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Abstract. In this paper, we consider the simultaneous confidence proce-
dure for multiple comparisons with a control among mean vectors from the
multivariate normal distributions. Seo[9] proposed a conservative simultaneous
confidence procedure for multiple comparisons with a control. Further, Seo[9]
conjectured that this procedure always yields the conservative simultaneous
confidence intervals. In this paper, we give the affirmative proof of this conjec-
ture in the case of four mean vectors. We also give the upper bound for the
conservativeness of the procedure. Finally, numerical results by Monte Carlo
simulation are given.
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§1. Introduction

Simultaneous confidence procedures for multiple comparisons among mean
vectors have been studied by many authors. In many experimental situa-
tions, pairwise comparisons and comparisons with a control are standard for
multiple comparisons. On the univariate case, a number of multiple com-
parison procedure for pairwise comparisons and comparisons with a control
have been proposed for balanced and unbalanced cases (see, e.g., Hochberg
and Tamhane[5]). In one of these procedures, Tukey-Kramer (TK) proce-
dure, which was proposed by Tukey[14] and Kramer[6][7], is well known as
a typical procedure. In one of the important properties of TK procedure,
this procedure yields the conservative simultaneous confidence intervals for
all pairwise comparisons among means (see, e.g., Benjamini and Braun[1]).
This property is known as the generalized Tukey conjecture. For the theo-
retical discussions to prove the generalized Tukey conjecture, see Hayter[3][4],
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Brown[2] and so on. Seo, Mano and Fujikoshi[11] proposed the multivariate
Tukey-Krmaer (MTK) procedure. For the MTK procedure, the multivariate
generalized Tukey conjecture has been affirmatively proved in the case of three
correlated mean vectors. Recently, Nishiyama and Seo[8] gave the affirmative
proof of the conjecture in the case of four mean vectors. Further, relating to
the conjecture, Seo[10] and Seo and Nishiyama[12] discussed the upper bound
for the conservativeness of the MTK procedure.

In the case of comparisons with a control, concerning to the MTK proce-
dure, Seo[9] proposed a conservative simultaneous confidence procedure. In
the case of three correlated mean vectors, its conservativeness has been affir-
matively proved by Seo[9], and Seo and Nishiyama[12] gave the upper bound
for the conservativeness of this procedure.

In this paper, we discuss the conservativeness of the simultaneous confi-
dence procedure for comparisons with a control in the case of four correlated
mean vectors. Further, we give the upper bound for the conservativeness of
the procedure. The organization of the paper is as follows; in Section 2, we
describe the conservative simultaneous confidence procedure for comparisons
with a control. Also, the conservativeness of the procedure in the case of
four mean vectors and its upper bound for the conservativeness are given. In
Section 3, some numerical results by Monte Carlo simulation are given.

§2. Conservative simultaneous confidence procedure for multiple
comparisons with a control

Let M = [µ1, . . . ,µk] be the unknown p × k matrix of k mean vectors cor-
responding to the k treatments, where µi is the mean vector from ith popu-
lation. Here, we assume that k-th treatment is a control treatment. And let
M̂ = [µ̂1, . . . , µ̂k] be an estimator of M such that vec(X) has Nkp(0,V ⊗Σ),
where X = M̂ −M , V = [vij ] is a known k × k positive definite matrix
and Σ is an unknown p × p positive definite matrix, and vec(·) denotes the
column vector formed by stacking the columns of the matrix under each other.
Further, we assume that S is an unbiased estimator of Σ such that νS is in-
dependent of M̂ and is distributed as a Wishart distribution Wp(Σ, ν). Then
we have the simultaneous confidence intervals for comparisons with a control
among mean vectors given by

a′Mb ∈
[
a′M̂b± t(b′V b)1/2(a′Sa)1/2

]
, ∀a ∈ Rp − {0}, ∀b ∈ B,(2.1)

where Rp−{0} is a set of any nonzero real p-dimensional vectors, B is a subset
in the k-dimensional space such that

