Motion of charged particles in Sasakian manifolds

Osamu Ikawa

(Received July 17, 2007)

Abstract. It is known that the image of a horizontal geodesic under a Riemannian submersion is a geodesic. However, in general the image of a geodesic under a Riemannian submersion is not a geodesic. In this paper, we define a Sasaki-Kähler submersion from a Sasakian manifold onto a Kähler manifold, and show that the image of the motion of a charged particle is the motion of a charged particle. In particular, the image of a geodesic is the motion of a charged particle under a Sasaki-Kähler submersion. A Sasaki-Kähler submersion is a kind of Riemannian submersion.

AMS 2000 Mathematics Subject Classification. 78A35, 53C30.

 $Key\ words\ and\ phrases.$ Sasakian manifold, charged particle.

§1. Charged particles and Okumura geodesics

Let (M,g) be an odd-dimensional Riemannian manifold with the Riemannian metric g. We denote by ∇ the Levi-Civita connection of M. A Sasakian structure on M is defined by a tensor field ϕ of type (1,1), a vector field ξ and 1-form η such that

$$(1.1) \phi^2 = -1 + \eta \otimes \xi,$$

- (1.2) $\eta(\xi) = 1,$
- $(1.3) g(X,\xi) = \eta(X),$
- $(1.4) g(\phi X, \phi Y) = g(X, Y) \eta(X)\eta(Y),$

(1.5)
$$d\eta(X,Y) = \frac{1}{2}(X(\eta(Y)) - Y(\eta(X)) - \eta([X,Y])) = g(X,\phi Y),$$

$$(1.6) \qquad (\nabla_X \phi)(Y) = g(X, Y)\xi - \eta(Y)X.$$

(If we adopt the notation in [5], we must replace ϕ here by $-\phi$.)

A Riemannian manifold equipped with a Sasakian structure is called a Sasakian manifold.

264 O. IKAWA

In this section we assume that (M, g, ϕ, η, ξ) is a Sasakian manifold. Then by (1.5), ϕ is skew-symmetric with respect to g. Further, ξ is a Killing vector field, which satisfies $||\xi|| = 1$, $\phi \xi = 0$ and $\nabla_X \xi = -\phi X$. The integral curves of ξ are geodesics.

For a constant $r \in \mathbf{R}$, we define a tensor field A of type (1,2) by

$$A(X)Y = d\eta(X,Y)\xi + r\eta(X)\phi Y + \eta(Y)\phi X.$$

Then A(X) is skew-symmetric with respect to g. The Okumura linear connection $\tilde{\nabla}$ is defined by $\tilde{\nabla}_X Y = \nabla_X Y + A(X)Y$, which satisfies $\tilde{\nabla}g = 0$ and $\tilde{\nabla}\xi = 0$ (See [5]). We have

(1.7)
$$\tilde{\nabla}_X X = \nabla_X X + (r+1)\eta(X)\phi X.$$

A curve x(t) in M is called the motion of a charged particle if $\nabla_{\dot{x}}\dot{x} = \kappa\phi(\dot{x})$ for a constant κ . The constant κ is the charge-to-mass ratio of x(t) (See [1], [2] and [3] for related topics).

Proposition 1.1. (1) If x(t) is an Okumura geodesic, that is $\tilde{\nabla}_{\dot{x}}\dot{x}=0$, then $\eta(\dot{x}(t))$ is a constant.

(2) If x(t) is the motion of a charged particle, then $\eta(\dot{x}(t))$ is a constant.

Proof. (1) Using (1.3), $\tilde{\nabla}g = 0$ and $\tilde{\nabla}\xi = 0$, we have

$$\frac{d}{dt}\eta(\dot{x}(t)) = \frac{d}{dt}g(\dot{x}(t),\xi) = g(\tilde{\nabla}_{\dot{x}}\dot{x},\xi) + g(\dot{x},\tilde{\nabla}_{\dot{x}}\xi) = 0.$$

(2) Using (1.3), $\nabla g = 0$, we have

$$\frac{d}{dt}\eta(\dot{x}(t)) = g(\nabla_{\dot{x}}\dot{x},\xi) + g(\dot{x},\nabla_{\dot{x}}\xi) = \kappa g(\phi(\dot{x}),\xi) - g(\dot{x},\phi(\dot{x})) = 0.$$

Proposition 1.1 and (1.7) immediately imply the following:

Proposition 1.2. (1) Let x(t) be an Okumura geodesic. Set $c = \eta(\dot{x}(t))$, then x(t) is the motion of a charged particle of the charge-to-mass ratio $\kappa = -(r+1)c$.

- (2) Let x(t) be the motion of a charged particle. Set $c = \eta(\dot{x}(t))$.
 - (2-1) When $c \neq 0$, then x(t) is an Okumura geodesic for $r = -(\frac{\kappa}{c} + 1)$.
 - (2-2) When c = 0, then $\tilde{\nabla}_{\dot{x}}\dot{x} = \kappa\phi(\dot{x})$.

