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Cemil Tunç and Fevzi Erdogan

(Received February 10, 2006)

Abstract. By using Lyapunov’s function approach [13], some new results
were established, which guarantee that the zero solution of non-linear vector
differential equations of the form

X(5) + a(t)Ψ(Ẋ, Ẍ) ¨̇X + b(t)Φ(X, Ẋ, Ẍ, ¨̇X, X(4)) + c(t)Θ(Ẋ) + F (X) = 0

is unstable.

AMS 2000 Mathematics Subject Classification. 34D05, 34D20.

Key words and phrases. Instability, Lyapunov’s second (or direct) method, non-
linear differential equations of fifth order.

§1. Introduction

Instability problems for various linear and non-linear differential equations of
higher order, third-, fourth-, fifth-, sixth-, seventh and eighth orders, have
been studied by many authors. For some related contributors, we refer to the
papers of Ezeilo ([1, 2, 3, 4, 5], Krasovskii [6], Liao and Lu [8], Li and Yu
[9], Li and Duan [10], Lu [11], Lu and Liao [12], Sadek ([15, 16]), Skrapek
([17, 18]), Sun and Hou [19], Tejumola [20], Tiryaki ([21, 22, 23]), Tunç ([24,
25, 26, 27, 28, 29, 30, 31, 32]), Tunç and Sevli [33], C.Tunç and E. Tunç
([34, 35, 36, 37]), E. Tunç [38] and the references cited therein. In all of
the above mentioned works, taking into consideration Krasovskii’s criteria [6]
and using the Lyapunov’s second (or direct) method [13] the results there
were proved by the authors. The reason for this case is, perhaps, due to the
effectiveness of Lyapunov’s second method [13] and Krasovskii’s criterion [6].
Now, it should be better to summarize some works, in particular, focused

35
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on the instability of nonlinear differential equations of fifth order. Namely,
according to our observations in the literature, first, in 1978 and 1979 for the
case n = 1, Ezeilo ([2, 3, 4]) investigated the instability of zero solution for
the following nonlinear scalar differential equations:

x(5) + a1x
(4) + a2 ¨̇x + a3ẍ + a4ẋ + f(x) = 0,

x(5) + a1x
(4) + a2 ¨̇x + h(ẋ)ẍ + g(x)ẋ + f(x) = 0,

x(5) + ψ(ẍ)¨̇x + φ(ẍ) + θ(ẋ) + f(x) = 0

and
x(5) + a1x

(4) + a2 ¨̇x + g(ẋ)ẍ + h(x, ẋ, ẍ, ¨̇x, x(4))ẋ + f(x) = 0,

respectively. Later, in 1987, Tiryaki [23] established a result on the instability
of zero solution of scalar differential equation

x(5) + a1x
(4) + k(x, ẋ, ẍ, ¨̇x, x(4))¨̇x + g(ẋ)ẍ + h(x, ẋ, ẍ, ¨̇x, x(4))ẋ + f(x) = 0.

On the other hand, in 2003, Sadek [16] studied the instability behaviors
of solutions of fifth order nonlinear vector differential equations described as
follows

X(5) + Ψ(Ẍ) ¨̇X + Φ(Ẍ) + Θ(Ẋ) + F (X) = 0

and
X(5) + AX(4) + B ¨̇X + H(Ẋ)Ẍ + G(X)Ẋ + F (X) = 0.

More recently, Tunç ([25, 28]) and Tunç and Sevli [33], respectively, also
gave sufficient conditions which guarantee that the zero solution of the vector
differential equations of the form

X(5) + AX(4) + Ψ(X, Ẋ, Ẍ, ¨̇X, X(4)) ¨̇X + G(Ẋ)Ẍ

+ H(X, Ẋ, Ẍ, ¨̇X, X(4))Ẋ + F (X) = 0,

X(5) + AX(4) + B(t)Ψ(X, Ẋ, Ẍ, ¨̇X, X(4)) ¨̇X + C(t)G(Ẋ)Ẍ

+ D(t)H(X, Ẋ, Ẍ, ¨̇X,X(4))Ẋ + E(t)F (X) = 0

and
X(5) + Ψ(Ẋ, Ẍ) ¨̇X + Φ(X, Ẋ, Ẍ) + Θ(Ẋ) + F (X) = 0

is unstable.
This paper is concerned with the instability of the zero solution of fifth-