B = {b ∈ Rk : b = ei − ek, i = 1, . . . , k − 1},
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ei = (0, . . . , 0, 1, 0, . . . , 0) is a k-dimensional unit vector which having 1 at i-th
component, t is the upper α percentile of T 2

max ·c statistic defined by

T 2
max ·c = max

b∈B

{
(Xb)′S−1Xb

b′V b

}

= max
i=1,...,k−1

{
(xi − xk)′(dikS)−1(xi − xk)

}
,

and dik = vii − 2vik + vkk.
Also, we can express (2.1) as

a′(µi − µk) ∈
[
a′(µ̂i − µ̂k)± t (dika′Sa)1/2

]
,

∀a ∈ Rp − {0}, 1 ≤ i ≤ k − 1.

Then for k ≥ 3, Seo[9] proposed a conservative procedure by replacing with
tc·V1 as an approximation to t, and conjectured conservative simultaneous con-
fidence intervals given by

a′(µi − µk) ∈
[
a′ (µ̂i − µ̂k)± tc·V1

√
dika′Sa

]
,(2.2)

∀a ∈ Rp − {0}, 1 ≤ i ≤ k − 1,

where t2c·V1
is the upper α percentile of T 2

max ·c statistic with V = V 1 and V 1

satisfies with the conditions dij = dik + djk, 1 ≤ i < j ≤ k − 1. We note that
the matrix V 1 satisfies with d12 = d13 +d23 for the case k = 3. By a reduction
of relating to the coverage probability of (2.2), Seo[9] proved that the coverage
probability in the case k = 3 is equal or greater than 1 − α for any positive
definite matrix V . Besides, Seo and Nishiyama[12] discussed the bound of
conservative simultaneous confidence level. Unfortunately, this conjecture is
not proved in the case k ≥ 4, so we attempt to prove this conjecture and give
the upper bound for the conservativeness in the case k = 4. We note that the
matrix V 1 satisfies with d12 = d14 + d24, d13 = d14 + d34 and d23 = d24 + d34

for the case k = 4.
First of all, we consider the probability

Q(q,V ,B) = Pr
{

(Xb)′(νS)−1(Xb) ≤ q(b′V b), ∀b ∈ B} ,(2.3)

where q is any fixed constant. Without loss of generality, we assume Σ = Ip.
When q = t∗c(≡ t2c·V1

/ν), the coverage probability (2.3) is the same as one
of (2.2). The conservativeness of the simultaneous confidence intervals (2.2)
means that Q(t∗c ,V ,B) ≥ Q(t∗c ,V 1,B) = 1 − α, then the following theorem
for the case k = 3 is given by Seo and Nishiyama[12].
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Theorem 1. (Seo and Nishiyama[12]) Let Q(q,V ,B) be the coverage prob-
ability for (2.3) with a known matrix V for the case k = 3. Then

1− α = Q(t∗c ,V 1,B) ≤ Q(t∗c ,V ,B) < Q(t∗c ,V 2,B)

holds for any positive definite matrix V , where t∗c = t2c·V1
/ν, B = {b ∈ Rk :

b = ei − ek, i = 1, . . . , k − 1} and V 1 satisfies with d12 = d13 + d23 and V 2

satisfies with
√
d12 = |√d13 −

√
d23|.

In connection with Theorem 1, we prepare the following conjecture for the
case k ≥ 4.

Conjecture 1. Let Q(q,V ,B) be the coverage probability for (2.3) with a
known matrix V . Then

1− α = Q(t∗c ,V 1,B) ≤ Q(t∗c ,V ,B) < Q(t∗c ,V 2,B)

holds for any positive definite matrix V , where t∗c = t2c·V1
/ν, B = {b ∈ Rk :

b = ei − ek, i = 1, . . . , k − 1} and V 1 satisfies with dij = dik + djk for
all i, j(1 ≤ j ≤ k − 1) and V 2 satisfies with

√
dij = |√dik −

√
djk| for all

i, j(1 ≤ j ≤ k − 1).

Now, we discuss the case of k = 4 in Conjecture 1. We obtain the following
result by an extension of the idea in Seo[9] and Seo and Nishiyama[12].

