, there exists a positive
constant C, which is independent of w such that

keZ kEZ

1/2 1/2
(Z 0P kw * gk|2) < Cylw+ )Y <Z |9k | )
p

p

holds for arbitrary measurable functions {gy}on R™.

The proof of this lemma follows the same argument as in [3] (see also [17]).
We omit the details.

84. General results

We shall need the following lemma which has its roots in [14], [16] and [5].
A proof of this lemma can be obtained by the same proof (with only minor
modifications) as that of Lemma 3.2 in [5]. We omit the details.
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Lemma 4.1. Let N € N and {Jl(j) keZ, 0<1< N} be a family of Borel

measures on R™ with a,(go) =0 for every k € Z. Let {a; : 1 <1 < N} C
R;/(0,2), {m; : 1 <1l < N} CN,{oy:1<1< N} CRy,, and let
Ly e LR™,R™) for 1 <1< N. Suppose that for all k € Z, 1 <1 < N, for
all ¢ € R™ and for some C >0, B>1, A >0, C >0 and for some B > 1 we
have the following:

() o] < oB

o

(i) o) (©)] < OB afPLi(©)] 7 ;

(i) [ (€) ~ 507V (€)] < OB oL ()|

(iv) For some pg € (2, 00),

0] 2 v A 2 2
> Jol « <oB |1l

keZ keZ
€ Po € Po

holds for all functions {gi} on R".
Then for py < p < po there exists a positive constant C such that

Z O'I(CN) * f

keZ

< CpB* | f | oy
LP(R™)

and

1/2
N 2
(Z o s 1] ) < CpB 1 orry
keZ Lr(R7)
hold for all f in LP(R™). The constant C,, is independent of the linear trans-
formations {Ll}[]\il'

The proof of Theorem 1.2 (b) will rely heavily on the following lemma.
Before stating this lemma, we introduce some notation. For 1 < p, ¢ < oo, let
LP(LY(Ry,dt/t),R™) be the space of all measurable functions f;(z) defined
on R" x Ry with mixed norm || f{| 1o (za(r , at/t),rn)» Where

7 ceameaurn e = 10O ags o s

_ (/ (/m \ft(x)|th/t>p/q dx)

1/p
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If p = 00 or ¢ = 00, we can define LP(L4(R4,dt/t),R™) by the usual modifi-
cation.

Lemma 4.2. Letn,m e N, L € L(R",R™), a > 2, C >0 and gy > 1. Let
{o,:t € Ry} be a family of finite Borel measures on R™. Suppose that there
are constants o € (0,1], C > 0 and B > 0 such that the following hold for
keZ,te Ry and &£ e R":

(4.1) loe]] <15
a(k+1)B d i%
(42) [, 1e©F T < cB@ L)

o(k+1)B

dt
Sup/ lloe| * f] —
keZ JakB 3

for f € LP(R™) and 1 < p < co. Then for ¢ < p < 0o and 2 < g < o0, there
exists a positive constant Cp, such that

(4.4)
[ee] dt 1/q
Mmmz“(A\m*fF;)

for all f € LP(R"™). The constant C), is independent of B and L.

(4.3) S OBl o @mmy

LP(R™)

< CoBY|f | oy
LP(R")

H l|os * fHLQ(R+,dt/t)‘

Proof. By an argument in [16], we may assume that m < n and L(§) =
(&1, ..., &m) for & = (&1, ...,&) € R™. We first prove (4.4) for the case
q = 2. The proof of this case follow a similar argument employed in the
proof of Theorem 2.1 in [4] except for minor modifications. For the reader’s
convenience, we shall only present a sketch of the proof of this case and omit
some details. Let {1;}>  be a smooth partition of unity in (0, co) adapted

to the intervals [a~U*VB ¢=U-1B] More precisely, we require the following:
;€ C®, 0 <4y <1, 34 (1) = Lisuppyyy C [a”UHDB, o= G705, ‘—dsffi;(t)‘ <
J

tgs, where C' can be chosen to be independent of B. Let \17](5) = Y;(|L(€)]).
Decompose

[ro(r) = Z Z(\Ijk+j * Ot % f)(iE)X[akB’a(kH)B)(t) = Z Fj(x7t)

JEZ keZ JEZ

and hence

(/OOO\Ut*f(:U) 2%>1/2 < z; (/OOO\Fj(x,t) 2%)1/2 = M, f(z)
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holds for f € S(R™). To this end, we first compute the L?-norm of M;(f).
By the same argument as in [4] we get