Corollary 1.3. A curve x(t) is a geodesic with respect to the Levi-Civita connection if and only if

- (1) x(t) is an Okumura geodesic for r = -1 when $\eta(\dot{x}) \neq 0$,
- (2) x(t) is an Okumura geodesic for any r when $\eta(\dot{x}) = 0$.

§2. Sasaki-Kähler submersion

Let $\pi: \overline{M} \to M$ be a Riemannian submersion from a Sasakian manifold $(\overline{M}, g, \phi, \eta, \xi)$ of dimension 2n+1 onto a Kähler manifold (M, g, J) of real dimension 2n. We call π a Sasaki-Kähler submersion if

- (1) $\pi^{-1}(y)$ $(y \in M)$ is the image of an integral curve of ξ ,
- (2) $d\pi\phi X = Jd\pi X$ for any horizonal vector X, that is $\eta(X) = 0$.

For instance, we can construct a Sasaki-Kähler submersion from any Hermitian symmetric space M.

Theorem 2.1. Let $\pi: \bar{M} \to M$ be a Sasaki-Kähler submersion. Assume that $x(t) \in \bar{M}$ is the motion of a charged particle of the charge-to-mass ratio κ . Define a constant c by $c = \eta(\dot{x})$. Then $y(t) = \pi(x(t))$ is the motion of a charged particle of the charge-to-mass ratio $\kappa + 2c$, that is $\nabla_{\dot{y}}\dot{y} = (\kappa + 2c)J\dot{y}$, where ∇ is the Levi-Civita connection of M. In particular, if x(t) is a geodesic, then y(t) is the motion of a charged particle of the charge-to-mass ratio 2c.

Proof. Since $||\dot{x}||$ is a constant, $\dot{x}(t)=0$ for some t if and only if $\dot{x}(t)=0$ for any t. In this case, x(t) is a single point. Hence we may assume $\dot{x}(t)\neq 0$ for any t. If $\dot{x}(t)$ is proportional to ξ for some t, then x(t) is an integral curve of ξ . In this case, y(t) is a single point. Hence we may assume that \dot{x} is not proportional to ξ for any t. In other words, we may assume $\dot{y}(t)\neq 0$ for any t. Hence there exists a (local) vector field X of M such that $X=\dot{y}$. If we denote by \bar{X} the horizontal lift of X, then we have $\dot{x}=\bar{X}+\eta(\dot{x})\xi=\bar{X}+c\xi$. Since x(t) is the motion of a charged particle, we get

$$\kappa\phi\bar{X} = \kappa\phi\dot{x} = \bar{\nabla}_{\dot{x}}\dot{x} = \bar{\nabla}_{\bar{X}+c\xi}(\bar{X}+c\xi) = \bar{\nabla}_{\bar{X}}\bar{X} + c(-2\phi\bar{X}+[\xi,\bar{X}]),$$

where $\bar{\nabla}$ is the Levi-Civita connection of \bar{M} . Since ξ and 0 are π -related, and \bar{X} and X are π -related, we have $\pi[\xi, \bar{X}] = [\pi \xi, \pi \bar{X}] = 0$. Hence $[\xi, \bar{X}]$ is vertical. Since ξ is a Killing vector field and \bar{X} is perpendicular to ξ , we have $\eta([\xi, \bar{X}]) = g(\xi, [\xi, \bar{X}]) = \xi(g(\xi, \bar{X})) = 0$. Hence $[\xi, \bar{X}] = 0$, which implies that $\kappa \phi \bar{X} = \bar{\nabla}_{\bar{X}} \bar{X} - 2c\phi \bar{X}$. Using [4, p. 212, Lemma 45, (3)], we obtain $\nabla_{\dot{y}}\dot{y} = \nabla_X X = d\pi(\bar{\nabla}_{\bar{X}}\bar{X}) = (\kappa + 2c)\pi\phi\bar{X} = (\kappa + 2c)J\dot{y}$.

References

- [1] O. Ikawa, Hamiltonian dynamics of a charged particle, Hokkaido Math. J. **32** (2003) 661–671.
- [2] O. Ikawa, Motion of a charged particles in Kähler C-spaces, Yokohama Math. J. ${\bf 50}~(2003)~31-39.$

266 O. IKAWA

- [3] O. Ikawa, Motion of a charged particles in homogeneous Kähler and homogeneous Sasakian manifolds, Far East J. Math. Sci. **14** (2004), 283–302.
- [4] B. O'Neill, Semi-Riemannian geometry, Academic Press, New York (1983).
- [5] T. Takahashi, Sasakian $\phi\text{-symmetric}$ spaces, Tôhoku Math. Journ. **29** (1977), 91–113.

Osamu Ikawa Fukushima National College of Technology Department of General Education Iwaki, Fukushima 970-8034, Japan