Theorem 2. Let Q(q,V ,B) be the coverage probability for (2.3) with a known
matrix V for the case k = 4. Then

1− α = Q(t∗c ,V 1,B) ≤ Q(t∗c ,V ,B) < Q(t∗c ,V 2,B)

holds for any positive definite matrix V , where t∗c = t2c·V1
/ν, B = {b ∈ Rk :

b = ei − ek, i = 1, . . . , k − 1} and V 1 satisfies with d12 = d14 + d24, d13 =
d14 + d34 and d23 = d24 + d34, and V 2 satisfies with

√
d12 = |√d14 −

√
d24|,√

d13 = |√d14 −
√
d34| and

√
d23 = |√d24 −

√
d34|.

Proof. Let A be k × k nonsingular matrix such that V = A′A. Then by the
transformation from X to Y = XA−1, we have vec(Y ) ∼ Nkp(0, Ik ⊗ Ip).
Let

Γ =
{
γ ∈ Rk; γ = (b′V b)−1/2Ab, b ∈ B

}
,

which is a subset of unit vector in Rk. Then we can rewrite the coverage
probability Q(q,V ,B) as

Q(q,V ,B) = Pr
{

(Y Ab)′(νS)−1(Y Ab) ≤ q(b′V b), ∀b ∈ B}

= Pr
{

(Y γ)′(νS)−1(Y γ) ≤ q, γ ∈ Γ
}
.
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Further, we consider the transformation from S to L = diag(`1, . . . , `p), `1 ≥
· · · ≥ `p and a p × p orthogonal matrix H1 such that νS = H1LH

′
1. It is

well known (see, e.g., Siotani, Hayakawa and Fujikoshi[13]) that L and H1

are independent. Then

Q(q,V ,B) = EL
[
Pr
{

(Y γ)′L−1(Y γ) ≤ q, γ ∈ Γ
}]
.

Since the dimension of the space spanned by B equals 3, there exists a k×k
orthogonal matrix H2 such that

γ ′mH2 =
[
δ′m, 0

]
, m = 1, 2, 3,

where δm = (δm1, δm2, δm3)′ is a 3-dimensional vector. Here δm satisfies
δ′mδm = 1, so we can write

δm =




sinβm1 sinβm2

sinβm1 cosβm2

cosβm1


 , m = 1, 2, 3,

where 0 ≤ βm1 < π and 0 ≤ βm2 < 2π.
Further, we can write Y H2 = [U , Ũ ], where U is a p× 3 matrix. Letting

U = [u1, . . . ,up]′, where

us = ||us||



sin θs1 sin θs2
sin θs1 cos θs2

cos θs1


 = rs




sin θs1 sin θs2
sin θs1 cos θs2

cos θs1


 , s = 1, . . . , p,

and r2
s , θs1 and θs2 are independently distributed as χ2 distribution with three

degrees of freedom, uniform distribution on U[0, π) and on U[0, 2π), respec-
tively. Then the coverage probability can be written as

Q(q,V ,B) = EL,R

[
Pr
{ p∑

s=1

r2
s

`s
(sin θs1 sin θs2 sinβm1 sinβm2

+ sin θs1 cos θs2 sinβm1 cosβm2 + cos θs1 cosβm1)2≤q for m = 1, 2, 3
}]
,

where R = diag(r1, . . . , rp) is independent of L = diag(`1, . . . , `p).
Relating the coverage probability Q(q,V ,B), we consider the probability

G(β) = Pr
[ p∑

s=1

r2
s

ls
(sin θs1 sin θs2 sinβm1 sinβm2(2.4)

+ sin θs1 cos θs2 sinβm1 cosβm2 + cos θs1 cosβm1)2 ≤ q for m = 1, 2, 3
]
,
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where β = (β11, β21, β31, β12, β22, β32)′. Also, we define the volume Ω and Dm

as follows.