(4.5) [M;(£)lly < CBZa= PRI £l
On the other hand, we compute the LP-norm of M;(f). For p > 2, there
exists a nonnegative function ¢ in L®/?)" with 191l (2)» < 1 such that

(k+1)B

MOE=5 [ [ W @ Foterts

kEZ
(k+1)B

d
<SS s s @) Faa)da

keZ

q(k+1)B g
< O[3 1wy # £ sup/ ool + @) &
keZ JakB t
keZ p/2 (p/2)
SCB|> [y fP|
keZ p/2

where g(x) = g(—x). By using (iii), the Littlewood-Paley theory, we have
(4.6) IM; (), < CBY2||f]],, for 2 < p < cc.

By interpolation between (4.5) and (4.6) we get

(4.7) IM(H, < CBY2a~2 £ for 2 < p < o0

and hence we have

oo dt\ Y2
</ |Ut*f|27>
0

for 2 <p < oo. Also, by condition (1) we have

<D IMD, < B2 11,

JEZ

(4.8) '

(4.9)  or* f(2)] < ||fll for f e L>*(R"™) and for almost every x € R".

Now, we define a linear operator 1" on any function f on R™ by T'(f)(z) =
o % f(z). We use now an idea appearing in [19] (see also [3]). From
the inequalities (4.8) and (4.9), we interpret that [|T'(f)|| 1o(r2®r, at/)Rm) <
CB'/? 11l Lo (mny for 2 < p < oo and [[T(f)|| oo (100 at/t),m7) S C I | oo gy
Applying the real interpolation theorem for Lebesgue mixed normed spaces
to the above results (see [8]), we conclude that |T(f)|o(ram, at/t)rr) <
CB/4 HfHLp(Rn) for ¢ < p < 0o and 2 < ¢ < oo which in turn implies (4.4).
Thus Lemma 4.2 is proved. O
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Lemma 4.3. Let N € N and {Ugl) teRy, 0K < N} be a family of Borel

measures on R"™ with 0,50) =0 forallt € Ry. Let {a; : 1 <1 < N} C
R;/(0,2), {m; : 1 <1 < N} CN,{a:1<1< N} C R4, and let
Ly € L(R™",R™) for 1 <1 < N. Suppose that for allt € Ry, 1 <1 < N,
for all £ € R™ and for some C > 0 and for some B > 1 we have we have the
following:

i) HU(Z) < C;
al(k+1)B ) 2dt 2L
w [ el T CB\ L) "
lal(kJrl)B l th o
@ [ - T osldrue)”
aq

(iv) For f € LP(R™) and 1 < p < o0,

(k+1)B
a dt
o [ a5
k€Z JakB 3
P

Then for 2 < p < oo and 2 < q < 0o, there exists a positive constant C)p such

that
o0 A
(1)

(4.11) < CpBY| 1 1oy

(4.10) < CB| fll,

LP(R"™)

]

|

Lq R+ ,dt/t) I (R")

for all f € LP(R™). The constant Cp is independent of B and the linear

transformations {Ll}fil.

. The idea of the proof will be very much similar to the one appearing in the
proof of Theorem 7.6 in [16]. Without loss of generality, we may assume that
0<o<1,m<nand Li(&) = (&, ..., &) for § = (&, ..., &) € R™ and
1 <1 < N. Define the family of measures {ugl) :1 <1< N,t € Ry} as
follows: choose and fix a function 6 € C3°(R) such that 6(s) = 1 for [t| < &
and 6(s) = 0 for [t| > 1. Let ¢(t) = 0(t?) and for t € Ry, let

(412) A
=) T »@? L@ -6 I w@® L)

I<j<N I-1<j<N

(4.13) i) = e (e) — 6NV (v (akP ILi(€))).
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By straightforward calculations, conditions (i)—(iii) and (4.12)—(4.13) we get

(4.14) H ,,Lg”H <,

(k+1)B
a;
(4.15) /
akB

By condition (iv), it is easy to see that

2 «@
D ‘ i CB(afP |Ly(&))*F forall 1 <1< N.

al(k+1)B o
sup/ H/it
keZ afB

for 1 <p<oo, fe LP(R") and 1 <[ < N. By (4.14)—(4.16) and invoking
Lemma 4.2, for 1 <I < N, qg<p< oo and 2 < g < oo, there exists a positive
constant C), such that

1/
(4.17) H (l) f‘th> q
p

(4.16) < CB| fll,

Yo
p

< CpBY9| £,

holds for all f in LP(R"). Since ag ) = 0, we find that

N
(4.18) o ="

and hence by (4.17) we get (4.11). The proof of Lemma 4.3 is complete. O

85. Proof of the main results

Proof of Theorem 2.1. Assume that Q belongs to L(log L)'/ (S*~1) for 1 <
v < 2 and satisfies (1.5). We decompose 2 as in [3] (see also [6]). Let E, = {x €
S"1:|Q(z)] < 2} and for w € N, let B, = {z € 8"~ :2" < |Q(z)] < 2¢F}.

