
SUT Journal of Mathematics
Vol. 43, No. 2 (2007), 263–266

Motion of charged particles in Sasakian manifolds
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Abstract. It is known that the image of a horizontal geodesic under a Rie-
mannian submersion is a geodesic. However, in general the image of a geodesic
under a Riemannian submersion is not a geodesic. In this paper, we define a
Sasaki-Kähler submersion from a Sasakian manifold onto a Kähler manifold,
and show that the image of the motion of a charged particle is the motion of
a charged particle. In particular, the image of a geodesic is the motion of a
charged particle under a Sasaki-Kähler submersion. A Sasaki-Kähler submer-
sion is a kind of Riemannian submersion.
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§1. Charged particles and Okumura geodesics

Let (M, g) be an odd-dimensional Riemannian manifold with the Riemannian
metric g. We denote by ∇ the Levi-Civita connection of M . A Sasakian
structure onM is defined by a tensor field ϕ of type (1, 1), a vector field ξ and
1-form η such that

ϕ2 = −1 + η ⊗ ξ,(1.1)
η(ξ) = 1,(1.2)

g(X, ξ) = η(X),(1.3)
g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),(1.4)

dη(X,Y ) = 1
2

(X(η(Y ))− Y (η(X))− η([X,Y ])) = g(X,ϕY ),(1.5)
(∇Xϕ)(Y ) = g(X,Y )ξ − η(Y )X.(1.6)

(If we adopt the notation in [5], we must replace ϕ here by −ϕ.)
A Riemannian manifold equipped with a Sasakian structure is called a

Sasakian manifold.
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In this section we assume that (M, g, ϕ, η, ξ) is a Sasakian manifold. Then
by (1.5), ϕ is skew-symmetric with respect to g. Further, ξ is a Killing vector
field, which satisfies ||ξ|| = 1, ϕξ = 0 and ∇Xξ = −ϕX. The integral curves
of ξ are geodesics.

For a constant r ∈ R, we define a tensor field A of type (1, 2) by

A(X)Y = dη(X,Y )ξ + rη(X)ϕY + η(Y )ϕX.

Then A(X) is skew-symmetric with respect to g. The Okumura linear con-
nection ∇̃ is defined by ∇̃XY = ∇XY + A(X)Y , which satisfies ∇̃g = 0 and
∇̃ξ = 0 (See [5]). We have

(1.7) ∇̃XX = ∇XX + (r + 1)η(X)ϕX.

A curve x(t) in M is called the motion of a charged particle if ∇ẋẋ = κϕ(ẋ)
for a constant κ. The constant κ is the charge-to-mass ratio of x(t) (See [1],
[2] and [3] for related topics).

Proposition 1.1. (1) If x(t) is an Okumura geodesic, that is ∇̃ẋẋ = 0, then
η(ẋ(t)) is a constant.

(2) If x(t) is the motion of a charged particle, then η(ẋ(t)) is a constant.

Proof. (1) Using (1.3), ∇̃g = 0 and ∇̃ξ = 0, we have

d

dt
η(ẋ(t)) = d

dt
g(ẋ(t), ξ) = g(∇̃ẋẋ, ξ) + g(ẋ, ∇̃ẋξ) = 0.

(2) Using (1.3), ∇g = 0, we have

d

dt
η(ẋ(t)) = g(∇ẋẋ, ξ) + g(ẋ,∇ẋξ) = κg(ϕ(ẋ), ξ)− g(ẋ, ϕ(ẋ)) = 0.

Proposition 1.1 and (1.7) immediately imply the following:

Proposition 1.2. (1) Let x(t) be an Okumura geodesic. Set c = η(ẋ(t)),
then x(t) is the motion of a charged particle of the charge-to-mass ratio κ =
−(r + 1)c.
(2) Let x(t) be the motion of a charged particle. Set c = η(ẋ(t)).

(2-1) When c ̸= 0, then x(t) is an Okumura geodesic for r = −(κc + 1).
(2-2) When c = 0, then ∇̃ẋẋ = κϕ(ẋ).

Corollary 1.3. A curve x(t) is a geodesic with respect to the Levi-Civita
connection if and only if

(1) x(t) is an Okumura geodesic for r = −1 when η(ẋ) ̸= 0,
(2) x(t) is an Okumura geodesic for any r when η(ẋ) = 0.
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§2. Sasaki-Kähler submersion

Let π : M̄ → M be a Riemannian submersion from a Sasakian manifold
(M̄, g, ϕ, η, ξ) of dimension 2n + 1 onto a Kähler manifold (M, g, J) of real
dimension 2n. We call π a Sasaki-Kähler submersion if

(1) π−1(y) (y ∈M) is the image of an integral curve of ξ,
(2) dπϕX = JdπX for any horizonal vector X, that is η(X) = 0.

For instance, we can construct a Sasaki-Kähler submersion from any Her-
mitian symmetric space M .

Theorem 2.1. Let π : M̄ → M be a Sasaki-Kähler submersion. Assume
that x(t) ∈ M̄ is the motion of a charged particle of the charge-to-mass ratio
κ. Define a constant c by c = η(ẋ). Then y(t) = π(x(t)) is the motion of a
charged particle of the charge-to-mass ratio κ+ 2c, that is ∇ẏẏ = (κ+ 2c)Jẏ,
where ∇ is the Levi-Civita connection ofM . In particular, if x(t) is a geodesic,
then y(t) is the motion of a charged particle of the charge-to-mass ratio 2c.

Proof. Since ||ẋ|| is a constant, ẋ(t) = 0 for some t if and only if ẋ(t) = 0 for
any t. In this case, x(t) is a single point. Hence we may assume ẋ(t) ̸= 0 for
any t. If ẋ(t) is proportional to ξ for some t, then x(t) is an integral curve
of ξ. In this case, y(t) is a single point. Hence we may assume that ẋ is not
proportional to ξ for any t. In other words, we may assume ẏ(t) ̸= 0 for any
t. Hence there exists a (local) vector field X of M such that X = ẏ. If we
denote by X̄ the horizontal lift of X, then we have ẋ = X̄ + η(ẋ)ξ = X̄ + cξ.
Since x(t) is the motion of a charged particle, we get

κϕX̄ = κϕẋ = ∇̄ẋẋ = ∇̄X̄+cξ(X̄ + cξ) = ∇̄X̄X̄ + c(−2ϕX̄ + [ξ, X̄]),

where ∇̄ is the Levi-Civita connection of M̄ . Since ξ and 0 are π-related,
and X̄ and X are π-related, we have π[ξ, X̄] = [πξ, πX̄] = 0. Hence [ξ, X̄]
is vertical. Since ξ is a Killing vector field and X̄ is perpendicular to ξ, we
have η([ξ, X̄]) = g(ξ, [ξ, X̄]) = ξ(g(ξ, X̄)) = 0. Hence [ξ, X̄] = 0, which implies
that κϕX̄ = ∇̄X̄X̄ − 2cϕX̄. Using [4, p. 212, Lemma 45, (3)], we obtain
∇ẏẏ = ∇XX = dπ(∇̄X̄X̄) = (κ+ 2c)πϕX̄ = (κ+ 2c)Jẏ.
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