Ω = {(θs1, θs2)p : 0 < θs1 < π, 0 < θs2 < 2π, 1 ≤ s ≤ p},

Dm =
{

(θs1, θs2)p ∈ Ω :
p∑

s=1

r2
s

`s
(sin θs1 sin θs2 sinβm1 sinβm2

+ sin θs1 cos θs2 sinβm1 cosβm2 + cos θs1 cosβm1)2 > q

}
.

Then we note that the probability (2.4) is equal to 1−volume[∪3
m=1Dm]/(2π2)p.

Therefore, to minimize G(β) is equivalent to maximizing the value for volume
of the union of Dm’s. Similarly, to maximize G(β) is equivalent to minimizing
the value for volume of the union of Dm’s.

Here, for comparisons with a control, we can assume that subset b’s of the
set B are as follows.

b1 =




1
0
0
−1


 , b2 =




0
1
0
−1


 , b3 =




0
0
1
−1


 .

At first, we consider the case that volume[∪3
m=1Dm] is maximum. Assuming

that δ1, δ2 and δ3 are orthogonal, we can put

δ1 =




0
0
1


 , δ2 =




0
1
0


 , δ3 =




1
0
0


 .

Then we can get β11 = 0, β21 = π/2, β31 = π/2, β12 = 0, β22 = 0, β32 = π/2.
For example, putting p = 1, r2

1/`1 = 1 and q = 0.5, we have

G(β) = Pr
[

(sin θ11 sin θ12 sinβm1 sinβm2

+ sin θ11 cos θ12 sinβm1 cosβm2 + cos θ11 cosβm1)2 ≤ 0.5 for m = 1, 2, 3
]
,

and

Di = {(θ11, θ12) ∈ Ω : [sin θ11 sin θ12 sinβi1 sinβi2
+ sin θ11 cos θ12 sinβi1 cosβi2 + cos θ11 cosβi1]2 > 0.5 for i = 1, 2, 3}.

It is noted from Figure 1 that Di’s don’t overlap, so the volume[∪3
i=1Di] is

maximum when δ1, δ2, δ3 are orthogonal.
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On the other hands, in the case δ2 and δ3 are not orthogonal, we choose

δ1 =




0
0
1


 , δ2 =




0
1
0


 , δ3 =




1/
√

2
1/
√

2
0


 .

Then we can get β11 = 0, β21 = π/2, β31 = π/2, β12 = 0, β22 = 0, β32 = π/4.
In this case, it is noted from Figure 2 that D2 and D3 overlap each other.

So the volume[∪3
i=1Di] is not maximum when δ1, δ2 and δ3 are not orthogonal.

Hence, Q(q,V ,B) is minimum when δ1, δ2 and δ3 are orthogonal each
other. Therefore, δ′`δm = 0(` 6= m), that is, γ ′`γm = 0(` 6= m). We can show
that γ ′1γ2 = 0 if and only if v12 − v24 − v14 + v44 = 0. Therefore, we can get
the condition d12 = d14 + d24. For the case that γ ′1γ3 = 0 and γ ′2γ3 = 0, we
can get the similar conditions d13 = d14 + d34 and d23 = d24 + d34. Thus, we
can get the condition of V 1 as dij = di4 + dj4(1 ≤ i < j ≤ 3).

Secondly, we consider the case that volume[∪3
m=1Dm] is minimum. By

using same procedure, we note that δ1, δ2, and δ3 are same in this case. So,
δ′`δm = δ′`δ` = 1(` 6= m), that is, γ ′`γ` = 1. We can show that γ ′1γ2 = 1 if and
only if v12 − v24 − v14 + v44 =

√
d14

√
d24. Therefore, we can get the condition√

d12 = |√d14 −
√
d24|. For the case that γ ′1γ3 = 1 and γ ′2γ3 = 1, we can get

the similar conditions
√
d13 = |√d14−

√
d34| and

√
d23 = |√d24−

√
d34|. Thus,

we can get the condition of V 2 as
√
dij = |√di4 −

√
dj4|(1 ≤ i < j ≤ 3).