For w € NU{0}, set D = {w eN: HQXEW ‘1 > 274“’} and define the sequence
of functions {€2, },cpusoy by

o= T @ > ([ 0, @)

we{0}U(N—-D) we{0}U(N—-D)

and for w € D,

00 = (Joxe. ) (20 @ - [ 0, @aoto)).
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Then one can easily verify that the following hold for all w € D U {0} and for
some positive constant C"

(5.1) 12,11, <Cp2, 192,11, < C;
(5.2 > @+ DY x| < 10 15y
weDU{0}
(5.3) /Sn1 Q, (wdo(w) =0, Q= Y HQXEW \1 Q,.
weDU{0}
By (5.3), we have
(5.4) SPr@ < Y x| W r@).

weDU{0}
We notice that the proof of Theorem 2.1 is completed if we can show that the
inequality

(55) |55 1]| < Cotw+ M 111,

holds for ¥/ < p < o0 if 1 <y < 2 and for p = o0 if v = 1. Let 0 <
ny < ng < --- < ng = deg(P) be non-negative integers, and polynomials

. N
{P!:1<v<N,1<1< N} such that for z € R",P(z) = > Pl(z) + A(|z|),
=1

whete PUz) = (Pl(x),-. - Ph(2) € (Mun)™, At) = (A1(0), ..., An(t))

with t € R, Z(P!) = P!, and A, EAlforlgugNandlglgN.

For 1 <1 < N, let §; denote the number of elements of {3 € (N U {0})"

18 = m} and wite {8 € (NU{O}" : 8] = m} = {B(1),..., B(6)}. Write
I

le(as) = > ;%% and define the linear mappings L; : RN — R% by
k=1

m

Li(€) = <Z & Z n, ]@) for 1 <j<N,1<1<N. Let &) =
j=1

! . -
> Pi(x) + W(|z]) for 1 <1 < N and ®¢(z) = W(|z|). For simplicity, let
j=1

U;(f,)w = U@;,k,w)\g?t = Aoy and o (f)(2) = = sup Hak

N.

% ( )‘forlglg

Now, by definition of AD it s easy to verify that

w,t?

(5.6) (VA Iy

(5.7) ( /p

2 ~
Cf) < Clw+1)"2for 1<I<N.
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By invoking Lemma 3.1 we have
k+1

(5.8) ( /p :“

w

X

w41

PR L ()

1/2
. 2 dt
/\(j,)t(g) 7) < Clw+1)H?

We also, by a change of variable we have

"
([ (.

< Clw+ Y2 |okLi(g)|.

5 gt 1/2
SAGEPIE) 7)

9 1/2
' dt
o~ (@il ty) =11 (o ty)] 1‘ 1, (y)| do(y )) 7)

By combining the last estimate with the trivial estimate

/ -
ok

w

> gt 1/2
—) < Clw+1)Y2

NAGEPRIG]

t

we obtain

(5.9) ( /,, pH

Also, by Lemma 3.5 and the definition of AU )t we get

ot dt
o ([ e
keZ \Jpk ’ I

forlglgﬁand1<p§oo.

«a

2 dt 5
prk L)

1/2
NHOEPIRG —) < O+

)

t

< Gplw+ D) IF1,

(5.10)

Assume 1 < v < 2. By duality, we have

/ L mosa@ =P e, T

’ 1/
7@ /v
t

%g)gwf( = sup
hEH (R4)

([

(5.11) = ([ e r@)|' %)/ |

/Snl f(z =P (tu)Qy, (u) do(u)
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Now by (5.6)—(5.11) and invoking Lemma 4.3 we get (5.5) for v/ < p < oo if
1 < <2. For y=1, (5.5) follows easily by (5.6). The proof of Theorem 2.1
is complete. ]

Proof of Theorem 2.2. Assume that h € H_(R; ) for some 1 < < oo and
Q belongs to L(log L)'/7' (8" 1) for 1 < 4 < 2 and satisfies (1.5).