order nonlinear vector differential equation described by

(1.1) X(5)+a(t)Ψ(Ẋ, Ẍ) ¨̇X+b(t)Φ(X, Ẋ, Ẍ, ¨̇X, X(4))+c(t)Θ(Ẋ)+F (X) = 0

in the real Euclidean space Rn (with the usual norm denoted in what follows
by ‖.‖), where X ∈ Rn; Ψ is an n × n-symmetric continuous matrix function
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depending, in each case, on the arguments shown; a : R+ → R+, b : R+ → R+,
c : R+ → R+, Φ : Rn × Rn × Rn × Rn × Rn → Rn, Θ : Rn → Rn, F : Rn →
Rn and Φ(X, Ẋ, 0, ¨̇X,X(4)) = Θ(0) = F (0)=0. It is also supposed that the
functions a, b, c, Φ, Θ and F are continuous for arguments shown explicitly.
Throughout this paper, we consider, instead of equation (1.1), the equivalent
differential system:

Ẋ = Y, Ẏ = Z, Ż = W, Ẇ = U,

(1.2) U̇ = −a(t)Ψ(Y,Z)W − b(t)Φ(X,Y, Z, W,U)− c(t)Θ(Y )− F (X),

which was obtained as usual by setting Ẋ = Y , Ẍ = Z, ¨̇X = W , X(4) = U
from equation (1.1). For the sake of the brevity, we assume that the symbols
J (Ψ(Y,Z)Z |Y ), J (Ψ(Y, Z) |Z ), JΘ(Y ) and JF (X), respectively, denote the
Jacobian matrices as follows:

J (Ψ(Y, Z)Z |Y ) =

(
∂

∂yj

n∑

k=1

ψikzk

)
=

(
n∑

k=1

∂ψik

∂yj
zk

)
,

J (Ψ(Y,Z) |Z ) =

(
∂

∂zj

n∑

k=1

ψik

)
=

(
n∑

k=1

∂ψik

∂zj

)
,

JΘ(Y ) =
(

∂θi

∂yj

)
, JF (X) =

(
∂fi

∂xj

)
, (i, j = 1, 2, . . . , n),

where (x1, . . . , xn), (y1, . . . , yn), (z1, . . . , zn), (ψik), (i, k = 1, 2, . . . , n),
(θ1, θ2, . . . , θn) and (f1, f2, · · · , fn) are the components of X, Y , Z, Ψ, Θ
and F , respectively. In addition to these, it is assumed, as basic throughout
the paper, that the Jacobian matrices J (Ψ(Y,Z)Z |Y ), J (Ψ(Y, Z) |Z ), JΘ(Y )
and JF (X) exist and are continuous and symmetric. The symbol 〈X, Y 〉 cor-

responding to any pairX, Y in Rn stands for the usual scalar product
n∑

i=1
xiyi,

and λi(A), (A = (aij), (i, j = 1, 2, . . . , n)), are the eigenvalues of the n× n-
symmetric matrix A and the matrix A = (aij) is said to be positive definite if
and only if the quadratic form XT AX is positive definite, where X ∈ Rn and
XT denotes the transpose of X.

Finally, the motivation for the present work has been inspired basically by
the papers just mentioned above.

§2. Preliminaries

In order to reach our main results, we state a basic theorem for the general non-
autonomous differential system and also express a well-known lemma which
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plays an essential role throughout the proofs of main results of this paper.
Now, consider the differential system

(2.1) ẋ = f(t, x), x(t0) = x0, t ≥ 0,

where f ∈ C
[
R+ × S(ρ), Rn

]
and S(ρ) = [x ∈ Rn : |x| < ρ] . We assume, for

convenience, that the solutions x(t) = x(t, t0, x0) of (2.1) exist, and are unique
for t ≥ t0 and f(t, 0) = 0 so that we have trivial solution x = 0.

First, we state that the following fundamental instability theorem.

Theorem 2.1. Assume that there exists a t0 ∈ R+ and an open set U ⊂ S(ρ)

such that V ∈ C1
[
[t0,∞)× S(ρ), R+

]
for (t, x) from [t0,∞)× U ,

(i) 0 < V (t, x) ≤ a (|x|), a ∈ κ;

(ii) either V ′(t, x) ≥ b (|x|), b ∈ κ, κ = [σ ∈ C [ [t0, ρ) , R+] ] such that σ(t)
is strictly increasing and σ(0) = 0 or V ′(t, x) = CV (t, x)+ω(t, x), where
C > 0 and ω ∈ C [[t0,∞)× U,R+];

(iii) V (t, x) = 0 on [t0,∞) × (
∂U ∩ S(ρ)

)
, ∂U denotes boundary of U and

0 ∈ ∂U .