We note that there does not exist V 2 as a positive definite matrix. However,
we can find V 2 as a positive semi-definite matrix. Therefore, when q = t∗c(≡
t2c·V1

/ν), we note that 1− α = Q(t∗c ,V 1,B) ≤ Q(t∗c ,V ,B) < Q(t∗c ,V 2,B). �

§3. Numerical Examinations

This section gives some numerical results of the coverage probability for T 2
max ·c

statistic and the upper percentiles of the statistic by Monte Carlo simulation.
The Monte Calro simulations are made from 106 trials for each of parameters
based on normal random vectors from Nkp(0,V ⊗ Ip). Also, we note that
the sample covariance matrix S is formed independently in each time with ν
degrees of freedom.

Table 1 gives the simulation results for the case where α = 0.1, 0.5, 0.01; p =
1, 2, 5; k = 4; ν = 20, 40, 60; and V = I,V 1,V 2, that is,

I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,V 1 =




1 0 0 0.5
0 1 0 0.5
0 0 1 0.5

0.5 0.5 0.5 1


 ,V 2 =




4 2 2 0
2 2 2 2
2 2 2 2
0 2 2 4


 .
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Here we note that V 1 is a positive definite matrix that satisfies dij = di4 +
dj4(1 ≤ i < j ≤ 3) and V 2 is a positive semi-definite matrix that satisfies√
dij = |√di4 −

√
dj4|(1 ≤ i < j ≤ 3).

It can be seen from some simulation results in Table 1 that the upper
percentiles with V = V 1 are always maximum values and those with V = V 2

are always minimum values for each parameters. Besides, the upper percentiles
with V = I are always between those with V = V 1 and those with V = V 2.

It is noted from Table 1 that we can obtain the upper bounds for the
conservativeness of multiple comparisons with a control. For example, when
p = 2, ν = 20 and α = 0.1, we note that 0.90 ≤ Q(t∗c ,V ,B) < 0.965 for any
positive definite V . Further, it may be noted that the coverage probabilities
do not depend on p and ν.

In conclusion, the conservative approximate procedure which is proposed
by this paper is useful for the simultaneous confidence intervals estimation in
the case of comparisons with a control.
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p ν α V = V 1 V = I V = V 2 Q(t∗c , I,B) Q(t∗c ,V 2,B)
1 20 0.01 3.323 3.284 2.845 0.991 0.997

0.05 2.593 2.540 2.086 0.955 0.983
0.1 2.254 2.192 1.724 0.911 0.964

40 0.01 3.119 3.092 2.705 0.991 0.997
0.05 2.487 2.443 2.021 0.955 0.983
0.1 2.183 2.126 1.684 0.912 0.965

60 0.01 3.056 3.030 2.659 0.991 0.997
0.05 2.454 2.410 2.000 0.955 0.983
0.1 2.160 2.103 1.671 0.911 0.965

2 20 0.01 4.050 4.014 3.530 0.991 0.997
0.05 3.260 3.209 2.722 0.955 0.983
0.1 2.902 2.839 2.342 0.911 0.965

40 0.01 3.683 3.660 3.262 0.991 0.997
0.05 3.045 3.004 2.575 0.954 0.983
0.1 2.740 2.687 2.238 0.911 0.965

60 0.01 3.575 3.552 3.185 0.991 0.997
0.05 2.980 2.942 2.532 0.954 0.983
0.1 2.691 2.640 2.207 0.911 0.965

5 20 0.01 5.957 5.904 5.266 0.991 0.997
0.05 4.914 4.847 4.222 0.955 0.983
0.1 4.448 4.372 3.745 0.911 0.964

40 0.01 4.920 4.892 4.457 0.991 0.997
0.05 4.219 4.177 3.711 0.955 0.983
0.1 3.886 3.834 3.346 0.912 0.965

60 0.01 4.654 4.634 4.245 0.911 0.997
0.05 4.034 3.997 3.572 0.955 0.983
0.1 3.734 3.686 3.235 0.911 0.965

Table 1: Simulation results of k = 4
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Figure 1. volume[D1 ∪D2 ∪D3]
when δ1, δ2 and δ3 are orthogonal.
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Figure 2. volume[D1 ∪D2 ∪D3]
when δ2 and δ3 are not orthogonal.
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