Proof of part (a). Notice that (T'p.qpf)(z) = lim._g T7(;57)Q?hf(x), where

T7(,5)Q 5 1s the truncated singular integral operator given by

(5.12) 7> Q hf( r) = flx =P (y))KQ,h (y) dy.

ly|>e

Let us first consider the case 1 < v < 2. We follow a similar argument as
in [19]. Without loss of generality, we may assume that ||A|| LY (R drjr) = 1

By (5.3) we deal with Tff;l , instead of T7(f)Q - Notice that, by Hélder’s
inequality we have

15kt @] < [T Ol « 5] §

00 -~ ~! dt 1/
<([Tpes@[ )
0

Tih,f||, < |35af]| < CO -+ IS, for v < p < o0
and 1 < fy < 2and C is 1ndependent of e. By a standard duality argument,
HTPS)Q wf § C(1 +w)/ | fll, for 1 <p <+ and 1 <~ <2. By apassage
to the hmlt (as e — 0) and applying Fatou’s lemma we get HT’[J7Qw7thp <
C@ + w)/ [fll, for v/ < p < oo and for 1 < p < 4. If v = 2, then
we are done; otherwise an application of the real interpolation theorem gives
HT’/D,Qw,thp <C1+w)/ | f1l, for the remaining range of p: v <p <.
Now we consider the case 2 < v < oo. By the above argument and
Theorem 2.2 is proved for the case 2 < v < oo if we show that
HTPS)Q thp < Cp(1 + w)t |fll, for 1 < p < co. To this end, decompose

Therefore,

T7(>E,Qw,hf = k%:z op ko * [ and then invoking Lemmas 3.3, 3.6, 3.7 and 4.1
along with following a similar argument as in the proof of Theorem 2.1 to get

HT;}2 thp < Cp(1 +w)/ | fIl,,, where Cp is independent of €. In particu-

lar,

‘T7(’79thHp < Cp(1 +w) [ f[l, for 2 < p < co. By the routine duality
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argument, H ’pQthHp < Cp(1+w)/ [£l, for 1 < p < 2. This completes
the proof of Theorem 2.2 (a).

Proof of Theorem 2.2 (b). Assume v = 1. Again we deal with the
truncated operator T7(f)Q p, instead of Tp g . Without loss of generality, we

may assume that [|h[| g, 4y = 1. It is easy to see that ‘Tff)ghf(x)‘ <
[ £l oo (momy [[€2[ 1 (gn—1y for all f € L*°(R™) and for almost every z € R™.

In particular we have HTP%thH < [ prgn—ry 1l poe rmy for all

L (R™)
f € S(R™). By the routine duality argument, we have HT7(’€Q wt ‘

LI(R™) —
[ prgn—1y [[fll 21 gmy for all f € S(R™). Thus by interpolation between

the last two estimates we get HTPth‘ - < 12l g1 gn-1y I f 1l Lo mmy for

1 < p < oo and all f € S(R™). Finally, using density argument we
(e) ‘
t ||
e L
feLP(R™). O

< 19 pxgn-1) I fll Lpmmy for 1 < p < oo and for all

Proof of Theorem 2.3. By (5.3), we have

Mpanf(z) < > HQXEW

weDU{0}

Li(sn—1) M7’7|Qu|7h'

By Lemma 3.6 and noticing that
[Maj, 1] < Cllob oD, < Gt +)M 1151,
we get

Mpanfl, <C ¥ (1+w) |ox 141,

weDU{0}
<Cp HQHL(logL)I/w/(snfl) Hpr

The proof of the L” boundedness of T, , j, follows by the above estimates and
following the same argument as in [5] (see also [17]). We omit the details. [

w Ll(Snfl)

Proof of Theorem 2.4. The proof of this theorem follows by the above
estimates and the arguments in [5]. Again we omit the details. O

86. A further result

We shall end the paper by presenting an additional result.
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Theorem 6.1. Let h € H_(Ry) for some 1 < v < oo. Let P(x) be a real-
valued polynomial on R™ and Q € L(log L)Y/ (S"~1) and satisfies (1.5). De-
fine the operator H on R™ by

i @) =y [ eiP@—y)%”—‘yf’)h(u oD (y)dy

n |z —

Then H is bounded on LP(R™) for 1 <p < o0 if1 <y < o0 and for1 <p < oo
if v = 1. The bound for of the LP? norm of H may depend on the degree of the
polynomial P, but it is independent of the coefficients of P.

By a well-known method, Theorem 6.1 follows from Theorem 2.2. For more
information, see the proof of Theorem 9.1 in [16].
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