Then the trivial solution x = 0 of system (2.1) is unstable.

Proof. See Lakshmikantham et al. [7, Theorem 1.1.9].

Lemma 2.2. Let A be a real symmetric n× n-matrix and

a′ ≥ λi(A) ≥ a > 0 (i = 1, 2, . . . , n),

where a′, a are constants.
Then

a′ 〈X, X〉 ≥ 〈AX,X〉 ≥ a 〈X,X〉
and

a′2 〈X,X〉 ≥ 〈AX,AX〉 ≥ a2 〈X,X〉 .
Proof. See Mirsky [14].

§3. Main Results

In this section we establish some sufficient conditions which guarantee that
zero solution of equation (1.1) is unstable.

Theorem 3.1. In addition to the basic assumptions imposed on a, b, c, Ψ, Φ,
Θ and F that appeared in equation (1.1), we assume the following conditions
are satisfied:
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(i) a0 ≥ a(t) ≥ 1, b0 ≥ b(t) ≥ 1, c0 ≥ c(t) ≥ 1, a′(t) < 0 and c′(t) ≤ 0 for
all t ∈ R+,
where a0, b0 and c0 are some positive constants.

(ii) F (0) = 0 and F (X) 6= 0 if X 6= 0, and the Jacobian matrices JF (X),
JΘ(Y ) are symmetric and −f0 ≤ λi(JF (X)) < 0, 0 < λi(JΘ(Y )) ≤
θ0, (i = 1, 2, . . . , n), for all X, Y ∈ Rn,
where f0 and θ0 are some positive constants.

(iii) Φ(X, Y, 0,W,U) = 0, Φ(X,Y, Z,W,U) 6= 0 if Z 6= 0,

and
n∑

i=1
ziφi(X, Y, Z, W,U) ≥ 0 for all X, Y , Z, W , U ∈ Rn,

where Φ(X,Y, Z,W,U) = (φ1(X,Y, Z, W,U), . . . , φn(X, Y, Z,W,U)),

(iv) The matrices Ψ(Y,Z)and J (Ψ(Y,Z)Z |Y ) are symmetric;
0 < λi(Ψ(Y, Z)) ≤ ψ0 and J (Ψ(Y, Z)Z |Y ) ≤ 0 for all Y , Z ∈ Rn, where
ψ0 is a positive constant.

Then the zero solution X = 0 of equation (1.1) is unstable.

Proof. For the proof of Theorem 3.1, we define the Lyapunov function
V0 = V0(t,X, Y, Z,W,U) as follows:

V0 =
1
2
〈W,W 〉 − 〈Z, U〉 − 〈Y, W 〉 − c(t)

1∫

0

〈Θ(σY ), Y 〉 dσ(3.1)

− a(t)

1∫

0

〈σΨ(Y, σZ)Z,Z〉 dσ

Taking notice of (3.1), we see that V0(t, 0, 0, 0, 0, 0) = 0. Next, evidently,
ones can easily get that

V0(t, 0, 0, 0, ε, 0) =
1
2
〈ε, ε〉 =

1
2
‖ε‖2 > 0

for all arbitrary ε 6= 0, ε ∈ Rn. In view of the function V0 = V0(t, X, Y, Z, W,U),
the assumptions of Theorem 3.1, the properties of symmetric matrices, the
above Lemma and Cauchy-Schwarz inequality |〈X,Y 〉| ≤ ‖X‖ ‖Y ‖, one can
easily conclude from (3.1) that there is a positive constant K1 such that

V0(t,X, Y, Z, W,U) ≤ K1

(
‖X‖2 + ‖Y ‖2 + ‖Z‖2 + ‖W‖2 + ‖U‖2

)
.

Now, consider (X, Y, Z, W,U) = (X(t), Y (t), Z(t),W (t), U(t)) as an arbitrary
solution of the system (1.2). Differentiating the Lyapunov function in (3.1)
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and making use of the system (1.2), we have that

V̇0 =
d

dt
V0(t, X, Y, Z, W,U) = 〈Z, b(t)Φ(X,Y, Z, W,U)〉 − 〈Y, JF (X)Y 〉
+ 〈a(t)Ψ(Y,Z)W,Z〉+ 〈c(t)Θ(Y ), Z〉

− d

dt
c(t)

1∫

0

〈Θ(σY ), Y 〉 dσ − d

dt
a(t)

1∫

0

〈σΨ(Y, σZ)Z,Z〉 dσ.(3.2)

Recall that

d

dt
a(t)

1∫

0

〈σΨ(Y, σZ)Z,Z〉 dσ = a(t)

1∫

0

〈σΨ(Y, σZ)Z,W 〉 dσ

+ a(t)

1∫

0

〈σΨ(Y, σZ)W,Z〉 dσ + a(t)

1∫

0

〈
σ2J(Ψ(Y, σZ) |Z)WZ , Z

〉
dσ

+ a(t)

1∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z , Z〉 dσ + a′(t)

1∫

0

〈σΨ(Y, σZ)Z, Z〉 dσ

= a(t)

1∫

0

〈σΨ(Y, σZ)W,Z〉 dσ + a(t)

1∫

0

σ
∂

∂σ
〈σΨ(Y, σZ)W,Z〉 dσ

+ a(t)

1∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z , Z〉 dσ + a′(t)

1∫

0

〈σΨ(Y, σZ)Z, Z〉 dσ

= σ2 〈a(t)Ψ(Y, σZ)W,Z)〉 ∣∣10 + a(t)

1∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z , Z〉 dσ

+ a′(t)

1∫

0

〈σΨ(Y, σZ)Z,Z〉 dσ

= 〈a(t)Ψ(Y, Z)W,Z〉+ a(t)

1∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z , Z〉 dσ

(3.3) +a′(t)

1∫

0

〈σΨ(Y, σZ)Z, Z〉 dσ.
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Similarly, it is clear that

d

dt
c(t)

1∫

0

〈Θ(σY ), Y 〉 dσ

= c(t)

1∫

0

σ 〈JΘ(σY )Z, Y 〉dσ

+ c(t)

1∫

0

〈Θ(σY ), Z〉 dσ + c′(t)

1∫

0

〈Θ(σY ), Y 〉 dσ

= c(t)

1∫

0

σ
∂

∂σ
〈Θ(σY ), Z〉 dσ + c(t)

1∫

0

〈Θ(σY ), Z〉 dσ

+ c′(t)

1∫

0

〈Θ(σY ), Y 〉 dσ

= σ 〈c(t)Θ(σY ), Z〉 ∣∣10 + c′(t)

1∫

0

〈Θ(σY ), Y 〉 dσ

= 〈c(t)Θ(Y ), Z〉+ c′(t)

1∫

0

〈Θ(σY ), Y 〉 dσ.(3.4)

Now, since

Θ(0) = 0 and
∂

∂σ
Θ(σY ) = JΘ(σY )Y,

we can write

(3.5) Θ(Y ) =

1∫

0

JΘ(σY )Y dσ.

Hence, the expression (3.5) leads that

(3.6) c′(t)

1∫

0

〈Θ(σY ), Y 〉 dσ = c′(t)

1∫

0

1∫

0

〈σ1JΘ(σ1σ2Y )Y, Y 〉dσ2dσ1.

Thus, in view of (3.4) and (3.6), it follows that

d

dt
c(t)

1∫

0

〈Θ(σY ), Y 〉 dσ = 〈c(t)Θ(Y ), Z〉(3.7)

+ c′(t)

1∫

0

1∫

0

〈σ1JΘ(σ1σ2Y )Y, Y 〉dσ2dσ1.
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Now, evidently, the expressions (3.2), (3.3) and (3.7) and the assumptions of
Theorem 3.1, together, yield that

V̇0 = 〈Z, b(t)Φ(X,Y, Z,W,U)〉 − 〈Y, JF (X)Y 〉

− a(t)

1∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z ,Z〉 dσ

− a′(t)

1∫

0

〈σΨ(Y, σZ)Z,Z〉 dσ − c′(t)

1∫

0

1∫

0

〈σ1JΘ(σ1σ2Y )Y, Y 〉 dσ2dσ1

≥ 〈Z, Φ(X,Y, Z, W,U)〉 − 〈Y, JF (X)Y 〉 − a′(t)

1∫

0

〈σΨ(Y, σZ)Z, Z〉 dσ

− c′(t)

1∫

0

1∫

0

〈σ1JΘ(σ1σ2Y )Y, Y 〉 dσ2dσ1 > 0.

So, the assumptions of Theorem 3.1 imply that V̇0(t) ≥ K2

(
‖Y ‖2 + ‖Z‖2

)

> 0 for all t ≥ 0, where K2 is a positive constant, say infinite inferior limit of
the function V̇0. Additionally, V̇0 = 0 (t ≥ 0) necessarily implies that Y = 0
for all t ≥ 0, and hence also that X = ξ (a constant vector), Z = Ẏ = 0,
W = Ÿ = 0, U = ¨̇Y = 0 for all t ≥ 0. By using the expressions

X = ξ, Y = Z = W = U = 0

in the system (1.2), it can be seen easily that F (ξ) = 0 which necessarily leads
that ξ = 0 because F (0) = 0. In view of the above discussion, clearly, it
follows that

X = Y = Z = W = U = 0 for all t ≥ 0.

Therefore, subject to the assumptions of Theorem 3.1, the function V0 has
the entire the criteria of the theorem of Lakshmikantham et al. [7, Theorem
1.1.9]. Thus, the basic properties of the function V0(t,X, Y, Z, W,U), which
were proved above verify that the zero solution of system (1.2) is unstable.
The system of equations (1.2) is equivalent to differential equation (1.1) and
hence the proof of Theorem 3.1 is now complete.

Our last result is the following theorem.

Theorem 3.2. In addition to the basic assumptions imposed on a, b, c, Ψ, Φ,
Θ and F that appeared in equation (1.1), we assume the following conditions
are satisfied:

(i) a0 ≥ a(t) ≥ 1, b0 ≥ b(t) ≥ 1, −c0 ≤ c(t) ≤ −1, a′(t) > 0 and c′(t) ≤ 0
for all t ∈ R+, where a0, b0 and c0 are some positive constants.
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(ii) F (0) = 0 and F (X) 6= 0 if X 6= 0, and the Jacobian matrices JΘ(Y ),
JF (X) are symmetric and f0 ≥ λi(JF (X)) > 0 and −θ0 ≤ λi(JΘ(Y )) < 0
for all X, Y ∈ Rn, where f0 and θ0 are some positive constants.

(iii) Φ(X, Y, 0,W,U) = 0, Φ(X,Y, Z,W,U) 6= 0 if Z 6= 0,

and
n∑

i=1
ziφi(X, Y, Z, W,U) ≤ 0 for all X, Y ,Z, W , U ∈ Rn, where

Φ(X, Y, Z, W,U) = (φ1(X,Y, Z,W,U), . . . , φn(X, Y, Z, W,U)).

(iv) The matrices Ψ(Y,Z) and J (Ψ(Y, Z)Z |Y ) are symmetric;
0 < λi(Ψ(Y, Z)) ≤ ψ0 and J (Ψ(Y, Z)Z |Y ) ≥ 0 for all Y , Z ∈ Rn, where
ψ0 is a positive constant.

Then the zero solution X = 0 of equation (1.1) is unstable.

Proof. As similar in the proof of Theorem 3.1, we now define for the proof
of Theorem 3.2 the Lyapunov function V1 = V1(t, X, Y, Z, W,U) such that
V1 = −V0, where V0 is defined as the same as in (3.1), that is,

V1 =
1
2
〈W,W 〉+ 〈Z, U〉+ 〈Y, W 〉

+ c(t)

1∫

0

〈Θ(σY ), Y 〉 dσ + a(t)

1∫

0

〈σΨ(Y, σZ)Z, Z〉 dσ.

Clearly, V1(t, 0, 0, 0, 0, 0) = 0 and in view of conditions (i) and (iv) of Theorem
3.2, we have that

V1(t, 0, 0, ε, 0, ε) = 〈ε, ε〉+ a(t)

1∫

0

〈σΨ(0, σε)ε, ε〉 dσ

≥ ‖ε‖2 +

1∫

0

〈σΨ(0, σε)ε, ε〉 dσ > 0

for all arbitrary ε 6= 0, ε ∈ Rn. The rest of the proof is similar to that of
Theorem3.1, except for some minor modifications, hence it is omitted.

Remark 3.3. It should be noted that, for the case n = 1, the result of
Ezeilo [2; Theorem3.2] is a special case of our first result. Next, the results
constituted here give an additional result to that of established by Sadek [16;
Theorem3.2] and Tunç and Sevli [33].
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Example: As a special case of the system (1.2), let us choose, for n = 5, Ψ,
Φ, Θ and F as:

Ψ(Z) =




1 + 1
1+z2

1
0 0 0 0

0 1 + 1
1+z2

2
0 0 0

0 0 1 + 1
1+z2

3
0 0

0 0 0 1 + 1
1+z2

4
0

0 0 0 0 1 + 1
1+z2

5




,

Φ(Z) =




z3
1 + z5

1

z3
2 + z5

2

z3
3 + z5

3

z3
4 + z5

4

z3
5 + z5

5




, Θ(Y ) =




y1 + arctan y1

y2 + arctan y2

y3 + arctan y3

y4 + arctan y4

y5 + arctan y5




and

F (X) =




−x1 − arctanx1

−x2 − arctanx2

−x3 − arctanx3

−x4 − arctanx4

−x5 − arctanx5




.

Then, respectively, we get

λ1(Ψ(Z)) = 1 +
1

1 + z2
1

, λ2(Ψ(Z)) = 1 +
1

1 + z2
2

, λ3(Ψ(Z)) = 1 +
1

1 + z2
3

,

λ4(Ψ(Z)) = 1 +
1

1 + z2
4

, λ5(Ψ(Z)) = 1 +
1

1 + z2
5

,

JΘ(Y ) =




1 + 1
1+y2

1
0 0 0 0

0 1 + 1
1+y2

2
0 0 0

0 0 1 + 1
1+y2

3
0 0

0 0 0 1 + 1
1+y2

4
0

0 0 0 0 1 + 1
1+y2

5




,

λ1(JΘ(Y )) = 1 +
1

1 + y2
1

, λ2(JΘ(Y )) = 1 +
1

1 + y2
2

,

λ3(JΘ(Y )) = 1 +
1

1 + y2
3

, λ4(JΘ(Y )) = 1 +
1

1 + y2
4

,

λ5(JΘ(Y )) = 1 +
1

1 + y2
5

,
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JF (X) =




−1− 1
1+x2

1
0 0 0 0

0 −1− 1
1+x2

2
0 0 0

0 0 −1− 1
1+x2

3
0 0

0 0 0 −1− 1
1+x2

4
0

0 0 0 0 −1− 1
1+x2

5




and

λ1(JF (X)) = −1− 1
1 + x2

1

, λ2(JF (X)) = −1− 1
1 + x2

2

,

λ3(JF (X)) = −1− 1
1 + x2

3

, λ4(JF (X)) = −1− 1
1 + x2

4

,

λ5(JF (X)) = −1− 1
1 + x2

5

.

Hence,

1 ≤ λi(Ψ(Z)) ≤ 2 for all z1, z2, z3, z4 and z5;
1 ≤ λi(JΘ(Y )) ≤ 2 for all y1, y2, y3, y4 and y5;
− 2 ≤ λi(JF (X)) ≤ −1 for all x1, x2, x3, x4, x5, (i = 1, 2, 3, 4, 5), and
3∑

i=1

ziΦi(Z) = z4
1 + z6

1 + z4
2 + z6

2 + z4
3 + z6

3 + z4
4 + z6

4 + z4
5 + z6

5 ≥ 0

for all z1, z2, z3, z4 and z5.

Remark 3.4. Thus, for the special case a(t) = b(t) = c(t) = 1, if the as-
sumptions of Theorem3.1 and Theorem3.2 hold, then the Lyapunov func-
tions V0 and V1 have the entire criteria of Krasovskii’s [6]. For instance,
when a(t) = b(t) = c(t) = 1, the Lyapunov function continuous function
V0 = V0(X, Y, Z, W,U) satisfies the following Krasovskii properties:

(K1) In every neighborhood of (0, 0, 0, 0, 0) there exists a point (ξ, η, ζ, µ, ρ)
such that V0(ξ, η, ζ, µ, ρ) > 0;

(K2) the time derivative V̇0 = d
dtV0(X, Y, Z,W,U) along solution paths of

the system (1.2) is positive semi-definite; and
(K3) the only solution (X, Y, Z, W,U) = (X(t), Y (t), Z(t),W (t), U(t)) of

the system (1.2) which satisfies V̇0 = 0(t ≥ 0) is the trivial solution (0, 0, 0, 0, 0).
Hence, this properties show that the zero solution of equation (1.1) is un-

stable.
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